Degradation Characteristics of Carbon Tetrachloride by Granular Sponge Zero Valent Iron
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Procedure
2.2. Analysis and Data Processing
3. Results and Discussion
3.1. Effect of Acid-Washing Pretreatment on CCl4 Removal
3.2. Reaction Kinetics of Reductive Degradation of CCl4 by ZVI
3.3. Effect of ZVI Dosage on Reductive Dechlorination of CCl4
3.4. Effect of Initial Solution pH on Reductive Dechlorination of CCl4
3.5. Significance of the Experimental Results on Permeable Reactive Barrier Design
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, P.; Jiang, W.; Lyu, S.; Brusseau, M.L.; Xue, Y.; Qiu, Z.; Sui, Q. Mechanism of carbon tetrachloride reduction in ferrous ion activated calcium peroxide system in the presence of methanol. Chem. Eng. J. 2019, 362, 243–250. [Google Scholar] [CrossRef]
- Alvarado, J.S.; Rose, C.; LaFreniere, L. Degradation of carbon tetrachloride in the presence of zero-valent iron. J. Environ. Monitor. 2010, 8, 1524–1530. [Google Scholar] [CrossRef] [PubMed]
- Penny, C.; Gruffaz, C.; Nadalig, T.; Cauchie, H.M.; Vuilleumier, S.; Bringel, F. Tetrachloromethane-degrading bacterial enrichment cultures and isolates from a contaminated aquifer. Microorganisms 2015, 3, 327–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, G.G.; Peck, F.C. Degradation of carbon tetrachloride in a reducing groundwater environment: Implications for natural attenuation. Appl. Geochem. 2003, 18, 503–525. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. IRIS Toxicological Review of Carbon Tetrachloride (Final Report); U.S. Environmental Protection Agency: Washington, DC, USA, 2010.
- Gee, G.W.; Oostrom, M.; Freshley, M.D.; Rockhold, M.L.; Zachara, J.M. Hanford site vadose zone studies: An overview. Vadose Zone J. 2007, 4, 899–905. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Lei, C.; Wei, C.; Zeng, G. Chlorinated volatile organic compounds (Cl-VOCs) in environment—sources, potential human health impacts, and current remediation technologies. Environ. Int. 2014, 71, 118–138. [Google Scholar] [CrossRef]
- Dominguez, C.M.; Rodriguez, V.; Montero, E. Methanol-enhanced degradation of carbon tetrachloride by alkaline activation of persulfate: Kinetic model. Sci. Total Environ. 2019, 666, 631–640. [Google Scholar] [CrossRef]
- O’Carroll, D.; Sleep, B.; Krol, M.; Boparai, H.; Kocur, C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv. Water Resour. 2013, 51, 104–122. [Google Scholar] [CrossRef]
- Lefevre, E.; Bossa, N.; Wiesner, M.R.; Gunsch, C.K. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities. Sci. Total Environ. 2016, 565, 889–901. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Gong, L.; Fan, D.; Tratnyek, P.G.; Lowry, G.V. Quantifying the efficiency and selectivity of organohalide dechlorination by zerovalent iron. Environ. Sci.-Proc. Imp. 2020, 3, 528–542. [Google Scholar] [CrossRef]
- Velimirovic, M.; Larsson, P.-O.; Simons, Q.; Bastiaens, L. Reactivity screening of microscale zerovalent irons and iron sulfides towards different CAHs under standardized experimental conditions. J. Hazard. Mater. 2013, 252–253, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Comba, S.; Di Molfetta, A.; Sethi, R. A comparison between field applications of nano-, micro-, and millimetric zero-valent iron for the remediation of contaminated aquifers. Water Air Soil Pollut. 2011, 1–4, 595–607. [Google Scholar] [CrossRef]
- Velimirovic, M.; Larsson, P.-O.; Simons, Q.; Bastiaens, L. Effect of boron on reactivity and apparent corrosion rate of microscale zerovalent irons. J. Environ. Chem. Eng. 2017, 2, 1892–1898. [Google Scholar] [CrossRef]
- Velimirovic, M.; Auffan, M.; Carniato, L.; Batka, V.M.; Schmid, D.; Wagner, S.; Borschneck, D.; Proux, O.; Kammer, F.; Hofmann, T. Effect of field site hydrogeochemical conditions on the corrosion of milled zerovalent iron particles and their dechlorination efficiency. Sci. Total Environ. 2018, 618, 1619–1627. [Google Scholar] [CrossRef]
- Zhu, X.; Han, B.; Feng, Q. Common Anions Affected Removal of Carbon Tetrachloride in Groundwater Using Granular Sponge Zerovalent Iron. Water Air Soil Pollut. 2020, 4, 1–13. [Google Scholar] [CrossRef]
- Bae, S.; Lee, W. Influence of riboflavin on nanoscale zero-valent iron reactivity during the degradation of carbon tetrachloride. Environ. Sci. Technol. 2014, 4, 2368–2376. [Google Scholar] [CrossRef]
- Orth, W.S.; Gillham, R.W. Dechlorination of trichloroethene in aqueous solution using Fe0. Environ. Sci. Technol. 1995, 1, 66–71. [Google Scholar] [CrossRef]
- Johnson, T.L.; Scherer, M.M.; Tratnyek, P.G. Kinetics of halogenated organic compound degradation by iron metal. Environ. Sci. Technol. 1996, 8, 2634–2640. [Google Scholar] [CrossRef]
- Alowitz, M.J.; Scherer, M.M. Kinetics of nitrate, nitrite, and Cr (VI) reduction by iron metal. Environ. Sci. Technol. 2002, 3, 299–306. [Google Scholar] [CrossRef]
- Lai, K.C.K.; Lo, I.M.C. Removal of chromium (VI) by acid-washed zero-valent iron under various groundwater geochemistry conditions. Environ. Sci. Technol. 2008, 4, 1238–1244. [Google Scholar] [CrossRef]
- Phenrat, T.; Lowry, G.V.; Babakhani, P. Nanoscale Zerovalent Iron (NZVI) for Environmental Restoration: From Fundamental Science to Field Scale Engineering Applications; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Xin, J.; Zheng, X.; Han, J.; Shao, H.; Kolditz, O. Remediation of trichloroethylene by xanthan gum-coated microscale zero valent iron (XG-mZVI) in groundwater: Effects of geochemical constituents. Chem. Eng. J. 2015, 271, 164–172. [Google Scholar] [CrossRef]
- Helland, B.R.; Alvarez, P.J.J.; Schnoor, J.L. Reductive dechlorination of carbon tetrachloride with elemental iron. J. Hazard. Mater. 1995, 2, 205–216. [Google Scholar] [CrossRef]
- Lin, Y.T.; Liang, C. Carbon Tetrachloride Degradation by Alkaline Ascorbic Acid Solution. Environ. Sci. Technol. 2013, 7, 3299–3307. [Google Scholar] [CrossRef] [PubMed]
- Dolfing, J.; Mueller, J. Thermodynamics of low Eh reactions. In Proceedings of the Bettelle’s Fifth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, 22–26 May 2006. [Google Scholar]
- Cwiertny, D.M.; Scherer, M.M. Abiotic Processes affecting the remediation of chlorinated solvents. In In Situ Remediation of Chlorinated Solvent Plumes; Stroo, H.F., Ward, C.H., Eds.; Springer: New York, NY, USA, 2010; pp. 69–108. [Google Scholar]
- Puls, R.W.; Blowes, D.W.; Gillham, R.W. Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina. J. Hazard. Mater. 1999, 1–2, 109–120. [Google Scholar] [CrossRef]
- Jin, X.; Chen, H.; Yang, Q.; Hu, Y.; Yang, Z. Dechlorination of Carbon Tetrachloride by Sulfide-Modified Nanoscale Zerovalent Iron. Environ. Eng. Sci. 2018, 6, 560–567. [Google Scholar] [CrossRef]
- Jiao, Y.; Qiu, C.; Huang, L.; Wu, K.; Ma, H.; Chen, S.; Ma, L.; Wu, D. Reductive dechlorination of carbon tetrachloride by zero-valent iron and related iron corrosion. Appl. Catal. B-Environ. 2009, 1–2, 434–440. [Google Scholar]
- Shih, Y.H.; Hsu, C.Y.; Su, Y.F. Reduction of hexachlorobenzene by nanoscale zero-valent iron: Kinetics, pH effect, and degradation mechanism. Separ. Purif. Technol. 2011, 3, 268–274. [Google Scholar] [CrossRef]
- Bae, S.; Hanna, K. Reactivity of nanoscale zero-valent iron in unbuffered systems: Effect of pH and Fe(II) dissolution. Environ. Sci. Technol. 2015, 17, 10536–10543. [Google Scholar] [CrossRef]
- Tang, F.; Xin, J.; Zheng, X.; Zheng, T.; Yuan, X.; Kolditz, O. Effect of solution pH on aging dynamics and surface structural evolution of mZVI particles: H2 production and spectroscopic/microscopic evidence. Environ. Sci. Pollut. R. 2017, 30, 23538–23548. [Google Scholar] [CrossRef]
- Liu, W.J.; Qian, T.T.; Jiang, H. Bimetallic Fe nanoparticles: Recent advances in synthesis and application in catalytic elimination of environmental pollutants. Chem. Eng. J. 2014, 236, 448–463. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, W.; Peng, P.; Huang, W. Reductive dechlorination of tetrachlorobisphenol A by Pd/Fe bimetallic catalysts. J. Hazard. Mater. 2013, 262, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhao, Y.; Zhao, R.; Zhou, R. Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron. J. Environ. Sci. 2010, 11, 1741–1747. [Google Scholar] [CrossRef]
- Williams, A.G.B.; Scherer, M.M. Spectroscopic evidence for Fe (II)-Fe (III) electron transfer at the iron oxide-water interface. Environ. Sci. Technol. 2004, 18, 4782–4790. [Google Scholar] [CrossRef] [PubMed]
- Obiri-Nyarko, F.; Grajales-Mesa, S.J.; Malina, G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 2014, 111, 243–259. [Google Scholar] [CrossRef] [PubMed]
Reaction Medium | k1 (h−1) | k2 (h−1) | k3 (h−1) | α |
---|---|---|---|---|
Acid washed ZVI | 0.1167 | 0.0931 | 0.0122 | 0.7980 |
Non-acid washed ZVI | 0.1139 | 0.0865 | 0.0109 | 0.7569 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Li, Y.; Han, B.; Feng, Q.; Zhou, L. Degradation Characteristics of Carbon Tetrachloride by Granular Sponge Zero Valent Iron. Int. J. Environ. Res. Public Health 2021, 18, 12578. https://doi.org/10.3390/ijerph182312578
Zhu X, Li Y, Han B, Feng Q, Zhou L. Degradation Characteristics of Carbon Tetrachloride by Granular Sponge Zero Valent Iron. International Journal of Environmental Research and Public Health. 2021; 18(23):12578. https://doi.org/10.3390/ijerph182312578
Chicago/Turabian StyleZhu, Xueqiang, Yuncong Li, Baoping Han, Qiyan Feng, and Lai Zhou. 2021. "Degradation Characteristics of Carbon Tetrachloride by Granular Sponge Zero Valent Iron" International Journal of Environmental Research and Public Health 18, no. 23: 12578. https://doi.org/10.3390/ijerph182312578
APA StyleZhu, X., Li, Y., Han, B., Feng, Q., & Zhou, L. (2021). Degradation Characteristics of Carbon Tetrachloride by Granular Sponge Zero Valent Iron. International Journal of Environmental Research and Public Health, 18(23), 12578. https://doi.org/10.3390/ijerph182312578