Vertical Barriers for Land Contamination Containment: A Review
Abstract
:1. Introduction
2. Mix Design and Engineering Properties
2.1. Soil–Bentonite Slurry Trench Barriers
2.2. Cement–Bentonite Slurry Trench Barriers
2.3. Soil Mix Technology Constructed Barriers
3. Damage and Durability
3.1. Load-Induced Cracking
3.2. Chemical Attacks in Contaminated Land
3.3. Damage Due to Aggressive Environments
4. Case Studies
4.1. West Drayton Field Trials (1994–1995)
4.2. West Drayton Commercial Project (1997)
4.3. Sir John Rogerson’s Quay (2004)
4.4. SMiRT Project
5. Resilient Materials and Performance Monitoring
5.1. Crack-Resistant and Self-Healing Materials
5.2. Performance Monitoring Techniques
6. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- NRC. Environmental Epidemiology. In Public Health and Hazardous Wastes; National Academies Press: Washington, DC, USA, 1991; Volume 1. [Google Scholar]
- Hou, D.; Al-Tabbaa, A. Sustainability: A new imperative in contaminated land remediation. Environ. Sci. Policy 2014, 39, 25–34. [Google Scholar] [CrossRef]
- Khamesi, A.; Khademi, H.; Zeraatpisheh, M. Biomagnetic monitoring of atmospheric heavy metal pollution using pine needles: The case study of Isfahan, Iran. Environ. Sci. Pollut. Res. 2020, 27, 31555–31566. [Google Scholar] [CrossRef]
- FAO and UNEP. Global Assessment of Soil Pollution: Report; FAO and UNEP: Rome, Italy, 2021. [Google Scholar]
- Environment Agency. Dealing with Contaminated Land in England; GOV.UK: Bristol, UK, 2016.
- Chen, R.; de Sherbinin, A.; Ye, C.; Shi, G. China’s Soil Pollution: Farms on the Frontline. Science 2014, 344, 691. [Google Scholar] [CrossRef]
- Hou, D.; Li, G.; Nathanail, P. An emerging market for groundwater remediation in China: Policies, statistics, and future outlook. Front. Environ. Sci. Eng. 2018, 12, 1–3. [Google Scholar] [CrossRef]
- Tang, C.S.; Paleologos, E.K.; Vitone, C.; Du, Y.J.; Li, J.S.; Jiang, N.J.; Singh, D.N. Environmental geotechnics: Challenges and opportunities in the post-COVID-19 world. Environ. Geotech. 2020, 8, 172–192. [Google Scholar] [CrossRef]
- Koda, E.; Miszkowska, A.; Sieczka, A.; Osinski, P. Cut-Off Walls and Dewatering Systems as an Effective Method of Contaminated Sites Reclamation Processes. In IOP Conference Series: Materials Science and Engineering 1 February 2019, Proceedings of the 3rd World Multidisciplinary Civil Engineering, Architecture, Urban Planning Symposium, Prague, Czech Republic, 18–22 June 2018; IOP Publishing: Bristol, UK, 2019; Volume 471, p. 042021. [Google Scholar]
- Scottish Executive. Environmental Protection Act 1990—Part IIA Contaminated Land: Statutory Guidance, 2nd ed.; Scottish Government: Edinburgh, UK, 2006.
- Swartjes, F.A.; Rutgers, M.; Lijzen, J.P.A.; Janssen, P.J.C.M.; Otte, P.F.; Wintersen, A.; Posthuma, L. State of the art of contaminated site management in The Netherlands: Policy framework and risk assessment tools. Sci. Total Environ. 2012, 427, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kuppusamy, S.; Venkateswarlu, K.; Megharaj, M.; Mayilswami, S.; Lee, Y.B. Risk-based remediation of polluted sites: A critical perspective. Chemosphere 2017, 186, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Millet, R.A.; Perez, J.Y. Current USA practices: Slurry wall specifications. J. Geotech. Eng. Div. 1981, 107, 1041–1056. [Google Scholar] [CrossRef]
- Huang, X.; Li, J.S.; Xue, Q.; Chen, Z.; Du, Y.J.; Wan, Y.; Poon, C.S. Use of self-hardening slurry for trench cutoff wall: A review. Constr. Build. Mater. 2021, 286, 122959. [Google Scholar] [CrossRef]
- Faisal, A.A.H.; Sulaymon, A.H.; Khaliefa, Q.M. A review of permeable reactive barrier as passive sustainable technology for groundwater remediation. Int. J. Environ. Sci. Technol. 2018, 15, 1123–1138. [Google Scholar] [CrossRef]
- Thakur, A.K.; Vithanage, M.; Das, D.; Kumar, M. A review on design, material selection, mechanism, and modeling of permeable reactive materials for community-scale groundwater treatment. Environ. Technol. Innov. 2020, 19, 100917. [Google Scholar] [CrossRef]
- Evans, J.C. Vertical Cutoff Walls. In Geotechnical Practice for Waste Disposal; Springer: Boston, MA, USA, 1993; pp. 430–454. [Google Scholar]
- Joshi, K.; Kechavarzi, C.; Sutherland, K.; Ng, M.Y.A.; Soga, K.; Tedd, P. Laboratory and in situ tests for long-term hydraulic conductivity of a cement-bentonite cutoff wall. J. Geotech. Geoenviron. Eng. 2010, 136, 562–572. [Google Scholar] [CrossRef]
- Malusis, M.A.; Evans, J.C.; Jacob, R.W.; Ruffing, D.; Barlow, L.; Marchiori, A.M. Construction and Monitoring of an Instrumented Soil-Bentonite Cutoff Wall: Field Research Case Study. In Proceedings of the 29th Central Pennsylvania Geotechnical Conference, Hershey, PA, USA, 31 October–2 November 2018. [Google Scholar]
- Yeo, S.S.; Shackelford, C.D.; Evans, J.C. Consolidation and hydraulic conductivity of nine model soil-bentonite backfills. J. Geotech. Geoenviron. Eng. 2005, 131, 1189–1198. [Google Scholar] [CrossRef]
- Al-Tabbaa, A.; Liska, M.; Ouellet-Plamondon, C.; Jegandan, S.; Shrestha, R.; Barker, P.; McGall, R.; Critchlow, C. Soil Mix Technology for Integrated Remediation and Ground Improvement: From Laboratory Work to Field Trials. In Grouting and Deep Mixing; ASCE Library: Reston, VA, USA, 2012; pp. 522–532. [Google Scholar]
- Jefferis, S.A. The Origins of the Slurry Trench Cut-Off and a Review of Cement-Bentonite Cut-Off Walls in the UK. In Proceedings of the International Containment Technology Conference and Exhibition, St. Petersburg, FL, USA, 9–12 February 1997; Available online: https://www.osti.gov/biblio/576479 (accessed on 5 November 2021).
- LaGrega, M.D.; Buckingham, P.L.; Evans, J.C. Hazardous Waste Management, 2nd ed.; Waveland Press: Long Grove, IL, USA, 2001. [Google Scholar]
- Du, Y.J.; Shen, S.Q.; Tian, K.; Yang, Y.L. Effect of polymer amendment on hydraulic conductivity of bentonite in calcium chloride solutions. J. Mater. Civ. Eng. 2021, 33, 04020452. [Google Scholar] [CrossRef]
- Koda, E.; Osinski, P. Bentonite cut-off walls: Solution for landfill remedial works. Environ. Geotech. 2016, 4, 223–232. [Google Scholar] [CrossRef]
- Evans, J.C.; Ryan, C. Time-Dependent Strength Behavior of Soil-Bentonite Slurry Wall Backfill. In Waste Containment and Remediation, Proceedings of the Geo-Frontiers 2005 Congress; Geotechnical Special Publication No. 142; American Society of Civil Engineering: Reston, VA, USA, 2005. [Google Scholar]
- Nash, K.L. Diaphragm Wall Construction Techniques. J. Constr. Div. 1974, 100, 605–620. Available online: https://trid.trb.org/view/140719 (accessed on 5 November 2021). [CrossRef]
- Evans, J.C.; Larrahondo, J.M.; Yeboah, N.N.N. Fate of bentonite in slag–cement–bentonite slurry trench cut-off walls for polluted sites. Environ. Geotech. 2021, 40, 1–13. [Google Scholar] [CrossRef]
- Hanson UK. Regen GGBS—Cement Substitute. 2020. Available online: https://www.hanson.co.uk/en/products/regen-ggbs (accessed on 5 November 2021).
- Opdyke, S.M.; Evans, J.C. Slag-Cement-Bentonite Slurry Walls. J. Geotech. Geoenviron. Eng. 2005, 131, 673–681. [Google Scholar] [CrossRef]
- Jefferis, S. Cement-Bentonite Slurry Systems. In Proceedings of the Fourth International Conference on Grouting and Deep Mixing, New Orleans, LA, USA, 15–18 February 2012. [Google Scholar]
- Pacheco-Torgal, F.; Castro-Gomes, J.; Jalali, S. Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products. Constr. Build. Mater. 2008, 22, 1305–1314. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.-L.; Jin, F.; Ni, J.; Du, Y.-J. Engineering Properties of Vertical Cutoff Walls Consisting of Reactive Magnesia-Activated Slag and Bentonite: Workability, Strength, and Hydraulic Conductivity. J. Mater. Civ. Eng. 2019, 31, 04019263. [Google Scholar] [CrossRef] [Green Version]
- Manassero, M.; Fratalocchi, E.; Pasqualini, E.; Spanna, C.; Verga, F. Containment with Vertical Cutoff Walls. In Geoenvironment 1995; Geotechnical Special Publication: Reston, VA, USA, 1995. [Google Scholar]
- Philip, L.K. An investigation into contaminants transport processes through single-phase cement-bentonite slurry walls. Eng. Geol. 2001, 60, 209–221. [Google Scholar] [CrossRef]
- Carreto, J.M.R.; Caldeira, L.M.M.S.; das Neves, E.J.L.M. Hydromechanical Characterization of Cement-Bentonite Slurries in the Context of Cutoff Wall Applications. J. Mater. Civ. Eng. 2016, 28, 04015093. [Google Scholar] [CrossRef]
- Royal, A.C.D.; Opukumo, A.W.; Qadr, C.S.; Perkins, L.M.; Walenna, M.A. Deformation and Compression Behaviour of a Cement–Bentonite Slurry for Groundwater Control Applications. Geotech. Geol. Eng. 2018, 36, 835–853. [Google Scholar] [CrossRef] [Green Version]
- Gustin, E.J.G.; Karim, U.F.A.; Brouwers, H.J.H. Bleeding characteristics for viscous cement and cement–bentonite grouts. Géotechnique 2007, 57, 391–395. [Google Scholar] [CrossRef]
- Joshi, K. Long-Term Engineering Performance and In-Situ Assessment of Cement Bentonite Cut-Off Walls. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2009. [Google Scholar]
- Sutherland, K.J.; Kechavarzi, C.; Soga, K.; Whittle, R.; Dalton, C.; Tedd, P. In situ Assessment of a Cement-bentonite Containment System. In Geoenvironmental Engineering; Thomas Telford Publishing: London, UK, 2004; Volume 1, pp. 575–582. [Google Scholar]
- Bureau of Reclamation. Design Standards No. 13, Embankment Dams, Cutoff Walls; Chapter 16; Bureau of Reclamation: Washington, DC, USA, 2014.
- Al-Tabbaa, A.; Evans, C.W. Laboratory-Scale Soil Mixing of a Contaminated Site. In Institution of Civil Engineers Ground Improvement; Thomas Telford Services Ltd.: London, UK, 1999; Volume 3, pp. 119–134. [Google Scholar]
- Arnold, M.; Beckhaus, K.; Wiedenmann, U. Cut-off wall construction using Cutter Soil Mixing: A case study. Geotechnik 2011, 34, 11–21. [Google Scholar] [CrossRef]
- Higgins, D.; Uren, M. The Effect of GGBS on the Durability of Concrete. Concrete 1991, 25, 17–19. Available online: https://trid.trb.org/view/376836 (accessed on 5 November 2021).
- Babu, K.G.; Nageswara Rao, G.S. Efficiency of fly ash in concrete. Cem. Concr. Compos. 1993, 15, 223–229. [Google Scholar] [CrossRef]
- Khandelwal, A.; Rabideau, A.J. Enhancement of soil–bentonite barrier performance with the addition of natural humus. J. Contam. Hydrol. 2000, 45, 267–282. [Google Scholar] [CrossRef]
- Evans, J.C.; Prince, M.J. Additive Effectiveness in Minerally-Enhanced Slurry Walls; American Society of Civil Engineers: Reston, VA, USA, 1997. [Google Scholar]
- Chen, B.; Zhu, L.; Zhu, J.; Xing, B. Configurations of the bentonite-sorbed myristylpyridinium cation and their influences on the uptake of organic compounds. Environ. Sci. Technol. 2005, 39, 6093–6100. [Google Scholar] [CrossRef] [PubMed]
- Katsumi, T.; Ishimori, H.; Onikata, M.; Fukagawa, R. Long-term barrier performance of modified bentonite materials against sodium and calcium permeant solutions. Geotext. Geomembr. 2008, 26, 14–30. [Google Scholar] [CrossRef]
- Gu, Z.; Gao, M.; Luo, Z.; Lu, L.; Ye, Y.; Liu, Y. Bis-pyridinium dibromides modified organo-bentonite for the removal of aniline from wastewater: A positive role of π–π polar interaction. Appl. Surf. Sci. 2014, 290, 107–115. [Google Scholar] [CrossRef]
- De Paiva, L.B.; Morales, A.R.; Díaz, F.R.V. Organoclays: Properties, preparation and applications. Appl. Clay Sci. 2008, 42, 8–24. [Google Scholar] [CrossRef]
- Zhang, Y.; Alessi, D.S.; Chen, N.; Luo, M.; Hao, W.; Alam, M.S.; Al-Tabbaa, A. Lead (Pb) sorption to hydrophobic and hydrophilic zeolites in the presence and absence of MTBE. J. Hazard. Mater. 2021, 420, 126528. [Google Scholar] [CrossRef]
- Vignola, R.; Bagatin, R.; Alessandra De Folly, D.; Massara, E.P.; Ghisletti, D.; Millini, R.; Sisto, R. Zeolites in a permeable reactive barrier (PRB): One-year of field experience in a refinery groundwater. Part 2: Zeolite characterization. Chem. Eng. J. 2011, 178, 210–216. [Google Scholar] [CrossRef]
- Szymkiewicz, F.; Tamga, F.-S.; Kouby, A.L.; Reiffsteck, P. Optimization of strength and homogeneity of deep mixing material by the determination of workability limit and optimum water content. Can. Geotech. J. 2013, 50, 1034–1043. [Google Scholar] [CrossRef]
- Porbaha, A. State of the Art in Deep Mixing Technology: Part, I. In Basic Concepts and Overview. Proceedings of the Institution of Civil Engineers—Ground Improvement; ICE Virtual Library: London, UK, 1998; Volume 2, pp. 81–92. [Google Scholar]
- Bruce, D.A.; Bruce, M.E.C. The Practitioner’s Guide to Deep Mixing. In Grouting and Ground Treatment; D Constructions: Sydney, NSW, Australia, 2003; pp. 474–488. [Google Scholar]
- Xiao, M.; Ledezma, M.; Wang, J. Reduced-Scale Shake Table Testing of Seismic Behaviors of Slurry Cutoff Walls. J. Perform. Constr. Facil. 2016, 30, 04015057. [Google Scholar] [CrossRef]
- Alzayani, N. Impact of Undrained Deformation on the Hydraulic Conductivity of Cement-Bentonite Barrier Material. Ph.D. Thesis, University of Birmingham, Birmingham, UK, 2019. [Google Scholar]
- Nejad, B.G.; Osborne, T.; Carter, J.P. Forensic Investigation of a Slurry Wall Failure: A Case Study. In Grouting; ASCE Library: Reston, VA, USA, 2017; pp. 513–522. [Google Scholar]
- Ping, X.; Beaudoin, J.J. Mechanism of sulphate expansion I. Thermodynamic principle of crystallization pressure. Cem. Concr. Res. 1992, 22, 631–640. [Google Scholar] [CrossRef]
- Hewlett, P.; Liska, M. Lea’s Chemistry of Cement and Concrete, 5th ed.; Elsevier: Oxford, UK, 2019. [Google Scholar]
- Osman, A. Durability and Mechanical Properties of Deep-Mixed Clays. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2007. [Google Scholar]
- Banfill, P.F.G.; Saunders, D.C. The relationship between the sorption of organic compounds on cement and the retardation of hydration. Cem. Concr. Res. 1986, 16, 399–410. [Google Scholar] [CrossRef]
- Fernandez, F.; Quigley, R.M. Hydraulic conductivity of natural clays permeated with simple liquid hydrocarbons. Can. Geotech. J. 1985, 22, 205–214. [Google Scholar] [CrossRef]
- Konrad, J.-M.; Morgenstern, N.R. The segregation potential of a freezing soil. Can. Geotech. J. 1981, 18, 482–491. [Google Scholar] [CrossRef]
- Othman, M.A.; Benson, C.H.; Chamberlain, E.J.; Zimmie, T.F. Laboratory Testing to Evaluate Changes in Hydraulic Conductivity of Compacted Clays Caused by Freeze-Thaw: State-of-the-Art. In Hydraulic Conductivity and Waste Contaminant Transport in Soil; ASTM International: West Conshohocken, PA, USA, 1994. [Google Scholar]
- Mardani-Aghabaglou, A.; Kalıpcılar, İ.; İnan Sezer, G.; Sezer, A.; Altun, S. Freeze–thaw resistance and chloride-ion penetration of cement-stabilized clay exposed to sulfate attack. Appl. Clay Sci. 2015, 115, 179–188. [Google Scholar] [CrossRef]
- Jamshidi, R.J.; Lake, C.B.; Barnes, C.L.; Hills, C.D.; Gunning, P. Physical performance of cement-treated silty sand soil under cycles of freezing/thawing. In Proceedings of the 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering (PCSMGE), the 64th Canadian Geotechnical Conference (CGC), Cancun, Mexico, 17–20 November 2019. [Google Scholar]
- Lachenbruch, A.H. Depth and spacing of tension cracks. J. Geophys. Res. 1961, 66, 4273–4292. [Google Scholar] [CrossRef]
- Tedd, P. Field Validation of Cement Bentonite Slurry Cut-Off Walls in Chemically Aggressive Ground at Gloucester Gasworks; BRE Client report number; Building Research Establishment Ltd.: Garston, UK, 2005; pp. 221–476. [Google Scholar]
- Ratnam, S. Development of Novel Self-Boring Permeability Measurement Technique. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2002. [Google Scholar]
- Cermak, J.; Evans, J.; Tamaro, G.J. Evaluation of Soil-Cement-Bentonite Wall Performance—Effects of Backfill Shrinkage. In Grouting and Deep Mixing; ASCI Library: Reston, VA, USA, 2012; pp. 502–511. [Google Scholar]
- Barker, P.J.; Wyllie, M.; Esnault, A. Investigation, Planning and Execution of the Remediation of Ardeer landfill, Scotland. In Proceedings of the International Conference on Polluted and Marginal Land, Edinburgh, UK, 2–4 July 1996; pp. 153–166. [Google Scholar]
- Evans, C.W.; Al-Tabbaa, A. Remediation of Contaminated Ground Using Soil Mix Technology: From Research to Commercialisation. In 2nd BGS Geoenvironmental Engineering Conference: Ground Contamination, Pollution Manage-Ment and Remediation; Thomas Telford: London, UK, 1999; pp. 376–383. [Google Scholar]
- Al-Tabbaa, A.; Evans, C.W. Deep soil mixing in the UK: Geoenvironmental research and recent applications. Land Contam. Reclam. 2003, 11, 1–14. [Google Scholar] [CrossRef]
- Evans, C.W. In-situ Soil Mixing Treatment of Contaminated Soils at Sir John Rogerson’s Quay, Dublin. In Proceedings of the International Conference on Stabilisation/Solidification Treatment and Remediation, Cambridge, UK, 12–15 April 2005; pp. 199–204. [Google Scholar]
- Al-Tabbaa, A.; Evans, C.W. Pilot in Situ Auger Mixing Treatment of a Contaminated Site. Part 1: Treatability Study. Proc. ICE—Geotech. Eng. 1998, 131, 52–59. [Google Scholar] [CrossRef]
- Ahn, T.-H.; Kishi, T. Crack Self-healing Behavior of Cementitious Composites Incorporating Various Mineral Admixtures. J. Adv. Concr. Technol. 2020, 8, 171–186. [Google Scholar] [CrossRef] [Green Version]
- Al-Tabbaa, A.; Litina, C.; Giannaros, P.; Kanellopoulos, A.; Souza, L. First UK field application and performance of microcapsule-based self-healing concrete. Constr. Build. Mater. 2019, 208, 669–685. [Google Scholar] [CrossRef]
- Qureshi, T.S.; Al-Tabbaa, A. Self-healing of drying shrinkage cracks in cement-based materials incorporating reactive MgO. Smart Mater. Struct. 2016, 25, 084004. [Google Scholar] [CrossRef]
- Cao, B. Crack-Resistant and Self-Healing Cut-Off Wall Materials Incorporating Polymers and Minerals. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2021. [Google Scholar]
- Cao, B.; Souza, L.; Xu, J.; Mao, W.; Wang, F.; Al-Tabbaa, A. Soil Mix Cutoff Wall Materials with Microcapsule-Based Self-Healing Grout. J. Geotech. Geoenviron. Eng. 2021, 147, 04021124. [Google Scholar] [CrossRef]
- Cao, B.; de Souza, L.R.; Al-Tabbaa, A. Organic Contaminant-Triggered Self-Healing Soil Mix Cut-Off Wall Materials Incorporating Oil Sorbents. Materials 2020, 13, 5802. [Google Scholar] [CrossRef]
- Cao, B.; Chen, J.; Al-Tabbaa, A. Crack-resistant cement–bentonite cut-off wall materials incorporating superabsorbent polymers. Can. Geotech. J. 2020, 58, 800–810. [Google Scholar] [CrossRef]
- Britton, J.P.; Filz, G.M.; Herring, W.E. Measuring the hydraulic conductivity of soil-bentonite backfill. J. Geotech. Geoenviron. Eng. 2004, 130, 1250–1258. [Google Scholar] [CrossRef]
- Choi, H.; Daniel, D.E. Slug Test Analysis in Vertical Cutoff Walls. I: Analysis Methods. J. Geotech. Geoenviron. Eng. 2006, 132, 429–438. [Google Scholar] [CrossRef]
- Soga, K.; Joshi, K. Long-Term Engineering Performance of Cement-Bentonite Cut-Off Walls: A Case Study. In Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt, 5–9 October 2009. [Google Scholar]
- Jacob, R.W.; Rickertsen, H.E.; Ruffing, D.; Aborn, L.A.; Mucelli, A.E.; Evans, J.C.; Malusis, M.A. Defect Detection and Characterization in Soil Bentonite Cutoff Wall Using Electrical Resistivity. In Proceedings of the IFCEE 2021, Dallas, TX, USA, 10–14 May 2021; pp. 359–368. [Google Scholar]
- Rogbeck, Y. Lime cement columns on the Svealand rail link: Performance observations. In Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, Hamburg, Germany, 6–12 September 1997; pp. 1705–1710. [Google Scholar]
- Larsson, S. State of Practice Report—Execution, Monitoring and Quality Control. Deep Mix. 2005, 2, 732–786. [Google Scholar]
- Majer, E.L.; Cumbest, R.J.; Davis, B.; Doll, W.E.; Estep, L.; Hubbard, S.S.; Ward, A.L. Airborne and Surface Geophysical Method Verification. In Containment Book; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Slater, L.; Binley, A. Evaluation of permeable reactive barrier (PRB) integrity using electrical imaging methods. Geophysics 2003, 68, 911–921. [Google Scholar] [CrossRef]
- Herbert, E.N.; Li, V.C. Self-healing of microcracks in engineered cementitious composites (ECC) under a natural environment. Materials 2013, 6, 2831–2845. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.L.; Du, Y.J.; Yu, J.; Yang, Y.L.; Li, V.C. Hydraulic conductivity and self-healing performance of engineered cementitious composites exposed to acid mine drainage. Sci. Total Environ. 2020, 716, 137095. [Google Scholar] [CrossRef] [PubMed]
- Mullem, T.V.; Anglani, G.; Dudek, M.; Vanoutrive, H.; Bumanis, G.; Litina, C.; Kwiecień, A.; Al-Tabbaa, A.; Belie, N.D. Addressing the need for standardization of test methods for self-healing concrete: An inter-laboratory study on concrete with macrocapsules. Sci. Technol. Adv. Mater. 2020, 21, 661–682. [Google Scholar] [CrossRef] [PubMed]
Reference | Cement (%) | Bentonite (%) | GGBS (%) | Water (%) | Water-to-Binder Ratio |
---|---|---|---|---|---|
Evans (1993) [17] | 15–30 | 4–7 | - | 65–80 | 2.2–5.4 |
Manassero et al. (1995) [34] | 7.7 | 4 | 11.5 | 76.8 | 4.0 |
Philips (2001) [35] | 3.5 | 3.5 | 13 | 80 | 4.8 |
Opdyke and Evans (2005) [30] | 1–20 | 4–4.5 | 0–18 | 76–85.5 | 3.8 |
Joshi et al. (2010) [18] | 2.5 | 3.4 | 10.1 | 84 | 6.6 |
Carreto et al. (2016) [36] | 12.6–16.2 | 2.8–2.9 | - | 81.0–84.3 | 5.0–6.6 |
Royal et al. (2017) [37] | 3.2 | 3.2 | 12.9 | 80.7 | 5.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, B.; Xu, J.; Wang, F.; Zhang, Y.; O’Connor, D. Vertical Barriers for Land Contamination Containment: A Review. Int. J. Environ. Res. Public Health 2021, 18, 12643. https://doi.org/10.3390/ijerph182312643
Cao B, Xu J, Wang F, Zhang Y, O’Connor D. Vertical Barriers for Land Contamination Containment: A Review. International Journal of Environmental Research and Public Health. 2021; 18(23):12643. https://doi.org/10.3390/ijerph182312643
Chicago/Turabian StyleCao, Benyi, Jian Xu, Fei Wang, Yunhui Zhang, and David O’Connor. 2021. "Vertical Barriers for Land Contamination Containment: A Review" International Journal of Environmental Research and Public Health 18, no. 23: 12643. https://doi.org/10.3390/ijerph182312643
APA StyleCao, B., Xu, J., Wang, F., Zhang, Y., & O’Connor, D. (2021). Vertical Barriers for Land Contamination Containment: A Review. International Journal of Environmental Research and Public Health, 18(23), 12643. https://doi.org/10.3390/ijerph182312643