REM Sleep: An Unknown Indicator of Sleep Quality
Abstract
:1. Sleep Measures and Sleep Quality
2. Effects of Sleep Durations and Sleep Efficiency on Sleep Quality
3. Sleep Quality, SWS and Daytime Functioning
4. Sleep Quality and REM Sleep
5. Sleep Quality and REM Density
6. Why REM Sleep Could Be a Sensitive Indicator of Sleep Quality
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buysse, D.J.; Reynolds, C.F., III; Monk, T.H.; Hoch, C.C.; Yeager, A.L.; Kupfer, D.J. Quantification of subjective sleep quality in healthy elderly men and women using the Pittsburgh Sleep Quality Index (PSQI). Sleep 1991, 14, 331–338. [Google Scholar] [PubMed]
- Buysse, D.J.; Reynolds, C.F., III; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Achermann, P.; Dijk, D.J.; Brunner, D.P.; Borbély, A.A. A model of human sleep homeostasis based on EEG slow-wave activity: Quantitative comparison of data and simulations. Brain Res. Bull. 1993, 31, 97–113. [Google Scholar] [CrossRef]
- Peever, J.; Fuller, P.M. The Biology of REM Sleep. Curr. Biol. 2017, 27, R1237–R1248. [Google Scholar] [CrossRef]
- Le Bon, O. Relationships between REM and NREM in the NREM-REM sleep cycle: A review on competing concepts. Sleep Med. 2020, 70, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Benington, J.H.; Heller, H.C. Does the function of REM sleep concern non-REM sleep or waking? Prog. Neurobiol. 1994, 44, 433–449. [Google Scholar] [CrossRef]
- Franken, P.J. Long-term vs. short-term processes regulating REM sleep. J. Sleep Res. 2002, 11, 17–28. [Google Scholar] [CrossRef]
- Ocampo-Garcés, A.; Bassi, A.; Brunetti, E.; Estrada, J.; Vivaldi, E.A. REM sleep-dependent short-term and long-term hourglass processes in the ultradian organization and recovery of REM sleep in the rat. Sleep 2020, 43, zsaa023. [Google Scholar] [CrossRef] [PubMed]
- Weitzman, E.D.; Czeisler, C.A.; Zimmerman, J.C.; Ronda, J.M. Timing of REM and stages 3 + 4 sleep during temporal isolation in man. Sleep 1980, 2, 391–407. [Google Scholar] [PubMed]
- Wurts, S.W.; Edgar, D.M. Circadian and homeostatic control of rapid eye movement (REM) sleep: Promotion of REM tendency by the suprachiasmatic nucleus. J. Neurosci. 2000, 20, 4300–4310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borbély, A.A.; Achermann, P. Sleep homeostasis and models of sleep regulation. J. Biol. Rhythms 1999, 14, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Achermann, P.; Borbély, A.A. Mathematical models of sleep regulation. Front. Biosci. 2003, 8, s683–s693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borbély, A.A.; Baumann, F.; Brandeis, D.; Strauch, I.; Lehmann, D. Sleep deprivation: Effect on sleep stages and EEG power density in man. Electroencephalogr. Clin. Neurophysiol. 1981, 51, 483–495. [Google Scholar] [CrossRef]
- Wehr, T.A.; Moul, D.E.; Barbato, G.; Giesen, H.A.; Seidel, J.A.; Barker, C.; Bender, C. Conservation of photoperiod-responsive mechanisms in humans. Am. J. Physiol. 1993, 265, R846–R857. [Google Scholar] [CrossRef]
- Bonnet, M.H.; Arand, D.L. We are chronically sleep deprived. Sleep 1995, 18, 908–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiller, P.M., Jr. Bed rest, sleep and symptoms; Study of older persons. Ann. Intern. Med. 1964, 61, 98–105. [Google Scholar] [CrossRef]
- Lewis, H.E.; Masterton, J.P. Sleep and wakefulness in the arctic. Lancet 1957, 1, 1262–1266. [Google Scholar] [CrossRef]
- Aserinsky, E. The maximal capacity for sleep: Rapid eye movement density as an index of sleep satiety. Biol. Psychiatry 1969, 1, 147–159. [Google Scholar] [PubMed]
- Webb, W.B.; Agnew, H.W. Are we chronically sleep deprived? Bull. Psychon. Soc. 1975, 6, 47–48. [Google Scholar] [CrossRef]
- Kamdar, B.B.; Kaplan, K.A.; Kezirian, E.J.; Dement, W.C. The impact of extended sleep on daytime alertness, vigilance, and mood. Sleep Med. 2004, 5, 441–448. [Google Scholar] [CrossRef]
- Motomura, Y.; Kitamura, S.; Oba, K.; Terasawa, Y.; Enomoto, M.; Katayose, Y.; Hida, A.; Moriguchi, Y.; Higuchi, S.; Mishima, K. Sleep debt elicits negative emotional reaction through diminished amygdala-anterior cingulate functional connectivity. PLoS ONE 2013, 8, e56578. [Google Scholar] [CrossRef]
- Motomura, Y.; Katsunuma, R.; Yoshimura, M.; Mishima, K. Two Days’ Sleep Debt Causes Mood Decline during Resting State via Diminished Amygdala-Prefrontal Connectivity. Sleep 2017, 40, 10. [Google Scholar] [CrossRef]
- Motomura, Y.; Kitamura, S.; Nakazaki, K.; Oba, K.; Katsunuma, R.; Terasawa, Y.; Hida, A.; Moriguchi, Y.; Mishima, K. Recovery from Unrecognized Sleep Loss Accumulated in Daily Life Improved Mood Regulation via Prefrontal Suppression of Amygdala Activity. Front. Neurol. 2017, 8, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palagini, L.; Bruno, R.M.; Gemignani, A.; Baglioni, C.; Ghiadoni, L.; Riemann, D. Sleep loss and hypertension: A systematic review. Curr. Pharm. Des. 2013, 19, 2409–2419. [Google Scholar] [CrossRef]
- Tobaldini, E.; Fiorelli, E.M.; Solbiati, M.; Costantino, G.; Nobili, L.; Montano, N. Short sleep duration and cardiometabolic risk: From pathophysiology to clinical evidence. Nat. Rev. Cardiol. 2019, 16, 213–224. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.P.; Grandner, M.A.; Brown, D.; Conroy, M.; Jean-Louis, G.; Coons, M.; Bhatt, D.L.; American Heart Association Obesity, Behavior Change, Diabetes, and Nutrition Committees of the Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular Disease in the Young; Council on Clinical Cardiology; et al. Sleep Duration and Quality: Impact on Lifestyle Behaviors and Cardiometabolic Health: A Scientific Statement from the American Heart Association. Circulation 2016, 134, e367–e386. [Google Scholar] [CrossRef] [Green Version]
- Cappuccio, F.P.; D’Elia, L.; Strazzullo, P.; Miller, M.A. Sleep duration and all-cause mortality: A systematic review and meta-analysis of prospective studies. Sleep 2010, 33, 585–592. [Google Scholar] [CrossRef]
- Itani, O.; Jike, M.; Watanabe, N.; Kaneita, Y. Short sleep duration and health outcomes: A systematic review, meta-analysis, and meta-regression. Sleep Med. 2017, 32, 246–256. [Google Scholar] [CrossRef]
- Jike, M.; Itani, O.; Watanabe, N.; Buysse, D.J.; Kaneita, Y. Long sleep duration and health outcomes: A systematic review, meta-analysis and meta-regression. Sleep Med. Rev. 2018, 39, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Magee, C.A.; Holliday, E.G.; Attia, J.; Kritharides, L.; Banks, E. Investigation of the relationship between sleep duration, all-cause mortality, and preexisting disease. Sleep Med. 2013, 14, 591–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leproult, R.; Van Cauter, E. Role of sleep and sleep loss in hormonal release and metabolism. Endocr. Dev. 2010, 17, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Copinschi, G.; Leproult, R.; Spiegel, K. The important role of sleep in metabolism. Front. Horm. Res. 2014, 42, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, K.; Tasali, E.; Penev, P.; Van Cauter, E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern. Med. 2004, 141, 846–850. [Google Scholar] [CrossRef]
- Nedeltcheva, A.V.; Kilkus, J.M.; Imperial, J.; Kasza, K.; Schoeller, D.A.; Penev, P.D. Sleep curtailment is accompanied by increased intake of calories from snacks. Am. J. Clin. Nutr. 2009, 89, 126–133. [Google Scholar] [CrossRef]
- Snell, E.K.; Adam, E.K.; Duncan, G.J. Sleep and the body mass index and overweight status of children and adolescents. Child Dev. 2007, 78, 309–323. [Google Scholar] [CrossRef]
- Touchette, E.; Petit, D.; Tremblay, R.E.; Boivin, M.; Falissard, B.; Genolini, C.; Montplaisir, J.Y. Associations between sleep duration patterns and overweight/obesity at age 6. Sleep 2008, 31, 1507–1514. [Google Scholar] [CrossRef] [Green Version]
- Barrea, L.; Pugliese, G.; Framondi, L.; Di Matteo, R.; Laudisio, D.; Savastano, S.; Colao, A.; Muscogiuri, G. Does SARS-CoV-2 threaten our dreams? Effect of quarantine on sleep quality and body mass index. J. Transl. Med. 2020, 18, 318. [Google Scholar] [CrossRef]
- Åkerstedt, T.; Schwarz, J.; Gruber, G.; Lindberg, E.; Theorell-Haglöw, J. The relation between polysomnography and subjective sleep and its dependence on age—Poor sleep may become good sleep. J. Sleep Res. 2016, 25, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Åkerstedt, T.; Schwarz, J.; Gruber, G.; Theorell-Haglöw, J.; Lindberg, E. Short sleep-poor sleep? A polysomnographic study in a large population-based sample of women. J. Sleep Res. 2019, 28, e12812. [Google Scholar] [CrossRef] [Green Version]
- Baglioni, C.; Regen, W.; Teghen, A.; Spiegelhalder, K.; Feige, B.; Nissen, C.; Riemann, D. Sleep changes in the disorder of insomnia: A meta-analysis of polysomnographic studies. Sleep Med. Rev. 2014, 18, 195–213. [Google Scholar] [CrossRef]
- Åkerstedt, T.; Hume, K.; Minors, D.; Waterhouse, J. The meaning of good sleep: A longitudinal study of polysomnography and subjective sleep quality. J. Sleep Res. 1994, 3, 152–158. [Google Scholar] [CrossRef]
- Keklund, G.; Åkerstedt, T. Objective components of individual differences in subjective sleep quality. J. Sleep Res. 1997, 6, 217–220. [Google Scholar] [CrossRef]
- Kaplan, K.A.; Hardas, P.P.; Redline, S.; Zeitzer, J.M.; Sleep Heart Health Study Research Group. Correlates of sleep quality in midlife and beyond: A machine learning analysis. Sleep Med. 2017, 34, 162–167. [Google Scholar] [CrossRef]
- Laffan, A.; Caffo, B.; Swihart, B.J.; Punjabi, N.M. Utility of sleep stage transitions in assessing sleep continuity. Sleep 2010, 33, 1681–1686. [Google Scholar] [CrossRef]
- Terzano, M.G.; Mancia, D.; Salati, M.R.; Costani, G.; Decembrino, A.; Parrino, L. The cyclic alternating pattern as a physiologic component of normal NREM sleep. Sleep 1985, 8, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Terzano, M.G.; Parrino, L.; Spaggiari, M.; Palomba, V.; Rossi, M.; Smerieri, A. CAP variables and arousals as sleep electroencephalogram markers for primary insomnia. Clin. Neurophysiol. 2003, 114, 1715–1723. [Google Scholar] [CrossRef]
- O’Donnell, D.; Silva, E.J.; Münch, M.; Ronda, J.M.; Wang, W.; Duffy, J.F. Comparison of subjective and objective assessments of sleep in healthy older subjects without sleep complaints. J. Sleep Res. 2009, 18, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Westerlund, A.; Lagerros, Y.T.; Kecklund, G.; Axelsson, J.; Åkerstedt, T. Relationships Between Questionnaire Ratings of Sleep Quality and Polysomnography in Healthy Adults. Behav. Sleep Med. 2016, 14, 185–199. [Google Scholar] [CrossRef] [Green Version]
- Gabryelska, A.; Feige, B.; Riemann, D.; Spiegelhalder, K.; Johann, A.; Białasiewicz, P.; Hertenstein, E. Can spectral power predict subjective sleep quality in healthy individuals? J. Sleep Res. 2019, 28, e12848. [Google Scholar] [CrossRef]
- Dijk, D.J.; Beersma, D.G.; Daan, S.; Bloem, G.M.; Van den Hoofdakker, R.H. Quantitative analysis of the effects of slow wave sleep deprivation during the first 3 h of sleep on subsequent EEG power density. Eur. Arch. Psychiatry Neurol. Sci. 1987, 236, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, M.; De Gennaro, L.; Bertini, M. Selective slow-wave sleep (SWS) deprivation and SWS rebound: Do we need a fixed SWS amount per night? Sleep Res. Online 1999, 2, 15–19. [Google Scholar] [PubMed]
- Walsh, J.K.; Hartman, P.G.; Schweitzer, P.K. Slow-wave sleep deprivation and waking function. J. Sleep Res. 1994, 3, 16–25. [Google Scholar] [CrossRef]
- Gillberg, M.; Åkerstedt, T. Sleep restriction and SWS-suppression: Effects on daytime alertness and night-time recovery. J. Sleep Res. 1994, 3, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Agnew, H.W., Jr.; Webb, W.B.; Williams, R.L. Comparison of stage four and stage 1-REM sleep deprivation. Percept. Mot. Skills 1967, 24, 851–858. [Google Scholar] [CrossRef]
- Walker, M.P.; Stickgold, R. Sleep-dependent learning and memory consolidation. Neuron 2004, 44, 121–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tononi, G.; Cirelli, C. Sleep function and synaptic homeostasis. Sleep Med. Rev. 2006, 10, 49–62. [Google Scholar] [CrossRef]
- Agnew, H.W., Jr.; Webb, W.B.; Williams, R.L. The Effects of stage four sleep deprivation. Electroencephalogr. Clin. Neurophysiol. 1964, 17, 68–70. [Google Scholar] [CrossRef]
- Bonnet, M.H. Performance and sleepiness following moderate sleep disruption and slow wave sleep deprivation. Physiol. Behav. 1986, 37, 915–918. [Google Scholar] [CrossRef]
- Van Der Werf, Y.D.; Altena, E.; Vis, J.C.; Koene, T.; Van Someren, E.J. Reduction of nocturnal slow-wave activity affects daytime vigilance lapses and memory encoding but not reaction time or implicit learning. Prog. Brain Res. 2011, 193, 245–255. [Google Scholar]
- Riemann, D.; Krone, L.B.; Wulff, K.; Nissen, C. Sleep, insomnia, and depression. Neuropsychopharmacology 2020, 45, 74–89. [Google Scholar] [CrossRef]
- Vogel, G.W. Evidence for REM sleep deprivation as the mechanism of action of antidepressant drugs. Prog. Neuropsychopharmacol. Biol. Psychiatry 1983, 7, 343–349. [Google Scholar] [CrossRef]
- Leary, E.B.; Watson, K.T.; Ancoli-Israel, S.; Redline, S.; Yaffe, K.; Ravelo, L.A.; Peppard, P.E.; Zou, J.; Goodman, S.N.; Mignot, E.; et al. Association of Rapid Eye Movement Sleep with Mortality in Middle-aged and Older Adults. JAMA Neurol. 2020, 77, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.M.; Aeschbach, D.; Duffy, J.F.; Czeisler, C.A. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc. Natl. Acad. Sci. USA 2015, 112, 1232–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, W.B.; Agnew, H.W., Jr. Sleep stage characteristics of long and short sleepers. Science 1970, 168, 146–147. [Google Scholar] [CrossRef]
- Aeschbach, D.; Cajochen, C.; Landolt, H.; Borbély, A.A. Homeostatic sleep regulation in habitual short sleepers and long sleepers. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1996, 270, R41–R53. [Google Scholar] [CrossRef]
- Barbato, G.; Wehr, T.A. Homeostatic regulation of REM sleep in humans during extended sleep. Sleep 1998, 21, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Riemann, D.; Spiegelhalder, K.; Feige, B.; Voderholzer, U.; Berger, M.; Perlis, M.; Nissen, C. The hyperarousal model of insomnia: A review of the concept and its evidence. Sleep Med. Rev. 2010, 14, 19–31. [Google Scholar] [CrossRef]
- Della Monica, C.; Johnsen, S.; Atzori, G.; Groeger, J.A.; Dijk, D.J. Rapid Eye Movement Sleep, Sleep Continuity and Slow Wave Sleep as Predictors of Cognition, Mood, and Subjective Sleep Quality in Healthy Men and Women, Aged 20–84 Years. Front. Psychiatry 2018, 9, 255. [Google Scholar] [CrossRef] [Green Version]
- Feinberg, I.; Koresko, R.L.; Heller, N. EEG sleep patterns as a function of normal and pathological aging in man. J. Psychiatr. Res. 1967, 5, 107–144. [Google Scholar] [CrossRef]
- Song, Y.; Blackwell, T.; Yaffe, K.; Ancoli-Israel, S.; Redline, S.; Stone, K.L. Relationships between sleep stages and changes in cognitive function in older men: The MrOS Sleep Study. Sleep 2015, 38, 411–421. [Google Scholar] [CrossRef] [Green Version]
- Pase, M.P.; Himali, J.J.; Grima, N.A.; Beiser, A.S.; Satizabal, C.L.; Aparicio, H.J.; Thomas, R.J.; Gottlieb, D.J.; Auerbach, S.H.; Seshadri, S. Sleep architecture and the risk of incident dementia in the community. Neurology 2017, 89, 1244–1250. [Google Scholar] [CrossRef] [PubMed]
- Boyce, R.; Glasgow, S.D.; Williams, S.; Adamantidis, A. Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science 2016, 352, 812–816. [Google Scholar] [CrossRef]
- Yehuda, S.; Sredni, B.; Carasso, R.L.; Kenigsbuch-Sredni, D. REM sleep deprivation in rats results in inflammation and interleukin-17 elevation. J. Interferon Cytokine Res. 2009, 29, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, F.S.; Andersen, M.L.; Martins, R.C.; Zager, A.; Lopes, J.D.; Tufik, S. Immune alterations after selective rapid eye movement or total sleep deprivation in healthy male volunteers. Innate Immun. 2012, 18, 44–54. [Google Scholar] [CrossRef]
- Roehrs, T.; Hyde, M.; Blaisdell, B.; Greenwald, M.; Roth, T. Sleep loss and REM sleep loss are hyperalgesic. Sleep 2006, 29, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, I.; Floyd, T.C.; March, J.D. Effects of sleep loss on delta (0.3–3 Hz) EEG and eye movement density: New observations and hypotheses. Electroencephalogr. Clin. Neurophysiol. 1987, 67, 217–221. [Google Scholar] [CrossRef]
- Barbato, G.; Barker, C.; Bender, C.; Giesen, H.A.; Wehr, T.A. Extended sleep in humans in 14 h nights (LD 10:14): Relationship between REM density and spontaneous awakening. Electroencephalogr. Clin. Neurophysiol. 1994, 90, 291–297. [Google Scholar] [CrossRef]
- Lechinger, J.; Koch, J.; Weinhold, S.L.; Seeck-Hirschner, M.; Stingele, K.; Kropp-Näf, C.; Braun, M.; Drews, H.J.; Aldenhoff, J.; Huchzermeier, C.; et al. REM density is associated with treatment response in major depression: Antidepressant pharmacotherapy vs. psychotherapy. J. Psychiatr. Res. 2021, 133, 67–72. [Google Scholar] [CrossRef]
- Habukawa, M.; Uchimura, N.; Maeda, M.; Ogi, K.; Hiejima, H.; Kakuma, T. Differences in rapid eye movement (REM) sleep abnormalities between posttraumatic stress disorder (PTSD) and major depressive disorder patients: REM interruption correlated with nightmare complaints in PTSD. Sleep Med. 2018, 43, 34–39. [Google Scholar] [CrossRef]
- Wassing, R.; Benjamins, J.; Dekker, K.; Moens, S.; Spiegelhalder, K.; Feige, B.; Riemann, D.; van der Sluis, S.; van der Werf, Y.; Talamini, L.M.; et al. Slow dissolving of emotional distress contributes to hyperarousal. Proc. Natl. Acad. Sci. USA 2016, 113, 2538–2543. [Google Scholar] [CrossRef] [Green Version]
- Dijk, D.J.; von Schantz, M. Timing and consolidation of human sleep, wakefulness, and performance by a symphony of oscillators. J. Biol. Rhythms 2005, 20, 279–290. [Google Scholar] [CrossRef]
- Spiegel, R.; Herzog, A.; Köberle, S. Polygraphic sleep criteria as predictors of successful aging: An exploratory longitudinal study. Biol. Psychiatry 1999, 45, 435–442. [Google Scholar] [CrossRef]
- Skorucak, J.; Arbon, E.L.; Dijk, D.J.; Achermann, P. Response to chronic sleep restriction, extension, and subsequent total sleep deprivation in humans: Adaptation or preserved sleep homeostasis? Sleep 2018, 41, zsy078. [Google Scholar] [CrossRef]
- Klerman, E.B.; Barbato, G.; Czeisler, C.A.; Wehr, T.A. Can people sleep too much? Effects of extended sleep opportunity on sleep duration and timing. Front. Physiol. 2021. [Google Scholar] [CrossRef]
- Dijk, D.J.; Neri, D.F.; Wyatt, J.K.; Ronda, J.M.; Riel, E.; Ritz-De Cecco, A.; Hughes, R.J.; Elliott, A.R.; Prisk, G.K.; West, J.B.; et al. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281, R1647–R1664. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Drake, C.L.; Roth, T. The prevalence of multiple sleep-onset REM periods in a population-based sample. Sleep 2006, 29, 890–895. [Google Scholar] [CrossRef] [Green Version]
- Benington, J.H.; Heller, H.C. REM-sleep timing is controlled homeostatically by accumulation of REM-sleep propensity in non-REM sleep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1994, 266, R1992–R2000. [Google Scholar] [CrossRef]
- Weber, F.; Do, J.P.H.; Chung, S.; Beier, K.T.; Bikov, M.; Doost, M.S.; Dan, Y. Regulation of REM and Non-REM Sleep by Periaqueductal GABAergic Neurons. Nat. Commun. 2018, 9, 354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heller, H.C. Question what is “known”. Neurobiol. Sleep Circadian Rhythms 2021, 10, 100062. [Google Scholar] [CrossRef] [PubMed]
- Vertes, R.P. A life-sustaining function for REM sleep: A theory. Neurosci. Biobehav. Rev. 1986, 10, 371–376. [Google Scholar] [CrossRef]
- Broughton, R.J. Sleep disorders: Disorders of arousal? Science 1968, 159, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Langford, G.W.; Meddis, R.; Pearson, A.J.D. Spontaneous arousals from sleep in human subjects. Psychon. Sci. 1972, 28, 228–230. [Google Scholar] [CrossRef] [Green Version]
- Lavie, P.; Oksenberg, A.; Zomer, J. It’s time, you must wake up now. Percept. Mot. Skills 1979, 49, 447–450. [Google Scholar] [CrossRef] [PubMed]
- Moruzzi, G. The sleep-waking cycle. In Neurophysiology and Neurochemistry of Sleep and Wakefulness; Springer: Berlin/Heidelberg, Germany, 1972. [Google Scholar]
- Ephron, H.S.; Carrington, P. Rapid eye movement sleep and cortical homeostasis. Psychol. Rev. 1966, 73, 500–526. [Google Scholar] [CrossRef]
- Klemm, W.R. Why does REM sleep occur? A wake-up hypothesis. Front. Syst. Neurosci. 2011, 5. [Google Scholar] [CrossRef] [Green Version]
- Horne, J. REM sleep vs. exploratory wakefulness: Alternatives within adult ‘sleep debt’? Sleep Med. Rev. 2020, 50, 101252. [Google Scholar] [CrossRef]
- Carskadon, M.A.; Dement, W.C. Distribution of REM sleep on a 90 minute sleep-wake schedule. Sleep 1980, 2, 309–317. [Google Scholar] [PubMed]
- Barbato, G.; Barker, C.; Bender, C.; Wehr, T.A. Spontaneous sleep interruptions during extended nights. Relationships with NREM and REM sleep phases and effects on REM sleep regulation. Clin. Neurophysiol. 2002, 113, 892–900. [Google Scholar] [CrossRef]
- Weitzman, E.D.; Czeisler, C.A.; Zimmerman, J.C.; Ronda, J.M. The timing of REM sleep and its relation to spontaneous awakening during temporal isolation in man. Sleep Res. 1980, 9, 280. [Google Scholar]
- Krystal, A.D.; Edinger, J.D. Measuring sleep quality. Sleep Med. 2008, 9 (Suppl. S1), S10–S17. [Google Scholar] [CrossRef]
- Kaplan, K.A.; Hirshman, J.; Hernandez, B.; Stefanick, M.L.; Hoffman, A.R.; Redline, S.; Ancoli-Israel, S.; Stone, K.; Friedman, L.; Zeitzer, J.M.; et al. When a gold standard isn’t so golden: Lack of prediction of subjective sleep quality from sleep polysomnography. Biol. Psychol. 2017, 123, 37–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naiman, R. Dreamless: The silent epidemic of REM sleep loss. Ann. N. Y. Acad. Sci. 2017, 1406, 77–85. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbato, G. REM Sleep: An Unknown Indicator of Sleep Quality. Int. J. Environ. Res. Public Health 2021, 18, 12976. https://doi.org/10.3390/ijerph182412976
Barbato G. REM Sleep: An Unknown Indicator of Sleep Quality. International Journal of Environmental Research and Public Health. 2021; 18(24):12976. https://doi.org/10.3390/ijerph182412976
Chicago/Turabian StyleBarbato, Giuseppe. 2021. "REM Sleep: An Unknown Indicator of Sleep Quality" International Journal of Environmental Research and Public Health 18, no. 24: 12976. https://doi.org/10.3390/ijerph182412976
APA StyleBarbato, G. (2021). REM Sleep: An Unknown Indicator of Sleep Quality. International Journal of Environmental Research and Public Health, 18(24), 12976. https://doi.org/10.3390/ijerph182412976