Knowledge Mapping of Research on Land Use Change and Food Security: A Visual Analysis Using CiteSpace and VOSviewer
Abstract
:1. Introduction
2. Data Collection and Research Methods
2.1. Data Collection
2.2. Research Methods
3. Results
3.1. Trend Analysis of Literature Publication
3.2. Network Analysis of Author Cooperation, Institutional Cooperation and National Cooperation
3.2.1. Analysis of Author Cooperation Network
3.2.2. Analysis of Institutional Cooperation Network
3.2.3. Analysis of Country Cooperation Network
3.3. Analysis of Hot Research Topics and Frontiers Trending
3.3.1. Analysis of Hot Research Topics
Climate Change and Carbon Emissions
Sustainable Land Management Policy
Agricultural Intensive Development
Land Degradation
Renewable Bioenergy
Food Production
Agricultural Benefits
3.3.2. Analysis of Frontier Trending Topics
4. Discussion
4.1. Research Process
4.2. The Impact of Land Use Changes on Food Security
4.3. Research Hotspots
4.4. Research Deficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galeana-Pizaña, J.M.; Couturier, S.; Monsivais-Huertero, A. Assessing food security and environmental protection in Mexico with a GIS-based Food Environmental Efficiency index. Land Use Policy 2018, 76, 442–454. [Google Scholar] [CrossRef]
- Daioglou, V.; Doelman, J.C.; Wicke, B.; Faaij, A.; van Vuuren, D.P. Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Glob. Environ. Chang. 2019, 54, 88–101. [Google Scholar] [CrossRef] [Green Version]
- Chigbu, U.E.; Ntihinyurwa, P.D.; de Vries, W.T.; Ngenzi, E.I. Why tenure responsive land-use planning matters: Insights for land use consolidation for food security in rwanda. Int. J. Environ. Res. Public Health 2019, 16, 1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, H.; Ge, D.; Zhang, Y.; Tu, S.; Qu, Y.; Ma, L. Changing man-land interrelations in China’s farming area under urbanization and its implications for food security. J. Environ. Manag. 2018, 209, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yu, L.; Choguill, C.L. “Dipiao”, Chinese approach to transfer of land development rights: The experiences of Chongqing. Land Use Policy 2020, 99, 104870. [Google Scholar] [CrossRef]
- Ericksen, P.J. Conceptualizing food systems for global environmental change research. Glob. Environ. Chang. 2008, 18, 234–245. [Google Scholar] [CrossRef]
- Verburg, P.H.; Mertz, O.; Erb, K.H.; Haberl, H.; Wu, W. Land system change and food security: Towards multi-scale land system solutions. Curr. Opin. Environ. Sustain. 2013, 5, 494–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Fu, Y.; Hao, F.; Zhang, X.; Wu, W.; Jin, X.; Robin Bryant, C.; Senthilnath, J. Integrated phenology and climate in rice yields prediction using machine learning methods. Ecol. Indic. 2021, 120, 106935. [Google Scholar] [CrossRef]
- Ge, D.; Long, H.; Zhang, Y.; Ma, L.; Li, T. Farmland transition and its influences on grain production in China. Land Use Policy 2018, 70, 94–105. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Liu, Y. Spatial shifts in grain production increases in China and implications for food security. Land Use Policy 2018, 74, 204–213. [Google Scholar] [CrossRef]
- UNDESA. World Family Planning; United Nations, Department of Economic and Social Affairs: New York, NY, USA, 2020; ISBN 9789211483482. [Google Scholar]
- Schiefer, J.; Lair, G.J.; Blum, W.E.H. Potential and limits of land and soil for sustainable intensification of European agriculture. Agric. Ecosyst. Environ. 2016, 230, 283–293. [Google Scholar] [CrossRef]
- Singirankabo, U.A.; Ertsen, M.W. Relations between land tenure security and agricultural productivity: Exploring the effect of land registration. Land 2020, 9, 138. [Google Scholar] [CrossRef]
- Lu, D.; Wang, Y.; Yang, Q.; He, H.; Su, K. Exploring a moderate fallow scale of cultivated land in China from the perspective of food security. Int. J. Environ. Res. Public Health 2019, 16, 4329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Li, Y.; Xu, C. Land consolidation and rural revitalization in China: Mechanisms and paths. Land Use Policy 2020, 91, 104379. [Google Scholar] [CrossRef]
- Li, Q.; Yan, J. Assessing the health of agricultural land with emergy analysis and fuzzy logic in the major grain-producing region. Catena 2012, 99, 9–17. [Google Scholar] [CrossRef]
- Qi, X.; Si, Z.; Zhong, T.; Huang, X.; Crush, J. Spatial determinants of urban wet market vendor profit in Nanjing, China. Habitat Int. 2019, 94, 102064. [Google Scholar] [CrossRef]
- Zhong, T.; Si, Z.; Scott, S.; Crush, J.; Yang, K.; Huang, X. Comprehensive Food System Planning for Urban Food Security in Nanjing, China. Land 2021, 10, 1090. [Google Scholar] [CrossRef]
- Moore, N.; Alagarswamy, G.; Pijanowski, B.; Thornton, P.; Lofgren, B.; Olson, J.; Andresen, J.; Yanda, P.; Qi, J. East African food security as influenced by future climate change and land use change at local to regional scales. Clim. Chang. 2012, 110, 823–844. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.; Tang, M.; Luo, L.; Li, C.; Chiclana, F.; Zeng, X.J. A bibliometric analysis and visualization of medical big data research. Sustainability 2018, 10, 166. [Google Scholar] [CrossRef] [Green Version]
- Abati, R.; Sampaio, A.R.; Maciel, R.M.A.; Colombo, F.C.; Libardoni, G.; Battisti, L.; Lozano, E.R.; de Castilhos Ghisi, N.; Costa-Maia, F.M.; Potrich, M. Bees and pesticides: The research impact and scientometrics relations. Environ. Sci. Pollut. Res. 2021, 28, 32282–32298. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Y.; Horowitz, M.; Hou, H.; Liu, Z.; Pellegrino, D. Towards an explanatory and computational theory of scientific discovery. J. Informetr. 2009, 3, 191–209. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Prakash, K.; Hossain, M.A.; Pota, H.R. Intelligent energy management: Evolving developments, current challenges, and research directions for sustainable future. J. Clean. Prod. 2021, 314, 127904. [Google Scholar] [CrossRef]
- Ji, B.; Zhao, Y.; Vymazal, J.; Mander, Ü.; Lust, R.; Tang, C. Mapping the field of constructed wetland-microbial fuel cell: A review and bibliometric analysis. Chemosphere 2021, 262, 128366. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Song, I.Y.; Yuan, X.; Zhang, J. The thematic and citation landscape of Data and Knowledge Engineering (1985–2007). Data Knowl. Eng. 2008, 67, 234–259. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Gao, Y.; Zhao, N.; Dai, R.; Zhang, H.; Feng, X.; Shi, G.; Tian, J.; Chen, C.; Hambly, B.D.; et al. Bibliometric Analysis on COVID-19: A Comparison of Research Between English and Chinese Studies. Front. Public Health 2020, 8, 477. [Google Scholar] [CrossRef] [PubMed]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Donthu, N.; Kumar, S.; Pattnaik, D. Forty-five years of Journal of Business Research: A bibliometric analysis. J. Bus. Res. 2020, 109, 39. [Google Scholar] [CrossRef]
- Long, H.; Zhang, Y.; Ma, L.; Tu, S. Land use transitions: Progress, challenges and prospects. Land 2021, 10, 903. [Google Scholar] [CrossRef]
- Sporton, D.; Thomas, D.S.G.; Morrison, J. Outcomes of social and environmental change in the Kalahari of Botswana: The role of migration. J. S. Afr. Stud. 1999, 25, 441–459. [Google Scholar] [CrossRef]
- Murdiyarso, D. Adaptation to climatic variability and change: Asian perspectives on agriculture and food security. Environ. Monit. Assess. 2000, 61, 123–131. [Google Scholar] [CrossRef]
- Verburg, P.H.; Chen, Y.; Veldkamp, T.A. Spatial explorations of land use change and grain production in China. Agric. Ecosyst. Environ. 2000, 82, 333–354. [Google Scholar] [CrossRef]
- Alexander, P.; Rounsevell, M.D.A.; Dislich, C.; Dodson, J.R.; Engström, K.; Moran, D. Drivers for global agricultural land use change: The nexus of diet, population, yield and bioenergy. Glob. Environ. Chang. 2015, 35, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.H.; Ritsema van Eck, J.R.; de Nijs, T.C.M.; Dijst, M.J.; Schot, P. Determinants of land-use change patterns in the Netherlands. Environ. Plan. B Plan. Des. 2004, 31, 125–150. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Hanjra, M.A.; Mu, J. Water management and crop production for food security in China: A review. Agric. Water Manag. 2009, 96, 349–360. [Google Scholar] [CrossRef]
- Mertz, O.; Mbow, C.; Reenberg, A.; Diouf, A. Farmers’ perceptions of climate change and agricultural adaptation strategies in rural sahel. Environ. Manag. 2009, 43, 804–816. [Google Scholar] [CrossRef]
- Garnett, T. Livestock-related greenhouse gas emissions: Impacts and options for policy makers. Environ. Sci. Policy 2009, 12, 491–503. [Google Scholar] [CrossRef]
- Yan, H.; Liu, J.; Huang, H.Q.; Tao, B.; Cao, M. Assessing the consequence of land use change on agricultural productivity in China. Glob. Planet. Chang. 2009, 67, 13–19. [Google Scholar] [CrossRef]
- Song, X.; Ouyang, Z.; Li, Y.; Li, F. Cultivated land use change in China, 1999-2007: Policy development perspectives. J. Geogr. Sci. 2012, 22, 1061–1078. [Google Scholar] [CrossRef]
- Ziem Bonye, S.; Yenglier Yiridomoh, G.; Derbile, E.K. Urban expansion and agricultural land use change in Ghana: Implications for peri-urban farmer household food security in Wa Municipality. Int. J. Urban Sustain. Dev. 2021, 13, 383–399. [Google Scholar] [CrossRef]
- Wang, C.; Siriwardana, M.; Meng, S. Effects of the Chinese arable land fallow system and land-use change on agricultural production and on the economy. Econ. Model. 2019, 79, 186–197. [Google Scholar] [CrossRef]
- Jiang, Y.; Ritchie, B.W.; Benckendorff, P. Bibliometric visualisation: An application in tourism crisis and disaster management research. Curr. Issues Tour. 2019, 22, 1925–1957. [Google Scholar] [CrossRef]
- de Price, D.J.S. Little Science, Big Science; Columbia University Press: New York, NY, USA, 1963; ISBN 023188575X. [Google Scholar]
- Chen, C.; Ibekwe-SanJuan, F.; Hou, J. The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef] [Green Version]
- Colares, G.S.; Dell’Osbel, N.; Wiesel, P.G.; Oliveira, G.A.; Lemos, P.H.Z.; da Silva, F.P.; Lutterbeck, C.A.; Kist, L.T.; Machado, Ê.L. Floating treatment wetlands: A review and bibliometric analysis. Sci. Total Environ. 2020, 714, 136776. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, A.; Benda, J.; Webber, H.; Jafari, Y. Trade, Food Security and Climate Change: Conceptual Linkages and Policy Implications; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; ISBN 9789251311103. [Google Scholar]
- Yawson, D.O. Estimating virtual land use under future conditions: Application of a food balance approach using the UK. Land Use Policy 2021, 101, 105132. [Google Scholar] [CrossRef]
- Yawson, D.O.; Mulholland, B.J.; Ball, T.; Adu, M.O.; Mohan, S.; White, P.J. Effect of climate and agricultural land use changes on UK feed barley production and food security to the 2050s. Land 2017, 6, 74. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, T.; Fujimori, S.; Shin, Y.; Tanaka, A.; Takahashi, K.; Masui, T. Consequence of Climate Mitigation on the Risk of Hunger. Environ. Sci. Technol. 2015, 49, 7245–7253. [Google Scholar] [CrossRef]
- Krishnamurthy, P.K.; Lewis, K.; Choularton, R.J. A methodological framework for rapidly assessing the impacts of climate risk on national-level food security through a vulnerability index. Glob. Environ. Chang. 2014, 25, 121–132. [Google Scholar] [CrossRef]
- Jabbar, A.; Wu, Q.; Peng, J.; Sher, A.; Imran, A.; Wang, K. Mitigating catastrophic risks and food security threats: Effects of land ownership in Southern Punjab, Pakistan. Int. J. Environ. Res. Public Health 2020, 17, 9258. [Google Scholar] [CrossRef]
- Hasegawa, T.; Fujimori, S.; Havlík, P.; Valin, H.; Bodirsky, B.L.; Doelman, J.C.; Fellmann, T.; Kyle, P.; Koopman, J.F.L.; Lotze-Campen, H.; et al. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Chang. 2018, 8, 699–703. [Google Scholar] [CrossRef] [Green Version]
- Nobre, C.A.; Sampaio, G.; Borma, L.S.; Castilla-Rubio, J.C.; Silva, J.S.; Cardoso, M. Land-use and climate change risks in the amazon and the need of a novel sustainable development paradigm. Proc. Natl. Acad. Sci. USA 2016, 113, 10759–10768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltrán-Tolosa, L.M.; Navarro-Racines, C.; Pradhan, P.; Cruz-Garcia, G.S.; Solis, R.; Quintero, M. Action needed for staple crops in the Andean-Amazon foothills because of climate change. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 1103–1127. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Liu, Z.; Chen, Z. Impacts of climatic warming on cropping system borders of China and potential adaptation strategies for regional agriculture development. Sci. Total Environ. 2021, 755, 142415. [Google Scholar] [CrossRef]
- Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; Bodirsky, B.L.; Dietrich, J.P.; Doelmann, J.C.; Gusti, M.; et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Chang. 2017, 42, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, R. Land use decisions under REDD+ incentives when warming temperatures affect crop productivity and forest biomass growth rates. Land Use Policy 2021, 108, 105595. [Google Scholar] [CrossRef]
- Wilts, R.; Latka, C.; Britz, W. Who is most vulnerable to climate change induced yield changes? A dynamic long run household analysis in lower income countries. Clim. Risk Manag. 2021, 33, 100330. [Google Scholar] [CrossRef]
- Dunning, R.J.; Moore, T.; Watkins, C. The use of public land for house building in England: Understanding the challenges and policy implications. Land Use Policy 2021, 105, 105434. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, W.; Tang, L.; Zhang, S.; Liu, Y.; Ke, X. Spatial optimization of urban land and cropland based on land production capacity to balance cropland protection and ecological conservation. J. Environ. Manag. 2021, 285, 112054. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.; Pavone, P. Evidence-based portfolios of innovation policy mixes: A cross-country analysis. Technol. Forecast. Soc. Chang. 2021, 168, 120708. [Google Scholar] [CrossRef]
- Dax, T.; Schroll, K.; Machold, I.; Derszniak-Noirjean, M.; Schuh, B.; Gaupp-Berghausen, M. Land abandonment in mountain areas of the EU: An inevitable side effect of farming modernization and neglected threat to sustainable land use. Land 2021, 10, 591. [Google Scholar] [CrossRef]
- Le Page, Y.; Hurtt, G.; Thomson, A.M.; Bond-Lamberty, B.; Patel, P.; Wise, M.; Calvin, K.; Kyle, P.; Clarke, L.; Edmonds, J.; et al. Sensitivity of climate mitigation strategies to natural disturbances. Environ. Res. Lett. 2013, 8, 15018. [Google Scholar] [CrossRef]
- Shabanali Fami, H.; Aramyan, L.H.; Sijtsema, S.J.; Alambaigi, A. The relationship between household food waste and food security in Tehran city: The role of urban women in household management. Ind. Mark. Manag. 2021, 97, 71–83. [Google Scholar] [CrossRef]
- Edmondson, J.L.; Davies, Z.G.; Gaston, K.J.; Leake, J.R. Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture. J. Appl. Ecol. 2014, 51, 880–889. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, J.A.; Smith, R.G. Ecosystem services and land sparing potential of urban and peri-urban agriculture: A review. Renew. Agric. Food Syst. 2018, 33, 481–494. [Google Scholar] [CrossRef]
- Mwambo, F.M.; Fürst, C.; Nyarko, B.K.; Borgemeister, C.; Martius, C. Maize production and environmental costs: Resource evaluation and strategic land use planning for food security in northern Ghana by means of coupled emergy and data envelopment analysis. Land Use Policy 2020, 95, 104490. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Rural land system reforms in China: History, issues, measures and prospects. Land Use Policy 2020, 91, 104330. [Google Scholar] [CrossRef]
- Therville, C.; Antona, M.; de Foresta, H. The policyscape of agroforestry within Mediterranean protected landscapes in France. Sustain. Sci. 2020, 15, 1435–1448. [Google Scholar] [CrossRef]
- Domingo, A.; Charles, K.A.; Jacobs, M.; Brooker, D.; Hanning, R.M. Indigenous community perspectives of food security, sustainable food systems and strategies to enhance access to local and traditional healthy food for partnering williams treaties first nations (Ontario, Canada). Int. J. Environ. Res. Public Health 2021, 18, 4404. [Google Scholar] [CrossRef]
- Liu, Y.; Song, W.; Deng, X. Understanding the spatiotemporal variation of urban land expansion in oasis cities by integrating remote sensing and multi-dimensional DPSIR-based indicators. Ecol. Indic. 2019, 96, 23–37. [Google Scholar] [CrossRef]
- Djurfeldt, A.A.; Hall, O.; Isinika, A.; Msuya, E.; Yengoh, G.T. Sustainable agricultural intensification in four Tanzanian villages—A view from the ground and the sky. Sustainbility 2020, 12, 8304. [Google Scholar] [CrossRef]
- Kyalo Willy, D.; Muyanga, M.; Jayne, T. Can economic and environmental benefits associated with agricultural intensification be sustained at high population densities? A farm level empirical analysis. Land Use Policy 2019, 81, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Charles, H.; Godfray, H.; Garnett, T. Food security and sustainable intensification. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 6–11. [Google Scholar] [CrossRef]
- Struik, P.C.; Kuyper, T.W. Sustainable intensification in agriculture: The richer shade of green. A review. Agron. Sustain. Dev. 2017, 37, 39. [Google Scholar] [CrossRef]
- Vlek, P.L.G. The role of fertilizers in sustaining agriculture in sub-Saharan Africa. Fertil. Res. 1990, 26, 327–339. [Google Scholar] [CrossRef]
- Fischer, G.; Darkwah, A.; Kamoto, J.; Kampanje-Phiri, J.; Grabowski, P.; Djenontin, I. Sustainable agricultural intensification and gender-biased land tenure systems: An exploration and conceptualization of interactions. Int. J. Agric. Sustain. 2020, 19, 403–422. [Google Scholar] [CrossRef]
- Wezel, A.; Soboksa, G.; McClelland, S.; Delespesse, F.; Boissau, A. The blurred boundaries of ecological, sustainable, and agroecological intensification: A review. Agron. Sustain. Dev. 2015, 35, 1283–1295. [Google Scholar] [CrossRef]
- Mulwa, C.K.; Muyanga, M.; Visser, M. The role of large traders in driving sustainable agricultural intensification in smallholder farms: Evidence from Kenya. Agric. Econ. 2021, 52, 329–341. [Google Scholar] [CrossRef]
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Pan, Y.; Xu, J.; Tian, Y. IPBES thematic assessment on land degradation and restoration and its potential impact. Biodivers. Sci. 2018, 26, 1243–1248. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Roglich, M.; Zvoleff, A.; Noon, M.; Liniger, H.; Fleiner, R.; Harari, N.; Garcia, C. Synergizing global tools to monitor progress towards land degradation neutrality: Trends.Earth and the World Overview of Conservation Approaches and Technologies sustainable land management database. Environ. Sci. Policy 2019, 93, 34–42. [Google Scholar] [CrossRef]
- Prăvălie, R.; Patriche, C.; Borrelli, P.; Panagos, P.; Roșca, B.; Dumitraşcu, M.; Nita, I.A.; Săvulescu, I.; Birsan, M.V.; Bandoc, G. Arable lands under the pressure of multiple land degradation processes. A global perspective. Environ. Res. 2021, 194, 110697. [Google Scholar] [CrossRef]
- Paoloni, L.; Onorati, A. Regulations of large-scale acquisitions of land: The case of the voluntary guidelines on the responsible governance of land, fisheries and forests. Law Dev. Rev. 2014, 7, 369–400. [Google Scholar] [CrossRef]
- Ren, Y.; Lü, Y.; Fu, B.; Comber, A.; Li, T.; Hu, J. Driving factors of land change in china’s loess plateau: Quantification using geographically weighted regression and management implications. Remote Sens. 2020, 12, 453. [Google Scholar] [CrossRef] [Green Version]
- Prokop, P. Remote sensing of severely degraded land: Detection of long-term land-use changes using high-resolution satellite images on the Meghalaya Plateau, northeast India. Remote Sens. Appl. Soc. Environ. 2020, 20, 100432. [Google Scholar] [CrossRef]
- Ranasinghe, T.K.G.P.; Piyadasa, R.U.K. Optimising usage of salinized lands in the lower part of the river basin for the coastal community in Bentota, Sri Lanka. J. Natl. Sci. Found. Sri Lanka 2020, 48, 379–396. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, L.; Meng, H.; Sun, L.; Yan, J. Estimation of un-used land potential for biofuels development in China. Appl. Energy 2009, 86, S77–S85. [Google Scholar] [CrossRef]
- Renzaho, A.M.N.; Kamara, J.K.; Toole, M. Biofuel production and its impact on food security in low and middle income countries: Implications for the post-2015 sustainable development goals. Renew. Sustain. Energy Rev. 2017, 78, 503–516. [Google Scholar] [CrossRef]
- Wicker, R.J.; Kumar, G.; Khan, E.; Bhatnagar, A. Emergent green technologies for cost-effective valorization of microalgal biomass to renewable fuel products under a biorefinery scheme. Chem. Eng. J. 2021, 415, 128932. [Google Scholar] [CrossRef]
- Benites Lazaro, L.L.; Giatti, L.L.; Puppim de Oliveira, J.A. Water-energy-food nexus approach at the core of businesses—How businesses in the bioenergy sector in Brazil are responding to integrated challenges? J. Clean. Prod. 2021, 303, 127102. [Google Scholar] [CrossRef]
- Harris, E.; Ladreiter-Knauss, T.; Butterbach-Bahl, K.; Wolf, B.; Bahn, M. Land-use and abandonment alters methane and nitrous oxide fluxes in mountain grasslands. Sci. Total Environ. 2018, 628–629, 997–1008. [Google Scholar] [CrossRef]
- Hasegawa, T.; Sands, R.D.; Brunelle, T.; Cui, Y.; Frank, S.; Fujimori, S.; Popp, A. Food security under high bioenergy demand toward long-term climate goals. Clim. Chang. 2020, 163, 1587–1601. [Google Scholar] [CrossRef]
- Carrino, L.; Visconti, D.; Fiorentino, N.; Fagnano, M. Biofuel production with castor bean: A win-win strategy for marginal land. Agronomy 2020, 10, 1690. [Google Scholar] [CrossRef]
- Brinkman, M.; Levin-Koopman, J.; Wicke, B.; Shutes, L.; Kuiper, M.; Faaij, A.; van der Hilst, F. The distribution of food security impacts of biofuels, a Ghana case study. Biomass Bioenergy 2020, 141, 105695. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, S.; Liu, Y.; Yang, C. Grain security assessment in Bangladesh based on supply-demand balance analysis. PLoS ONE 2021, 16, e0252187. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Tomaino, L.; Dernini, S.; Berry, E.M.; Lairon, D.; de la Cruz, J.N.; Bach-Faig, A.; Donini, L.M.; Medina, F.X.; Belahsen, R.; et al. Updating the mediterranean diet pyramid towards sustainability: Focus on environmental concerns. Int. J. Environ. Res. Public Health 2020, 17, 8758. [Google Scholar] [CrossRef]
- He, J.; Liu, Y.; Yu, Y.; Tang, W.; Xiang, W.; Liu, D. A counterfactual scenario simulation approach for assessing the impact of farmland preservation policies on urban sprawl and food security in a major grain-producing area of China. Appl. Geogr. 2013, 37, 127–138. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, Y.; Liu, Y.; Yang, R.; Hong, Y.; Lu, Y.; Pan, J.; Chen, Y. Cropland use sustainability in Cheng–Yu Urban Agglomeration, China: Evaluation framework, driving factors and development paths. J. Clean. Prod. 2020, 256, 120692. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Tan, M.; Wang, X.; Xin, L. The impact of cultivated land spatial shift on food crop production in China, 1990–2010. Land Degrad. Dev. 2018, 29, 1652–1659. [Google Scholar] [CrossRef]
- Wang, X.; Xin, L.; Tan, M.; Li, X.; Wang, J. Impact of spatiotemporal change of cultivated land on food-water relations in China during 1990–2015. Sci. Total Environ. 2020, 716, 137119. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Du, G.; Dong, J.; Kuang, W.; De Maeyer, P.; Kurban, A. Divergent changes in cropping patterns and their effects on grain production under different agro-ecosystems over high latitudes in China. Sci. Total Environ. 2019, 659, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Saddique, Q.; Liu, D.L.; Wang, B.; Feng, P.; He, J.; Ajaz, A.; Ji, J.; Xu, J.; Zhang, C.; Cai, H. Modelling future climate change impacts on winter wheat yield and water use: A case study in Guanzhong Plain, northwestern China. Eur. J. Agron. 2020, 119, 126113. [Google Scholar] [CrossRef]
- Jalilov, S.M.; Keskinen, M.; Varis, O.; Amer, S.; Ward, F.A. Managing the water-energy-food nexus: Gains and losses from new water development in Amu Darya River Basin. J. Hydrol. 2016, 539, 648–661. [Google Scholar] [CrossRef]
- Santisteban, J.I.; Celis, A.; Mediavilla, R.; Gil-García, M.J.; Ruiz-Zapata, B.; Castaño, S. The transition from climate-driven to human-driven agriculture during the Little Ice Age in Central Spain: Documentary and fluvial records evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 562, 110153. [Google Scholar] [CrossRef]
- Wang, S.; Tian, Y.; Liu, X.; Foley, M. How farmers make investment decisions: Evidence from a farmer survey in China. Sustainbility 2020, 12, 247. [Google Scholar] [CrossRef] [Green Version]
- Qiu, T.; Boris Choy, S.T.; Li, S.; He, Q.; Luo, B. Does land renting-in reduce grain production? Evidence from rural China. Land Use Policy 2020, 90, 104311. [Google Scholar] [CrossRef]
- Schlindwein, S.L.; Feitosa de Vasconcelos, A.C.; Bonatti, M.; Sieber, S.; Strapasson, A.; Lana, M. Agricultural land use dynamics in the Brazilian part of La Plata Basin: From driving forces to societal responses. Land Use Policy 2021, 107, 105519. [Google Scholar] [CrossRef]
- Gao, X.; Li, B.; Jiang, S.; Nie, Y. Can increasing scale efficiency curb agricultural nonpoint source pollution? Int. J. Environ. Res. Public Health 2021, 18, 8798. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Zhou, Z.; Jiao, L. Hotspots of land-use change in global biodiversity hotspots. Resour. Conserv. Recycl. 2021, 174, 105770. [Google Scholar] [CrossRef]
- Al Masud, M.M.; Gain, A.K.; Azad, A.K. Tidal river management for sustainable agriculture in the Ganges-Brahmaputra delta: Implication for land use policy. Land Use Policy 2020, 92, 104443. [Google Scholar] [CrossRef]
- Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opin. Biol. Ther. 2012, 12, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Kleinberg, J. Bursty and hierarchical structure in streams. Data Min. Knowl. Discov. 2003, 7, 373–397. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Reflections on China’s food security and land use policy under rapid urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar] [CrossRef]
- Huang, W.; Hashimoto, S.; Yoshida, T.; Saito, O.; Taki, K. A nature-based approach to mitigate flood risk and improve ecosystem services in Shiga, Japan. Ecosyst. Serv. 2021, 50, 101309. [Google Scholar] [CrossRef]
- Mutiibwa, D.; Fleisher, D.H.; Resop, J.P.; Timlin, D.; Reddy, V.R. Regional food production and land redistribution as adaptation to climate change in the U.S. Northeast Seaboard. Comput. Electron. Agric. 2018, 154, 54–70. [Google Scholar] [CrossRef]
- Ickowitz, A.; Powell, B.; Rowland, D.; Jones, A.; Sunderland, T. Agricultural intensification, dietary diversity, and markets in the global food security narrative. Glob. Food Sec. 2019, 20, 9–16. [Google Scholar] [CrossRef]
- Chang, J.; Havlík, P.; Leclère, D.; de Vries, W.; Valin, H.; Deppermann, A.; Hasegawa, T.; Obersteiner, M. Reconciling regional nitrogen boundaries with global food security. Nat. Food 2021, 2, 700–711. [Google Scholar] [CrossRef]
- Wang, X.; Liu, F. Effects of elevated co2 and heat on wheat grain quality. Plants 2021, 10, 1027. [Google Scholar] [CrossRef]
- Youssef, A.; Sewilam, H.; Khadr, Z. Impact of Urban Sprawl on Agriculture Lands in Greater Cairo. J. Urban Plan. Dev. 2020, 146, 05020027. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Xie, P.; Rao, Y.; He, Q. Revisiting Spatiotemporal Changes in Global Urban Expansion during 1995 to 2015. Complexity 2020, 2020, 6139158. [Google Scholar] [CrossRef]
Ranker | Count | Centrality | Year | Authors | Ranker | Count | Centrality | Year | Authors |
---|---|---|---|---|---|---|---|---|---|
1 | 16 | 0 | 2016 | Peter H Verburg | 11 | 5 | 0 | 2018 | Wenbin Wu |
2 | 13 | 0.03 | 2008 | Pete Smith | 12 | 5 | 0 | 2015 | Isabelle Weindl |
3 | 10 | 0.01 | 2014 | Petr Havlik | 13 | 5 | 0 | 2013 | Alexander V Prishchepov |
4 | 9 | 0.03 | 2014 | Alexander Popp | 14 | 5 | 0 | 2017 | K Butterbachbahl |
5 | 7 | 0 | 2014 | Hermann Lotzecampen | 15 | 5 | 0 | 2014 | Hans Van Meijl |
6 | 6 | 0 | 2014 | Tomoko Hasegawa | 16 | 5 | 0 | 2017 | M C Rufino |
7 | 6 | 0 | 2009 | Jiyuan Liu | 17 | 5 | 0 | 2017 | Jasper Van Vliet |
8 | 6 | 0 | 2014 | Hugo Valin | 18 | 4 | 0 | 2016 | Almut Arneth |
9 | 5 | 0 | 2014 | Shinichiro Fujimori | 19 | 4 | 0 | 2017 | Kamini Yadav |
10 | 5 | 0 | 2014 | Christoph Schmitz | 20 | 4 | 0 | 2014 | Andrzej Tabeau |
Ranker | Count | Centrality | Year | Research Institutions | Ranker | Count | Centrality | Year | Research Institutions |
---|---|---|---|---|---|---|---|---|---|
1 | 52 | 0.18 | 2003 | Chinese Academy Science | 11 | 12 | 0.1 | 2006 | Potsdam Institute for Climate Impact Research |
2 | 26 | 0.12 | 2014 | Vrije University Amsterdam | 12 | 12 | 0.01 | 2009 | Beijing Normal University |
3 | 22 | 0.22 | 2010 | Wageningen University | 13 | 12 | 0.03 | 2010 | University of Edinburgh |
4 | 19 | 0.02 | 2013 | University of Chinese Academy of Sciences | 14 | 12 | 0.03 | 2016 | Karlsruhe Institute of Technology |
5 | 18 | 0.13 | 2008 | University of Aberdeen | 15 | 11 | 0.05 | 2008 | University of Maryland |
6 | 18 | 0.12 | 2011 | Humboldt University | 16 | 10 | 0.03 | 2006 | University of Copenhagen |
7 | 16 | 0.1 | 2009 | Michigan State University | 17 | 10 | 0.02 | 2009 | Lancaster University |
8 | 14 | 0.09 | 2011 | International Food Policy Research Institute | 18 | 10 | 0.06 | 2000 | Chinese Academy of Agricultural Sciences |
9 | 13 | 0.07 | 2014 | Commonwealth Scientific and Industrial Research Organization | 19 | 9 | 0.04 | 2004 | Columbia University |
10 | 12 | 0.05 | 2000 | International Institute for Applied Systems Analysis | 20 | 9 | 0.03 | 2017 | PBL Netherlands Environmental Assessment Agency |
Ranker | Count | Centrality | Year | Countries | Ranker | Count | Centrality | Year | Countries |
---|---|---|---|---|---|---|---|---|---|
1 | 200 | 0.58 | 2003 | USA | 11 | 30 | 0.11 | 2010 | France |
2 | 125 | 0.1 | 2009 | China | 12 | 26 | 0.01 | 2007 | Italy |
3 | 114 | 0.13 | 2009 | Germany | 13 | 25 | 0.06 | 2013 | Switzerland |
4 | 93 | 0.11 | 2009 | England | 14 | 23 | 0.01 | 2011 | Indonesia |
5 | 92 | 0.1 | 2008 | The Netherlands | 15 | 22 | 0.02 | 2008 | Belgium |
6 | 56 | 0.04 | 2009 | Australia | 16 | 22 | 0.03 | 2008 | Canada |
7 | 47 | 0.04 | 2010 | Scotland | 17 | 20 | 0.09 | 2009 | Denmark |
8 | 36 | 0.02 | 2007 | Austria | 18 | 20 | 0.01 | 2009 | Sweden |
9 | 35 | 0.03 | 2008 | Kenya | 19 | 19 | 0.01 | 2015 | Colombia |
10 | 33 | 0 | 2009 | Brazil | 20 | 18 | 0.01 | 2012 | India |
Ranker | Count | Centrality | Year | Keywords | Ranker | Count | Centrality | Year | Keywords |
---|---|---|---|---|---|---|---|---|---|
1 | 185 | 0.29 | 2000 | Land use change | 11 | 42 | 0.08 | 2009 | Biodiversity |
2 | 141 | 0.21 | 2006 | Food security | 12 | 41 | 0.07 | 2006 | Deforestation |
3 | 119 | 0.13 | 2006 | Climate change | 13 | 37 | 0.05 | 2010 | Land use |
4 | 102 | 0.08 | 1999 | Impact | 14 | 34 | 0.05 | 2000 | Policy |
5 | 62 | 0.14 | 2003 | Agriculture | 15 | 33 | 0.06 | 2008 | Conservation |
6 | 45 | 0.08 | 2009 | Management | 16 | 32 | 0.02 | 2014 | Ecosystem service |
7 | 45 | 0.04 | 2011 | System | 17 | 31 | 0.04 | 2012 | Greenhouse gas emission |
8 | 45 | 0.02 | 2000 | Model | 18 | 30 | 0.02 | 2006 | Cover change |
9 | 43 | 0.05 | 2006 | Dynamics | 19 | 30 | 0.08 | 2005 | Carbon |
10 | 43 | 0.06 | 2000 | Pattern | 20 | 27 | 0.02 | 2012 | Expansion |
Cluster-ID | Research Topics | Main Keywords Included |
---|---|---|
1 | Climate change and carbon emissions | Climate change, global change, climate change mitigation, change impacts, greenhouse gas emissions, carbon sequestration, carbon stocks, greenhouse gas emissions, soil carbon sequestration, soil organic carbon |
2 | Sustainable land management policy | Land management, policy, protection policies, cropland protection, farmland abandonment, rapid urbanization, transformation, urban expansion, urban sprawl, urbanization |
3 | Agricultural intensive development | Agricultural intensification, sustainable intensification, agricultural productivity, ecosystem, environmental change, food security, biodiversity conservation, impacts, risk |
4 | Land degradation | Cropping systems, land use change, degradation, desertification, land degradation, pollution, soil erosion, water resources, croplands, climate change impacts, rice, river basin |
5 | Renewable bioenergy | Carbon, carbon footprint, water footprint, bioenergy, biofuel, energy, environmental impact, farming systems, life cycle assessment, production systems, renewable energy, soil erosion, sustainable agriculture |
6 | Food production | Crop productivity, crop yield, efficiency, food production, human appropriation, impact assessment, yield gap, use efficiency, net primary production, irrigation, maize, wheat |
7 | Agricultural benefits | Agriculture, benefits, biodiversity, certification, costs, crop, food demand, integrated assessment, intensification, plantations, policies, scenarios, validation, yields |
Keywords | Year | Strength | Begin | End | 1999–2021 |
---|---|---|---|---|---|
Area | 1999 | 3.56 | 2015 | 2016 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂▂▂ |
Consumption | 1999 | 3.21 | 2015 | 2017 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂ |
Ecosystem service | 1999 | 3.4 | 2019 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, P.; Tang, H.; Dong, Y.; Liu, K.; Jiang, P.; Liu, Y. Knowledge Mapping of Research on Land Use Change and Food Security: A Visual Analysis Using CiteSpace and VOSviewer. Int. J. Environ. Res. Public Health 2021, 18, 13065. https://doi.org/10.3390/ijerph182413065
Cheng P, Tang H, Dong Y, Liu K, Jiang P, Liu Y. Knowledge Mapping of Research on Land Use Change and Food Security: A Visual Analysis Using CiteSpace and VOSviewer. International Journal of Environmental Research and Public Health. 2021; 18(24):13065. https://doi.org/10.3390/ijerph182413065
Chicago/Turabian StyleCheng, Peng, Houtian Tang, Yue Dong, Ke Liu, Ping Jiang, and Yaolin Liu. 2021. "Knowledge Mapping of Research on Land Use Change and Food Security: A Visual Analysis Using CiteSpace and VOSviewer" International Journal of Environmental Research and Public Health 18, no. 24: 13065. https://doi.org/10.3390/ijerph182413065
APA StyleCheng, P., Tang, H., Dong, Y., Liu, K., Jiang, P., & Liu, Y. (2021). Knowledge Mapping of Research on Land Use Change and Food Security: A Visual Analysis Using CiteSpace and VOSviewer. International Journal of Environmental Research and Public Health, 18(24), 13065. https://doi.org/10.3390/ijerph182413065