Spatial-Temporal Pattern and Evolution Trend of the Cultivated Land Use Eco-Efficiency in the National Pilot Zone for Ecological Conservation in China
Abstract
:1. Introduction
2. Research Methods and Data Sources
2.1. Overview of the Study Area
2.2. Research Methods
2.2.1. SBM-Undesirable Model
2.2.2. Spatial Autocorrelation Model
2.2.3. Markov Chain Model
2.3. Index System Construction and Data Sources
3. Analysis of the Empirical Results
3.1. Temporal Dynamic Evolution Characteristics of the CLUE
3.2. Spatial Evolution Characteristics of the CLUE
3.2.1. Overall Spatial Evolution Characteristics
3.2.2. Local Evolution Characteristics of the CLUE
3.3. Markov Chain Analysis of the CLUE in the Study Area
3.3.1. Traditional Markov Chain Analysis
3.3.2. Spatial Markov Chain Analysis
4. Discussion
4.1. Policy Recommendations
4.2. Research Limitation and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dullinger, I.; Essl, F.; Moser, D.; Erb, K.; Haberl, H.; Dullinger, S. Biodiversity models need to represent land-use intensity more comprehensively. Glob. Ecol. Biogeogr. 2021, 30, 924–932. [Google Scholar] [CrossRef]
- Zhang, X.; Song, W.; Lang, Y.; Feng, X.; Yuan, Q.; Wang, J. Land use changes in the coastal zone of China’s Hebei Province and the corresponding impacts on habitat quality. Land Use Policy 2020, 99, 104957. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, H.; Song, G.; Liu, Y. Optimization of cultivated land pattern for achieving cultivated land system security: A case study in Heilongjiang Province, China. Land Use Policy 2021, 108, 105589. [Google Scholar] [CrossRef]
- Schaltegger, S.; Sturm, A. Okologische rationalitat:ansatzpunkte zur ausgestaltung von ökologieorientierten managementinstrumenten. Die Unternehm. 1990, 44, 273–290. [Google Scholar]
- Development, W. Eco-Efficient Leadership for Improved Economic and Environmental Performance; World Business Council for Sustainable Development: Geneva, Switzerland, 1996; pp. 3–16. [Google Scholar]
- Moll, S. Making sustainability accountable: Eco-efficiency, resource productivity and innovation. In Proceedings of the A Workshop on the Occasion of the Fifth Anniversary of the European Environment Agency (EEA), Copenhagen, Denmark, 28–30 October 1998; p. 45. [Google Scholar]
- Vásquez, J.; Aguirre, S.; Fuquene-Retamoso, C.E.; Bruno, G.; Priarone, P.C.; Settineri, L. A conceptual framework for the eco-efficiency assessment of small-and medium-sized enterprises. J. Clean. Prod. 2019, 237, 117660. [Google Scholar] [CrossRef]
- Desli, E.; Gkoulgkoutsika, A.; Sdrolia, E.; Zarotiadis, G. Eco-efficiency: A methodological framework and assessment. Clean. Environ. Syst. 2021, 3, 100049. [Google Scholar] [CrossRef]
- Cortés, A.; Casillas-Hernández, R.; Cambeses-Franco, C.; Bórquez-López, R.; Magallón-Barajas, F.; Quadros-Seiffert, W.; Feijoo, G.; Moreira, M.T. Eco-efficiency assessment of shrimp aquaculture production in Mexico. Aquaculture 2021, 544, 737145. [Google Scholar] [CrossRef]
- Grassauer, F.; Herndl, M.; Nemecek, T.; Guggenberger, T.; Fritz, C.; Steinwidder, A.; Zollitsch, W. Eco-efficiency of farms considering multiple functions of agriculture: Concept and results from Austrian farms. J. Clean. Prod. 2021, 297, 126662. [Google Scholar] [CrossRef]
- Oliveira, R.; Camanho, A.S.; Zanella, A. Expanded eco-efficiency assessment of large mining firms. J. Clean. Prod. 2017, 142, 2364–2373. [Google Scholar] [CrossRef]
- Davé, A.; Ball, P.; Salonitis, K. Factory eco-efficiency modelling: Data granularity and performance indicators. Procedia Manuf. 2017, 8, 479–486. [Google Scholar] [CrossRef]
- Egilmez, G.; Park, Y.S. Transportation related carbon, energy and water footprint analysis of US manufacturing: An eco-efficiency assessment. Transp. Res. Part D Transp. Environ. 2014, 32, 143–159. [Google Scholar] [CrossRef]
- Park, Y.S.; Egilmez, G.; Kucukvar, M. A novel life cycle-based principal component analysis framework for eco-efficiency analysis: Case of the United States manufacturing and transportation nexus. J. Clean. Prod. 2015, 92, 327–342. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, X.; Xu, L. Eco-efficiency optimization for municipal solid waste management. J. Clean. Prod. 2015, 104, 242–249. [Google Scholar] [CrossRef]
- Stanchev, P.; Ribarova, I. Complexity, assumptions and solutions for eco-efficiency assessment of urban water systems. J. Clean. Prod. 2016, 138, 229–236. [Google Scholar] [CrossRef]
- Rybaczewska-Błażejowska, M.; Masternak-Janus, A. Eco-efficiency assessment of Polish regions: Joint application of life cycle assessment and data envelopment analysis. J. Clean. Prod. 2018, 172, 1180–1192. [Google Scholar] [CrossRef]
- Basset-Mens, C.; Rhino, B.; Ndereyimana, A.; Kleih, U.; Biard, Y. Eco-efficiency of tomato from Rwamagana district in Rwanda: From field constraints to statistical significance. J. Clean. Prod. 2019, 229, 420–430. [Google Scholar] [CrossRef]
- Maxime, D.; Marcotte, M.; Arcand, Y. Development of eco-efficiency indicators for the Canadian food and beverage industry. J. Clean. Prod. 2006, 14, 636–648. [Google Scholar] [CrossRef]
- Sorvari, J.; Antikainen, R.; Kosola, M.L.; Hokkanen, P.; Haavisto, T. Eco-efficiency in contaminated land management in Finland–Barriers and development needs. J. Environ. Manag. 2009, 90, 1715–1727. [Google Scholar] [CrossRef]
- You, H.Y.; Wu, C.F.; Yang, P.J.; Huang, L. Analysis on eco-efficiency and effectiveness of cultivated land quantity compensation. Land Resour. Inf. 2012, 1, 39–45. [Google Scholar]
- Yang, H.R.; Wu, Q. Study on the Eco-efficiency of Land Use Transformation in Jiangsu Province from the Perspective of Carbon Emission—Based on the Mixed Directional Distance Function. J. Nat. Resour. 2017, 32, 1718–1730. [Google Scholar]
- Zhu, Z.; Du, G. Coordinated Development of Urban Land Use and Ecological Economics in China. J. Math. 2021, 2021, 5599633. [Google Scholar] [CrossRef]
- Zhang, C.; Su, Y.; Yang, G.; Chen, D.; Yang, R. Spatial-Temporal Characteristics of Cultivated Land Use Efficiency in Major Function-Oriented Zones: A Case Study of Zhejiang Province, China. Land 2020, 9, 114. [Google Scholar] [CrossRef]
- Chen, B.; Wang, Q.; Liu, J. Comparative analysis on eco-efficiency of arable land ecological footprint in Hubei. Wuhan Univ. J. Nat. Sci. 2006, 11, 1052–1058. [Google Scholar]
- Luo, J.X.; Cui, J.; Liu, Y.F. Coupling and Coordination Analysis of Urban Land Intensive Use and Ecological Efficiency—A Case Study of Northeast China. Nat. Resour. Econ. China 2021, 34, 81–89. [Google Scholar]
- Bonfiglio, A.; Arzeni, A.; Bodini, A. Assessing eco-efficiency of arable farms in rural areas. Agric. Syst. 2017, 151, 114–125. [Google Scholar] [CrossRef]
- Zhao, Z.; Bai, Y.; Wang, G.; Chen, J.; Yu, J.; Liu, W. Land eco-efficiency for new-type urbanization in the Beijing-Tianjin-Hebei Region. Technol. Forecast. Soc. Chang. 2018, 137, 19–26. [Google Scholar] [CrossRef]
- Yang, H.; Wu, Q. Land use eco-efficiency and its convergence characteristics under the constraint of carbon emissions in China. Int. J. Environ. Res. Public Health 2019, 16, 3172. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Sun, H.; Shi, L.; Wang, H.; Xiu, Z.; Qiu, X.; Chang, H.; Xie, Y.; Wang, Y.; Wang, C. Spatial-Temporal Changes and Driving Factors of Land-Use Eco-Efficiency Incorporating Ecosystem Services in China. Sustainability. 2021, 13, 728. [Google Scholar] [CrossRef]
- Hong, K.R.; Li, B. Study on temporal-spatial differences and influencing factors of ecological efficiency of land resources. Hubei Soc. Sci. 2016, 10, 74–81. [Google Scholar]
- Xie, M.M.; Li, X.X. Research on Spatiotemporal Evolution Regulation of Eco-efficiency of Land Utilization in Jilin Province Based on Data Envelopment Analysis. Bull. Soil Water Conserv. 2015, 35, 225–230. [Google Scholar]
- Lu, Y.M.; Fang, S.M. Analysis of spatio-temporal evolution and influencing factors of eco-efficiency of urban construction land in Wuhan city circle based on SBM-DEA and Malmquist model. Resour. Environ. Yangtze Basin 2017, 26, 1575–1586. [Google Scholar]
- Yang, B.; Wang, Z.; Zou, L.; Zou, L.; Zhang, H. Exploring the eco-efficiency of cultivated land utilization and its influencing factors in China’s Yangtze River Economic Belt, 2001–2018. J. Environ. Manag. 2021, 294, 112939. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Miao, J.J.; Yang, J. Urban Non-agricultural Eco-efficiency and Affecting Factors Based on Carbon Emission. China Popul. Resour. Environ. 2013, 23, 63–69. [Google Scholar]
- Huang, H.P.; Li, Y.L.; Wang, Z.P. Spatio-temporal changes of eco-efficiency and influencing factors of industrial land use at the provincial level of China. Acta Ecol. Sin. 2020, 40, 100–111. [Google Scholar]
- Huang, H.P.; Wang, Z.P. Spatial-temporal Differences and Influencing Factors of Agricultural Land Eco-efficiency in Jiangxi Province: Based on the Dual Perspective of Non-point Source Pollution and Carbon Emission. Resour. Environ. Yangtze Basin 2020, 2, 412–423. [Google Scholar]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Jin, J.J.; Jiang, C.; Li, L.I. The economic valuation of cultivated land protection: A contingent valuation study in Wenling City, China. Landsc. Urban Plan. 2013, 119, 158–164. [Google Scholar]
- Yu, H.; Zheng, J. The Research of Implementation Path on Transforming Ecological Advantages into Economic Advantages—A Case Study in National Ecological Civilization Experimental Zones. For. Econ. 2019, 41, 87–94. [Google Scholar]
- Guo, Y.; Li, N.; Mu, H.; Li, L.; Duan, Y. Regional total-factor coal consumption efficiency in China: A meta-frontier SBM-undesirable approach. Energy Procedia 2017, 142, 2423–2428. [Google Scholar] [CrossRef]
- Cecchini, L.; Venanzi, S.; Pierri, A.; Chiorri, M. Environmental efficiency analysis and estimation of CO2 abatement costs in dairy cattle farms in Umbria (Italy): A SBM-DEA model with undesirable output. J. Clean. Prod. 2018, 197, 895–907. [Google Scholar] [CrossRef]
- Zhang, R.L.; Liu, X.H. Evaluating ecological efficiency of Chinese industrial enterprise. Renew. Energy 2021, 178, 679–691. [Google Scholar] [CrossRef]
- Jiang, H. Spatial–temporal differences of industrial land use efficiency and its influencing factors for China’s central region: Analyzed by SBM model. Environ. Technol. Innov. 2021, 22, 101489. [Google Scholar] [CrossRef]
- Kuang, B.; Lu, X.; Zhou, M.; Chen, D. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered. Technol. Forecast. Soc. Chang. 2020, 151, 119874. [Google Scholar] [CrossRef]
- Chen, W.; Ning, S.; Chen, W.; Liu, E.N.; Wang, Y.; Zhao, M. Spatial-temporal characteristics of industrial land green efficiency in China: Evidence from prefecture-level cities. Ecol. Indic. 2020, 113, 106256. [Google Scholar] [CrossRef]
- Zhou, P.A.B.W.; Ang, B.W.; Poh, K.L. Slacks-based efficiency measures for modeling environmental performance. Ecol. Econ. 2006, 60, 111–118. [Google Scholar] [CrossRef]
- Li, L.B.; Hu, J.L. Ecological total-factor energy efficiency of regions in China. Energy Policy 2012, 46, 216–224. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. Network DEA: A slacks-based measure approach. Eur. J. Oper. Res. 2009, 197, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Paradi, J.C.; Rouatt, S.; Zhu, H. Two-stage evaluation of bank branch efficiency using data envelopment analysis. Omega 2011, 39, 99–109. [Google Scholar] [CrossRef]
- Long, R.; Ouyang, H.; Guo, H. Super-slack-based measuring data envelopment analysis on the spatial–temporal patterns of logistics ecological efficiency using global Malmquist Index model. Environ. Technol. Innov. 2020, 18, 100770. [Google Scholar] [CrossRef]
- Overmars, K.D.; De Koning, G.H.J.; Veldkamp, A. Spatial autocorrelation in multi-scale land use models. Ecol. Model. 2003, 164, 257–270. [Google Scholar] [CrossRef]
- Kobayashi, A. International Encyclopedia of Human Geography; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Ahn, K.U.; Park, C.S. Temporal and spatial variation in the predictability of building occupancy. Build. Environ. 2019, 149, 477–489. [Google Scholar] [CrossRef]
- Cui, Y.; Khan, S.U.; Deng, Y.; Zhao, M.; Hou, M. Environmental improvement value of agricultural carbon reduction and its spatiotemporal dynamic evolution: Evidence from China. Sci. Total Environ. 2021, 754, 142170. [Google Scholar] [CrossRef]
- Hou, X.; Liu, J.; Zhang, D.; Zhao, M.; Xia, C. Impact of urbanization on the eco-efficiency of cultivated land utilization: A case study on the Yangtze River Economic Belt, China. J. Clean. Prod. 2019, 238, 117916. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Dubey, A.; Lal, R. Carbon footprint and sustainability of agricultural production systems in Punjab, India, and Ohio, USA. J. Crop Improv. 2009, 23, 332–350. [Google Scholar] [CrossRef]
- He, Y. Study on Carbon Cycle of Climate and Terrestrial Ecosystem in China; Meteorological Press: Beijing, China, 2006. [Google Scholar]
- Liang, L.T. Study on the Temporal and Spatial Evolution of Rural Ecological Enviroment; Nanjing Agricultural University: Nanjing, China, 2009. [Google Scholar]
- Feng, Y.G.; Peng, J.; Deng, Z.B.; Wang, J. Spatial-temporal Variation of Cultivated Land’s Utilization Efficiency in China Based on the Dual Perspective of Non-point Source Pollution and Carbon Emission. China Popul. Resour. Environ. 2015, 25, 18–25. [Google Scholar]
Variable Type | Variable | Index Meaning |
---|---|---|
Input index | Cultivated land input | Actual sown area of crops/1000 hm2 |
Labor input | Number of employees in the primary industry × (agricultural output value/total output value of agriculture, forestry, animal husbandry, and fishery)/10,000 | |
Pesticide and fertilizer input | Net amount of pesticide and chemical fertilizer application/t | |
Expected output index | Agricultural output value | Output value of the planting industry/10,000 yuan |
Grain yield | Total grain output/t | |
Unexpected output index | Net carbon emissions | Difference between the total carbon emissions of mechanical operation and chemical fertilizer and pesticide application and the total carbon absorption of cultivated land/t |
Year | Global Moran’s I | Z-Value | p-Value |
---|---|---|---|
2008 | 0.136 | 1.759 | 0.039 |
2009 | 0.1869 | 2.1414 | 0.032 |
2010 | 0.1493 | 1.9436 | 0.029 |
2011 | 0.3403 | 3.9418 | 0.003 |
2012 | 0.2308 | 2.8181 | 0.004 |
2013 | 0.2362 | 2.7097 | 0.003 |
2014 | 0.1942 | 2.3543 | 0.009 |
2015 | 0.2561 | 3.0089 | 0.007 |
2016 | 0.191 | 2.3219 | 0.009 |
2017 | 0.2572 | 2.9803 | 0.002 |
2018 | 0.3234 | 3.7426 | 0.001 |
Local Status | Type Ⅰ | Type Ⅱ | Type Ⅲ | Type Ⅳ |
---|---|---|---|---|
<25% | 25–50% | 50–75% | >75% | |
Type Ⅰ | 0.832 | 0.117 | 0.007 | 0.044 |
Type Ⅱ | 0.190 | 0.647 | 0.085 | 0.085 |
Type Ⅲ | 0.058 | 0.385 | 0.365 | 0.192 |
Type Ⅳ | 0.018 | 0.048 | 0.079 | 0.855 |
Spatial Lag | Local Status | Type Ⅰ | Type Ⅱ | Type Ⅲ | Type Ⅳ |
---|---|---|---|---|---|
<25% | 25–50% | 50–75% | >75% | ||
Type Ⅰ | Ⅰ | 0.770 | 0.148 | 0.000 | 0.082 |
Ⅱ | 0.231 | 0.513 | 0.051 | 0.205 | |
Ⅲ | 0.000 | 0.333 | 0.444 | 0.222 | |
Ⅳ | 0.077 | 0.077 | 0.077 | 0.769 | |
Type Ⅱ | Ⅰ | 0.854 | 0.122 | 0.000 | 0.024 |
Ⅱ | 0.179 | 0.678 | 0.143 | 0.000 | |
Ⅲ | 0.100 | 0.400 | 0.300 | 0.200 | |
Ⅳ | 0.000 | 0.048 | 0.065 | 0.887 | |
Type Ⅲ | Ⅰ | 0.926 | 0.074 | 0.000 | 0.000 |
Ⅱ | 0.175 | 0.750 | 0.050 | 0.025 | |
Ⅲ | 0.063 | 0.375 | 0.313 | 0.25 | |
Ⅳ | 0.016 | 0.049 | 0.098 | 0.836 | |
Type Ⅳ | Ⅰ | 0.750 | 0.125 | 0.125 | 0.000 |
Ⅱ | 0.139 | 0.639 | 0.111 | 0.111 | |
Ⅲ | 0.059 | 0.411 | 0.411 | 0.118 | |
Ⅳ | 0.001 | 0.050 | 0.075 | 0.863 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Z.; Deng, C.; Fan, Y.; Zhang, P.; Lu, H. Spatial-Temporal Pattern and Evolution Trend of the Cultivated Land Use Eco-Efficiency in the National Pilot Zone for Ecological Conservation in China. Int. J. Environ. Res. Public Health 2022, 19, 111. https://doi.org/10.3390/ijerph19010111
Fan Z, Deng C, Fan Y, Zhang P, Lu H. Spatial-Temporal Pattern and Evolution Trend of the Cultivated Land Use Eco-Efficiency in the National Pilot Zone for Ecological Conservation in China. International Journal of Environmental Research and Public Health. 2022; 19(1):111. https://doi.org/10.3390/ijerph19010111
Chicago/Turabian StyleFan, Zhenggen, Chao Deng, Yuqi Fan, Puwei Zhang, and Hua Lu. 2022. "Spatial-Temporal Pattern and Evolution Trend of the Cultivated Land Use Eco-Efficiency in the National Pilot Zone for Ecological Conservation in China" International Journal of Environmental Research and Public Health 19, no. 1: 111. https://doi.org/10.3390/ijerph19010111
APA StyleFan, Z., Deng, C., Fan, Y., Zhang, P., & Lu, H. (2022). Spatial-Temporal Pattern and Evolution Trend of the Cultivated Land Use Eco-Efficiency in the National Pilot Zone for Ecological Conservation in China. International Journal of Environmental Research and Public Health, 19(1), 111. https://doi.org/10.3390/ijerph19010111