Current and Future Trends in the Laboratory Diagnosis of Sexually Transmitted Infections
Abstract
:1. Introduction
2. The Limitations of the Syndromic Management of STIs
3. The Need for STI Laboratory Confirmation and the Advantages of Point-Of-Care Testing
- Sensitivity: ability to correctly identify individuals with the infection (true positive rate)
- Specificity: ability to correctly identify individuals without the infection (true negative rate)
- Positive predictive value (PPV): probability that positive individuals truly have the infection
- Negative predictive value (NPV): probability that negative individuals truly do not have the infection
- Complexity: includes all the technical requirements (equipment, reagents, personnel) needed for optimal test performance
- Cost: both materials- and labour-related
- Throughput: number of tests completed in a given amount of time
- Time to result: time needed to get a response from the test
4. Overview and Latest Developments in the Laboratory Diagnosis of STIs
4.1. Microscopy and Culture
4.2. Immunological Assays
4.3. Nucleic Acid Amplification Tests (NAATs) and Detection
4.3.1. PCR-Based Assays
4.3.2. Isothermal Amplification Assays and Microfluidics
4.3.3. Sensitive Detection without Amplification
4.3.4. Detecting Antimicrobial Resistance
5. The New Possibilities Of-Omics
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rowley, J.; Vander Hoorn, S.; Korenromp, E.; Low, N.; Unemo, M.; Abu-Raddad, L.J.; Chico, R.M.; Smolak, A.; Newman, L.; Gottlieb, S.; et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: Global prevalence and incidence estimates, 2016. Bull. World Health Organ. 2019, 97, 548–562. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Report on Global Sexually Transmitted Infection Surveillance 2018; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- De Santis, M.; De Luca, C.; Mappa, I.; Spagnuolo, T.; Licameli, A.; Straface, G.; Scambia, G. Syphilis Infection during Pregnancy: Fetal Risks and Clinical Management 2012. Available online: https://www.hindawi.com/journals/idog/2012/430585/ (accessed on 27 October 2020).
- World Health Organization. Global Health Sector Strategy on Sexually Transmitted Infections, 2016–2021; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Olaleye, A.O.; Babah, O.A.; Osuagwu, C.S.; Ogunsola, F.T.; Afolabi, B.B. Sexually transmitted infections in pregnancy—An update on Chlamydia trachomatis and Neisseria gonorrhoeae. Eur. J. Obs. Gynecol. Reprod. Biol. 2020, 255, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bagga, R.; Arora, P. Genital Micro-Organisms in Pregnancy. Front. Public Health 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Cole, S. Herpes Simplex Virus: Epidemiology, Diagnosis, and Treatment. Nurs. Clin. N. Am. 2020, 55, 337–345. [Google Scholar] [CrossRef]
- Tsevat, D.G.; Wiesenfeld, H.C.; Parks, C.; Peipert, J.F. Sexually transmitted diseases and infertility. Am. J. Obs. Gynecol. 2017, 216, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farsimadan, M.; Motamedifar, M. Bacterial infection of the male reproductive system causing infertility. J. Reprod. Immunol. 2020, 142, 103183. [Google Scholar] [CrossRef] [PubMed]
- Galvin, S.R.; Cohen, M.S. The role of sexually transmitted diseases in HIV transmission. Nat. Rev. Microbiol. 2004, 2, 33–42. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Laboratory Diagnosis of Sexually Transmitted Infections, Including Human Immunodeficiency Virus; World Health Organization: Geneva, Switzerland, 2013; ISBN 9789241505840. [Google Scholar]
- Buchan, B.W.; Ledeboer, N.A. Emerging Technologies for the Clinical Microbiology Laboratory. Clin. Microbiol. Rev. 2014, 27, 783–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drancourt, M.; Michel-Lepage, A.; Boyer, S.; Raoult, D. The Point-of-Care Laboratory in Clinical Microbiology. Clin. Microbiol. Rev. 2016, 29, 429–447. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Training Modules for the Syndromic Management of Sexually Transmitted Infections, 2nd ed.; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Gupta, V.; Sharma, V.K. Syndromic management of sexually transmitted infections: A critical appraisal and the road ahead. Natl. Med. J. India 2019, 32, 147–152. [Google Scholar] [CrossRef]
- Pettifor, A.; Walsh, J.; Wilkins, V.; Raghunathan, P. How effective is syndromic management of STDs?: A review of current studies. Sex Transm. Dis. 2000, 27, 371–385. [Google Scholar] [CrossRef] [PubMed]
- Unemo, M.; Seifert, H.S.; Hook, E.W.; Hawkes, S.; Ndowa, F.; Dillon, J.-A.R. Gonorrhoea. Nat. Rev. Dis. Primers 2019, 5, 79. [Google Scholar] [CrossRef] [PubMed]
- Desai, V.; Kosambiya, J.; Thakor, H.; Umrigar, D.; Khandwala, B.; Bhuyan, K. Prevalence of sexually transmitted infections and performance of STI syndromes against aetiological diagnosis, in female sex workers of red light area in Surat, India. Sex. Transm. Infect. 2003, 79, 111–115. [Google Scholar] [CrossRef]
- Ray, K.; Muralidhar, S.; Bala, M.; Kumari, M.; Salhan, S.; Gupta, S.M.; Bhattacharya, M. Comparative study of syndromic and etiological diagnosis of reproductive tract infections/sexually transmitted infections in women in Delhi. Int. J. Infect. Dis. 2009, 13, e352–e359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelrahim, N.A.; Ahmed, H.I.; Fadl-Elmula, I.M.; Bayoumi, M.A.; Homeida, M.M. Sexually transmitted infections other than HIV/AIDS among women of low socio-economic class attending antenatal clinics in Khartoum, Sudan. Int. J. Std Aids 2016. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, K.V.; Bisgaier, J.; Becker, N.; Padowitz, N.; Vashi, A.; McNutt, L.-A. Emergency care of urban women with sexually transmitted infections: Time to address deficiencies. Sex. Transm. Dis. 2009, 36, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Pattishall, A.E.; Rahman, S.Y.; Jain, S.; Simon, H.K. Empiric treatment of sexually transmitted infections in a pediatric Emergency Department: Are we making the right decisions? Am. J. Emerg. Med. 2012, 30, 1588–1590. [Google Scholar] [CrossRef]
- Fernández, G.; Martró, E.; González, V.; Saludes, V.; Bascuñana, E.; Marcó, C.; Rivaya, B.; López, E.; Coll, P.; Matas, L.; et al. Usefulness of a novel multiplex real-time PCR assay for the diagnosis of sexually-transmitted infections. Enferm. Infecc. Y Microbiol. Clín. 2016, 34, 471–476. [Google Scholar] [CrossRef]
- Gift, T.L.; Pate, M.S.; Hook, E.W.; Kassler, W.J. The rapid test paradox: When fewer cases detected lead to more cases treated: A decision analysis of tests for Chlamydia trachomatis. Sex. Transm. Dis. 1999, 26, 232–240. [Google Scholar] [CrossRef]
- Mukenge-Tshibaka, L.; Alary, M.; Lowndes, C.M.; Van Dyck, E.; Guédou, A.; Geraldo, N.; Anagonou, S.; Lafia, E.; Joly, J.R. Syndromic Versus Laboratory-Based Diagnosis of Cervical Infections Among Female Sex Workers in Benin: Implications of Nonattendance for Return Visits. Sex. Transm. Dis. 2002, 29, 324–330. [Google Scholar] [CrossRef]
- Cristillo, A.D.; Bristow, C.C.; Peeling, R.; Van Der Pol, B.; de Cortina, S.H.; Dimov, I.K.; Pai, N.P.; Jin Shin, D.; Chiu, R.Y.T.; Klapperich, C.; et al. Point-of-Care Sexually Transmitted Infection Diagnostics: Proceedings of the STAR Sexually Transmitted Infection—Clinical Trial Group Programmatic Meeting. Sex. Transm. Dis. 2017, 44, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Peeling, R.W.; Holmes, K.K.; Mabey, D.; Ronald, A. Rapid tests for sexually transmitted infections (STIs): The way forward. Sex. Transm. Infect. 2006, 82 (Suppl. 5), v1–v6. [Google Scholar] [CrossRef]
- Bouzid, D.; Zanella, M.-C.; Kerneis, S.; Visseaux, B.; May, L.; Schrenzel, J.; Cattoir, V. Rapid diagnostic tests for infectious diseases in the emergency department. Clin. Microbiol. Infect. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, L.; Chen, J.-L.; Wang, D. Progress and Perspectives in Point of Care Testing for Urogenital Chlamydia trachomatis Infection: A Review. Med. Sci. Monit. 2020, 26, e920873. [Google Scholar] [CrossRef] [PubMed]
- Meyer, T.; Buder, S. The Laboratory Diagnosis of Neisseria gonorrhoeae: Current Testing and Future Demands. Pathogens 2020, 9, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaydos, C.A.; Klausner, J.D.; Pai, N.P.; Kelly, H.; Coltart, C.; Peeling, R.W. Rapid and point-of-care tests for the diagnosis of Trichomonas vaginalis in women and men. Sex. Transm. Infect. 2017, 93, S31–S35. [Google Scholar] [CrossRef] [Green Version]
- Huppert, J.S.; Hesse, E.; Kim, G.; Kim, M.; Agreda, P.; Quinn, N.; Gaydos, C. Adolescent women can perform a point-of-care test for trichomoniasis as accurately as clinicians. Sex. Transm. Infect. 2010, 86, 514–519. [Google Scholar] [CrossRef] [Green Version]
- Gaydos, C.A.; Jett-Goheen, M.; Barnes, M.; Dize, L.; Hsieh, Y.-H. Self-testing for Trichomonas vaginalis at home using a point-of-care test by women who request kits via the Internet. Sex. Health 2016, 13, 491–493. [Google Scholar] [CrossRef]
- Toskin, I.; Murtagh, M.; Peeling, R.W.; Blondeel, K.; Cordero, J.; Kiarie, J. Advancing prevention of sexually transmitted infections through point-of-care testing: Target product profiles and landscape analysis. Sex. Transm. Infect. 2017, 93, S69–S80. [Google Scholar] [CrossRef]
- Toskin, I.; Blondeel, K.; Peeling, R.W.; Deal, C.; Kiarie, J. Advancing point of care diagnostics for the control and prevention of STIs: The way forward. Sex. Transm. Infect. 2017, 93, S81–S88. [Google Scholar] [CrossRef] [Green Version]
- Wi, T.E.; Ndowa, F.J.; Ferreyra, C.; Kelly-Cirino, C.; Taylor, M.M.; Toskin, I.; Kiarie, J.; Santesso, N.; Unemo, M. Diagnosing sexually transmitted infections in resource-constrained settings: Challenges and ways forward. J. Int. Aids Soc. 2019, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrett, N.J.; Osman, F.; Maharaj, B.; Naicker, N.; Gibbs, A.; Norman, E.; Samsunder, N.; Ngobese, H.; Mitchev, N.; Singh, R.; et al. Beyond syndromic management: Opportunities for diagnosis-based treatment of sexually transmitted infections in low- and middle-income countries. PLoS ONE 2018, 13, e0196209. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.; Nicoll, A.; Simms, I.; Wilson, J.; Catchpole, M. Bacterial vaginosis: A public health review. BJOG 2001, 108, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Chico, R.M.; Mayaud, P.; Ariti, C.; Mabey, D.; Ronsmans, C.; Chandramohan, D. Prevalence of malaria and sexually transmitted and reproductive tract infections in pregnancy in sub-Saharan Africa: A systematic review. JAMA 2012, 307, 2079–2086. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, C.; Colebunders, R.; Crucitti, T. The global epidemiology of bacterial vaginosis: A systematic review. Am. J. Obs. Gynecol. 2013, 209, 505–523. [Google Scholar] [CrossRef]
- Bradshaw, C.S.; Walker, J.; Fairley, C.K.; Chen, M.Y.; Tabrizi, S.N.; Donovan, B.; Kaldor, J.M.; McNamee, K.; Urban, E.; Walker, S.; et al. Prevalent and Incident Bacterial Vaginosis Are Associated with Sexual and Contraceptive Behaviours in Young Australian Women. PLoS ONE 2013, 8, e57688. [Google Scholar] [CrossRef] [Green Version]
- Marrazzo, J.M.; Thomas, K.K.; Fiedler, T.L.; Ringwood, K.; Fredricks, D.N. Relationship of specific vaginal bacteria and bacterial vaginosis treatment failure in women who have sex with women. Ann. Intern. Med. 2008, 149, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Kampan, N.C.; Suffian, S.S.; Ithnin, N.S.; Muhammad, M.; Zakaria, S.Z.S.; Jamil, M.A. Evaluation of BV(®) Blue Test Kit for the diagnosis of bacterial vaginosis. Sex. Reprod. Healthc. 2011, 2, 1–5. [Google Scholar] [CrossRef]
- Sobel, J.D.; Karpas, Z.; Lorber, A. Diagnosing vaginal infections through measurement of biogenic amines by ion mobility spectrometry. Eur. J. Obs. Gynecol. Reprod. Biol. 2012, 163, 81–84. [Google Scholar] [CrossRef]
- Blankenstein, T.; Lytton, S.D.; Leidl, B.; Atweh, E.; Friese, K.; Mylonas, I. Point-of-care (POC) diagnosis of bacterial vaginosis (BV) using VGTestTM ion mobility spectrometry (IMS) in a routine ambulatory care gynecology clinic. Arch. Gynecol. Obs. 2015, 292, 355–362. [Google Scholar] [CrossRef]
- Van Der Pol, B. Clinical and Laboratory Testing for Trichomonas vaginalis Infection. J. Clin. Microbiol. 2016, 54, 7–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kissinger, P. Trichomonas vaginalis: A review of epidemiologic, clinical and treatment issues. BMC Infect. Dis. 2015, 15, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fournier, P.-E.; Drancourt, M.; Colson, P.; Rolain, J.-M.; Scola, B.L.; Raoult, D. Modern clinical microbiology: New challenges and solutions. Nat. Rev. Microbiol. 2013, 11, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Forrestel, A.K.; Kovarik, C.L.; Katz, K.A. Sexually acquired syphilis: Laboratory diagnosis, management, and prevention. J. Am. Acad. Derm. 2020, 82, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Yarbrough, M.L.; Burnham, C.-A.D. The ABCs of STIs: An Update on Sexually Transmitted Infections. Clin. Chem. 2016, 62, 811–823. [Google Scholar] [CrossRef] [Green Version]
- Arshad, Z.; Alturkistani, A.; Brindley, D.; Lam, C.; Foley, K.; Meinert, E. Tools for the Diagnosis of Herpes Simplex Virus 1/2: Systematic Review of Studies Published Between 2012 and 2018. JMIR Public Health Surveill. 2019, 5, e14216. [Google Scholar] [CrossRef]
- Vică, M.L.; Matei, H.V.; Siserman, C.V. The Advantages of Using Multiplex PCR for the Simultaneous Detection of Six Sexually Transmitted Diseases. Polym. Chain React. Biomed. Appl. 2016. [Google Scholar] [CrossRef] [Green Version]
- Guy, R.J.; Causer, L.M.; Klausner, J.D.; Unemo, M.; Toskin, I.; Azzini, A.M.; Peeling, R.W. Performance and operational characteristics of point-of-care tests for the diagnosis of urogenital gonococcal infections. Sex. Transm. Infect. 2017, 93, S16–S21. [Google Scholar] [CrossRef]
- Qin, Q.; Wang, K.; Yang, J.; Xu, H.; Cao, B.; Wo, Y.; Jin, Q.; Cui, D. Algorithms for immunochromatographic assay: Review and impact on future application. Analyst 2019, 144, 5659–5676. [Google Scholar] [CrossRef]
- Postenrieder, N.R.; Reed, J.L.; Hesse, E.; Kahn, J.A.; Ding, L.; Gaydos, C.A.; Rompalo, A.; Widdice, L.E. Rapid Antigen Testing for Trichomoniasis in an Emergency Department. Pediatrics 2016, 137. [Google Scholar] [CrossRef] [Green Version]
- Marks, M.; Mabey, D.C. The introduction of syphilis point of care tests in resource limited settings. Expert Rev. Mol. Diagn. 2017, 17, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Soler, M.; Belushkin, A.; Cavallini, A.; Kebbi-Beghdadi, C.; Greub, G.; Altug, H. Multiplexed nanoplasmonic biosensor for one-step simultaneous detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine. Biosens. Bioelectron. 2017, 94, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Laksanasopin, T.; Guo, T.W.; Nayak, S.; Sridhara, A.A.; Xie, S.; Olowookere, O.O.; Cadinu, P.; Meng, F.; Chee, N.H.; Kim, J.; et al. A smartphone dongle for diagnosis of infectious diseases at the point of care. Sci. Transl. Med. 2015, 7, 273re1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yager, P.; Domingo, G.J.; Gerdes, J. Point-of-Care Diagnostics for Global Health. Annu. Rev. Biomed. Eng. 2008, 10, 107–144. [Google Scholar] [CrossRef] [PubMed]
- Spindel, S.; Sapsford, K.E. Evaluation of optical detection platforms for multiplexed detection of proteins and the need for point-of-care biosensors for clinical use. Sensors 2014, 14, 22313–22341. [Google Scholar] [CrossRef] [Green Version]
- Goldenberg, S. Molecular-based diagnostics, including future trends. Medicine 2013, 41, 663–666. [Google Scholar] [CrossRef]
- Napoli, Z.; Lencioni, P.; Niccolai, M.; Lari, R.; Bianchi, L. Frequency of sexually transmitted diseases and main methodological implications. Microbiol. Med. 2013, 28. [Google Scholar] [CrossRef] [Green Version]
- Cornelisse, V.J.; Chow, E.P.F.; Huffam, S.; Fairley, C.K.; Bissessor, M.; De Petra, V.; Howden, B.P.; Denham, I.; Bradshaw, C.S.; Williamson, D.; et al. Increased Detection of Pharyngeal and Rectal Gonorrhea in Men Who Have Sex With Men After Transition From Culture To Nucleic Acid Amplification Testing. Sex. Transm. Dis. 2017, 44, 114–117. [Google Scholar] [CrossRef]
- Beal, S.G.; Assarzadegan, N.; Rand, K.H. Sample-to-result molecular infectious disease assays: Clinical implications, limitations and potential. Expert Rev. Mol. Diagn. 2016, 16, 323–341. [Google Scholar] [CrossRef]
- Cao, B.; Wang, S.; Tian, Z.; Hu, P.; Feng, L.; Wang, L. DNA Microarray Characterization of Pathogens Associated with Sexually Transmitted Diseases. PLoS ONE 2015, 10, e0133927. [Google Scholar] [CrossRef] [Green Version]
- Van Der Pol, B.; Williams, J.A.; Fuller, D.; Taylor, S.N.; Hook, E.W. Combined Testing for Chlamydia, Gonorrhea, and Trichomonas by Use of the BD Max CT/GC/TV Assay with Genitourinary Specimen Types. J. Clin. Microbiol. 2017, 55, 155–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choe, H.-S.; Lee, D.S.; Lee, S.-J.; Hong, S.-H.; Park, D.C.; Lee, M.-K.; Kim, T.-H.; Cho, Y.-H. Performance of AnyplexTM II multiplex real-time PCR for the diagnosis of seven sexually transmitted infections: Comparison with currently available methods. Int. J. Infect. Dis. 2013, 17, e1134–e1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berçot, B.; Amarsy, R.; Goubard, A.; Aparicio, C.; Loeung, H.U.; Segouin, C.; Gueret, D.; Jacquier, H.; Meunier, F.; Mougari, F.; et al. Assessment of Coinfection of Sexually Transmitted Pathogen Microbes by Use of the Anyplex II STI-7 Molecular Kit. J. Clin. Microbiol. 2015, 53, 991–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sylverken, A.A.; Owusu-Dabo, E.; Yar, D.D.; Salifu, S.P.; Awua-Boateng, N.Y.; Amuasi, J.H.; Okyere, P.B.; Agyarko-Poku, T. Bacterial etiology of sexually transmitted infections at a STI clinic in Ghana; use of multiplex real time PCR. Ghana Med. J. 2016, 50, 142–148. [Google Scholar]
- Leli, C.; Mencacci, A.; Latino, M.A.; Clerici, P.; Rassu, M.; Perito, S.; Castronari, R.; Pistoni, E.; Luciano, E.; De Maria, D.; et al. Prevalence of cervical colonization by Ureaplasma parvum, Ureaplasma urealyticum, Mycoplasma hominis and Mycoplasma genitalium in childbearing age women by a commercially available multiplex real-time PCR: An Italian observational multicentre study. J. Microbiol. Immunol. Infect. 2018, 51, 220–225. [Google Scholar] [CrossRef]
- Kriesel, J.D.; Bhatia, A.S.; Barrus, C.; Vaughn, M.; Gardner, J.; Crisp, R.J. Multiplex PCR testing for nine different sexually transmitted infections. Int. J. STD Aids 2016, 27, 1275–1282. [Google Scholar] [CrossRef]
- Van Gerwen, O.T.; Muzny, C.A. Recent advances in the epidemiology, diagnosis, and management of Trichomonas vaginalis infection. F1000Res 2019, 8, 1666. [Google Scholar] [CrossRef]
- Gaydos, C.A. Mycoplasma genitalium: Accurate Diagnosis Is Necessary for Adequate Treatment. J. Infect. Dis. 2017, 216, S406–S411. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Zhang, X.; Zhang, W.; Duan, J.; Zhao, F. PCR detection for syphilis diagnosis: Status and prospects. J. Clin. Lab. Anal. 2019, 33, e22890. [Google Scholar] [CrossRef] [Green Version]
- Gimenes, F.; Medina, F.S.; de Abreu, A.L.P.; Irie, M.M.T.; Esquiçati, I.B.; Malagutti, N.; Vasconcellos, V.R.B.; Discacciati, M.G.; Bonini, M.G.; Maria-Engler, S.S.; et al. Sensitive Simultaneous Detection of Seven Sexually Transmitted Agents in Semen by Multiplex-PCR and of HPV by Single PCR. PLoS ONE 2014, 9, e98862. [Google Scholar] [CrossRef]
- Salazar, K.L.; Duhon, D.J.; Olsen, R.; Thrall, M. A review of the FDA-approved molecular testing platforms for human papillomavirus. J. Am. Soc. Cytopathol. 2019, 8, 284–292. [Google Scholar] [CrossRef]
- Gaydos, C.A.; Van Der Pol, B.; Jett-Goheen, M.; Barnes, M.; Quinn, N.; Clark, C.; Daniel, G.E.; Dixon, P.B.; Hook, E.W. CT/NG Study Group. Performance of the Cepheid CT/NG Xpert Rapid PCR Test for Detection of Chlamydia trachomatis and Neisseria gonorrhoeae. J. Clin. Microbiol. 2013, 51, 1666–1672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obande, G.A.; Banga Singh, K.K. Current and Future Perspectives on Isothermal Nucleic Acid Amplification Technologies for Diagnosing Infections. Infect. Drug Resist. 2020, 13, 455–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, T.; Burke, P.A.; Smalley, H.B.; Gillies, L.; Hobbs, G. Loop-Mediated Isothermal Amplification Test for Detection of Neisseria gonorrhoeae in Urine Samples and Tolerance of the Assay to the Presence of Urea. J. Clin. Microbiol. 2014, 52, 2163–2165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somboonna, N.; Choopara, I.; Arunrut, N.; Sukhonpan, K.; Sayasathid, J.; Dean, D.; Kiatpathomchai, W. Rapid and sensitive detection of Chlamydia trachomatis sexually transmitted infections in resource-constrained settings in Thailand at the point-of-care. PLoS Negl. Trop. Dis. 2018, 12, e0006900. [Google Scholar] [CrossRef] [PubMed]
- Hongwarittorrn, I.; Chaichanawongsaroj, N.; Laiwattanapaisal, W. Semi-quantitative visual detection of loop mediated isothermal amplification (LAMP)-generated DNA by distance-based measurement on a paper device. Talanta 2017, 175, 135–142. [Google Scholar] [CrossRef]
- Gaydos, C.A.; Hobbs, M.; Marrazzo, J.; Schwebke, J.; Coleman, J.S.; Masek, B.; Dize, L.; Jang, D.; Li, J.; Chernesky, M. Rapid Diagnosis of Trichomonas vaginalis by Testing Vaginal Swabs in an Isothermal Helicase-Dependent AmpliVue Assay. Sex. Transm. Dis. 2016, 43, 369–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krõlov, K.; Frolova, J.; Tudoran, O.; Suhorutsenko, J.; Lehto, T.; Sibul, H.; Mäger, I.; Laanpere, M.; Tulp, I.; Langel, Ü. Sensitive and rapid detection of Chlamydia trachomatis by recombinase polymerase amplification directly from urine samples. J. Mol. Diagn. 2014, 16, 127–135. [Google Scholar] [CrossRef]
- Harding-Esch, E.M.; Fuller, S.S.; Chow, S.-L.C.; Nori, A.V.; Harrison, M.A.; Parker, M.; Piepenburg, O.; Forrest, M.S.; Brooks, D.G.; Patel, R.; et al. Diagnostic accuracy of a prototype rapid chlamydia and gonorrhoea recombinase polymerase amplification assay: A multicentre cross-sectional preclinical evaluation. Clin. Microbiol. Infect. 2019, 25, 380.e1–380.e7. [Google Scholar] [CrossRef] [Green Version]
- Mou, L.; Jiang, X. Materials for Microfluidic Immunoassays: A Review. Adv. Healthc. Mater. 2017, 6, 1601403. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Park, S.; Yang, S.; Wang, T.-H. An all-in-one microfluidic device for parallel DNA extraction and gene analysis. Biomed. Microdevices 2010, 12, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Park, S.; Liu, K.; Tsuan, J.; Yang, S.; Wang, T.-H. A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification. Lab Chip 2011, 11, 398–406. [Google Scholar] [CrossRef] [Green Version]
- Chin, C.D.; Laksanasopin, T.; Cheung, Y.K.; Steinmiller, D.; Linder, V.; Parsa, H.; Wang, J.; Moore, H.; Rouse, R.; Umviligihozo, G.; et al. Microfluidics-based diagnostics of infectious diseases in the developing world. Nat. Med. 2011, 17, 1015–1019. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.J.; Athamanolap, P.; Chen, L.; Hardick, J.; Lewis, M.; Hsieh, Y.H.; Rothman, R.E.; Gaydos, C.A.; Wang, T.H. Mobile nucleic acid amplification testing (mobiNAAT) for Chlamydia trachomatis screening in hospital emergency department settings. Sci. Rep. 2017, 7, 4495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, G.; Zhao, H.; Cooper, J.M.; Reboud, J. A capillary-based multiplexed isothermal nucleic acid-based test for sexually transmitted diseases in patients. Chem. Commun. 2016, 52, 12187–12190. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Cheng, Y.; Xie, J.; Liu, Y. Establishment of Multiplex Loop-Mediated Isothermal Amplification for Rapid Detection of Genitourinary Mycoplasma. Clin. Lab 2018, 64, 1217–1224. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Li, Y.; Wang, L.; Fang, X.; Kong, J. All-in-one microfluidic nucleic acid diagnosis system for multiplex detection of sexually transmitted pathogens directly from genitourinary secretions. Talanta 2021, 221, 121462. [Google Scholar] [CrossRef] [PubMed]
- Faron, M.L.; Ledeboer, N.A.; Patel, A.; Beqa, S.H.; Yen-Lieberman, B.; Kohn, D.; Leber, A.L.; Mayne, D.; Northern, W.I.; Buchan, B.W. Multicenter Evaluation of Meridian Bioscience HSV 1&2 Molecular Assay for Detection of Herpes Simplex Virus 1 and 2 from Clinical Cutaneous and Mucocutaneous Specimens. J. Clin. Microbiol. 2016, 54, 2008–2013. [Google Scholar] [CrossRef] [Green Version]
- Eboigbodin, K.E.; Hoser, M. Detection of Chlamydia trachomatis and Neisseria gonorrhoeae Using Multiplex Strand Invasion Based Amplification (mSIBA). Methods Mol. Biol. 2019, 2042, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Agreda, P.; Kelley, S.; Gaydos, C.; Geddes, C.D. Development of a Microwave—Accelerated Metal-Enhanced Fluorescence 40 second, <100 cfu/mL Point of Care Assay for the Detection of. IEEE Trans. Biomed. Eng. 2011, 58, 781–784. [Google Scholar] [CrossRef] [Green Version]
- Melendez, J.H.; Huppert, J.S.; Jett-Goheen, M.; Hesse, E.A.; Quinn, N.; Gaydos, C.A.; Geddes, C.D. Blind evaluation of the microwave-accelerated metal-enhanced fluorescence ultrarapid and sensitive Chlamydia trachomatis test by use of clinical samples. J. Clin. Microbiol. 2013, 51, 2913–2920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batista, A.C.; Pacheco, L.G.C. Detecting pathogens with Zinc-Finger, TALE and CRISPR- based programmable nucleic acid binding proteins. J. Microbiol. Methods 2018, 152, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Bonini, A.; Poma, N.; Vivaldi, F.; Kirchhain, A.; Salvo, P.; Bottai, D.; Tavanti, A.; Di Francesco, F. Advances in biosensing: The CRISPR/Cas system as a new powerful tool for the detection of nucleic acids. J. Pharm. Biomed. Anal. 2021, 192, 113645. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.S.; Ma, E.; Harrington, L.B.; Costa, M.D.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436–439. [Google Scholar] [CrossRef] [Green Version]
- Yin, K.; Ding, X.; Li, Z.; Zhao, H.; Cooper, K.; Liu, C. Dynamic Aqueous Multiphase Reaction System for One-Pot CRISPR-Cas12a-Based Ultrasensitive and Quantitative Molecular Diagnosis. Anal. Chem. 2020, 92, 8561–8568. [Google Scholar] [CrossRef]
- Dai, Y.; Somoza, R.A.; Wang, L.; Welter, J.F.; Li, Y.; Caplan, A.I.; Liu, C.C. Exploring the Trans-Cleavage Activity of CRISPR-Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor. Angew. Chem. Int. Ed. 2019, 58, 17399–17405. [Google Scholar] [CrossRef]
- Wang, B.; Wang, R.; Wang, D.; Wu, J.; Li, J.; Wang, J.; Liu, H.; Wang, Y. Cas12aVDet: A CRISPR/Cas12a-Based Platform for Rapid and Visual Nucleic Acid Detection. Anal. Chem. 2019, 91, 12156–12161. [Google Scholar] [CrossRef]
- Tien, V.; Punjabi, C.; Holubar, M.K. Antimicrobial resistance in sexually transmitted infections. J. Travel Med. 2020, 27. [Google Scholar] [CrossRef]
- Vasala, A.; Hytönen, V.P.; Laitinen, O.H. Modern Tools for Rapid Diagnostics of Antimicrobial Resistance. Front. Cell Infect. Microbiol. 2020, 10. [Google Scholar] [CrossRef]
- Tabrizi, S.N.; Su, J.; Bradshaw, C.S.; Fairley, C.K.; Walker, S.; Tan, L.Y.; Mokany, E.; Garland, S.M. Prospective Evaluation of ResistancePlus MG, a New Multiplex Quantitative PCR Assay for Detection of Mycoplasma genitalium and Macrolide Resistance. J. Clin. Microbiol. 2017, 55, 1915–1919. [Google Scholar] [CrossRef] [Green Version]
- Pond, M.J.; Hall, C.L.; Miari, V.F.; Cole, M.; Laing, K.G.; Jagatia, H.; Harding-Esch, E.; Monahan, I.M.; Planche, T.; Hinds, J.; et al. Accurate detection of Neisseria gonorrhoeae ciprofloxacin susceptibility directly from genital and extragenital clinical samples: Towards genotype-guided antimicrobial therapy. J. Antimicrob. Chemother. 2016, 71, 897–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadiq, S.T.; Mazzaferri, F.; Unemo, M. Rapid accurate point-of-care tests combining diagnostics and antimicrobial resistance prediction for Neisseria gonorrhoeae and Mycoplasma genitalium. Sex. Transm. Infect. 2017. [Google Scholar] [CrossRef]
- Nijhuis, R.H.T.; Duinsbergen, R.G.; Pol, A.; Godschalk, P.C.R. Prevalence of Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium and Trichomonas vaginalis including relevant resistance-associated mutations in a single center in the Netherlands. Eur. J. Clin. Microbiol. Infect. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Van de Wijgert, J.H.H.M. The vaginal microbiome and sexually transmitted infections are interlinked: Consequences for treatment and prevention. PLoS Med. 2017, 14, e1002478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shipitsyna, E.; Roos, A.; Datcu, R.; Hallén, A.; Fredlund, H.; Jensen, J.S.; Engstrand, L.; Unemo, M. Composition of the Vaginal Microbiota in Women of Reproductive Age—Sensitive and Specific Molecular Diagnosis of Bacterial Vaginosis Is Possible? PLoS ONE 2013, 8, e60670. [Google Scholar] [CrossRef] [Green Version]
- Bretelle, F.; Rozenberg, P.; Pascal, A.; Favre, R.; Bohec, C.; Loundou, A.; Senat, M.V.; Aissi, G.; Lesavre, N.; Brunet, J.; et al. High Atopobium vaginae and Gardnerella vaginalis Vaginal Loads Are Associated With Preterm Birth. Clin. Infect. Dis. 2015, 60, 860–867. [Google Scholar] [CrossRef]
- Schmidt, K.; Mwaigwisya, S.; Crossman, L.C.; Doumith, M.; Munroe, D.; Pires, C.; Khan, A.M.; Woodford, N.; Saunders, N.J.; Wain, J.; et al. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J. Antimicrob. Chemother. 2017, 72, 104–114. [Google Scholar] [CrossRef] [Green Version]
- Ivy, M.I.; Thoendel, M.J.; Jeraldo, P.R.; Greenwood-Quaintance, K.E.; Hanssen, A.D.; Abdel, M.P.; Chia, N.; Yao, J.Z.; Tande, A.J.; Mandrekar, J.N.; et al. Direct Detection and Identification of Prosthetic Joint Infection Pathogens in Synovial Fluid by Metagenomic Shotgun Sequencing. J. Clin. Microbiol. 2018, 56. [Google Scholar] [CrossRef] [Green Version]
- Moustafa, A.; Li, W.; Singh, H.; Moncera, K.J.; Torralba, M.G.; Yu, Y.; Manuel, O.; Biggs, W.; Venter, J.C.; Nelson, K.E.; et al. Microbial metagenome of urinary tract infection. Sci. Rep. 2018, 8, 4333. [Google Scholar] [CrossRef]
- Chiu, C.Y.; Miller, S.A. Clinical metagenomics. Nat. Rev. Genet. 2019, 20, 341–355. [Google Scholar] [CrossRef]
- Lagier, J.-C.; Dubourg, G.; Million, M.; Cadoret, F.; Bilen, M.; Fenollar, F.; Levasseur, A.; Rolain, J.-M.; Fournier, P.-E.; Raoult, D. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. 2018, 16, 540–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diop, K.; Diop, A.; Levasseur, A.; Mediannikov, O.; Robert, C.; Armstrong, N.; Couderc, C.; Bretelle, F.; Raoult, D.; Fournier, P.-E.; et al. Microbial Culturomics Broadens Human Vaginal Flora Diversity: Genome Sequence and Description of Prevotella lascolaii sp. nov. Isolated from a Patient with Bacterial Vaginosis. OMICS 2018, 22, 210–222. [Google Scholar] [CrossRef]
- Peters, J.; Cresswell, F.; Amor, L.; Cole, K.; Dean, G.; Didelot, X.; Silva, D.D.; Eyre, D.W.; Paul, J. Whole genome sequencing of Neisseria gonorrhoeae reveals transmission clusters involving patients of mixed HIV serostatus. Sex. Transm. Infect. 2018, 94, 138–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naccache, S.N.; Federman, S.; Veeraraghavan, N.; Zaharia, M.; Lee, D.; Samayoa, E.; Bouquet, J.; Greninger, A.L.; Luk, K.-C.; Enge, B.; et al. A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. Genome Res. 2014, 24, 1180–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, P.; Chiu, C. Metagenomics for the discovery of novel human viruses. Future Microbiol. 2010, 5, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Murtagh, M. The Point-of-Care Diagnostic Landscape for Sexually Transmitted Infections (STIs); The Murtagh Group, LLC: Palo Alto, CA, USA, 2018; Available online: www.who.int/reproductivehealth/topics/rtis/Diagnostic_Landscape_2018.pdf (accessed on 25 November 2020).
- Toskin, I.; Govender, V.; Blondeel, K.; Murtagh, M.; Unemo, M.; Zemouri, C.; Peeling, R.W.; Kiarie, J. Call to action for health systems integration of point-of-care testing to mitigate the transmission and burden of sexually transmitted infections. Sex. Transm. Infect. 2020, 96, 342–347. [Google Scholar] [CrossRef]
Organism | Method | Sample Type(s) | Sensitivity | Specificity | Technical Complexity/Cost | Throughput/Automation | Multiplexing | Uses | POC Potential | References |
---|---|---|---|---|---|---|---|---|---|---|
N. gonorrhoeae | Microscopy (Gram-stained smears) | Swabs (EC, UR, CO) | Low for women and ASYM men; high for SYM men | Low for women and ASYM men; high for SYM men. | Low/low | Moderate/no | No | Diagnosis | Yes | [11,17,30,53] |
Culture (selective media) | Swabs (EC, UR, CO, OP, VA, RE) | Moderate–high | Very high | Moderate/moderate | Moderate/no | No | Diagnosis, AMR testing | No | ||
Antigen detection (OI, ICT) | Swabs (EC, CE, VA), urine | Low–moderate | High | Low–moderate/moderate | Moderate/no | Yes | Diagnosis, screening (potential) | Yes | ||
NAAT (PCR, IA) | Swabs (EC, UR, CO, OP, VA, RE), urine | Very high | Moderate–very high | Low for IA; high for PCR | High/possible | Yes | Diagnosis, screening, AMR testing (potential) | Yes | ||
C. trachomatis | Microscopy (DFA) | Swabs (EC, UR, CO, OP, RE) | Low | High | Moderate/low | Moderate/no | No | Diagnosis (recommended for CO swabs) | No | [5,11,29,57] |
Culture (mammalian cells) | Swabs (EC, UR, CO, OP, RE) | Moderate–high | Very high | High/moderate | Low/no | No | Diagnosis, AMR testing, genotyping | No | ||
Antigen detection (OI, ICT, biosensors) | Swabs (EC, VA, UR), urine | Low–moderate | Very high | Low–moderate (both) | Low/no | Yes | Diagnosis, screening (potential) | Yes | ||
NAAT (PCR, IA) | Swabs (EC, UR, CO, OP, VA, RE), urine, liquid cytology medium | Very high | Very high | Low for IA; high for PCR | High/possible | Yes | Diagnosis, screening | Yes | ||
T. pallidum subsp. pallidum | Microscopy (immunohistochemistry, DFA, DF) | Lesions, exudates | Low for DF; high for DFA | Low for DF; high for DFA | Moderate/low | Moderate/no | No | Diagnosis | Possible (only DF) | [11,49,56,57] |
Immunoassays (ICT) | Whole blood, serum, plasma | Moderate–high | High | Low/moderate | Low/no | No | Diagnosis, screening | Yes | ||
NAAT (PCR, IA) | Swabs, lesions, blood, cerebrospinal fluid, semen | Highly variable | High | Low for IA; high for PCR | High/possible | Yes | Diagnosis, screening | Possible | ||
T. vaginalis | Microscopy (wet preparations) | Swabs (VA, UR), urine (males) | Low–high for SYM women | Very high | Moderate/low | Low/no | No | Diagnosis | Possible | [11,31,46,55,72] |
Culture (selective media) | Swabs (VA, UR), urine (males) | Moderate–high for SYM women | Very high | Moderate/moderate | Low/no | No | Diagnosis, AMR testing, genotyping | No | ||
Antigen detection (ICT) | Vaginal swab | High | Very high | Low/moderate | Low/no | No | Diagnosis, screening | Yes | ||
NAAT (PCR, IA) | Swabs (EC, UR, CO, OP, VA, RE), urine | Very high | Very high | Low for IA; high for PCR | High/possible | Yes | Diagnosis, screening | Yes | ||
M. genitalium, M. hominis, U. urealyticum | NAAT (PCR, IA) | Swabs (EC, VA, UR), urine | Very high | Very high | Low for IA; high for PCR | High/possible | Yes | Diagnosis, screening | Possible | [11,73] |
HSV-1,2 | Microscopy (Tzanck/Papanicolaou/Romanovsky/ immunoperoxidase staining, DFA) | Skin/mucosal lesions, conjunctival/corneal smears, biopsies, base of vesicles/vesicular fluid smears, tissue sections, swabs | Low for ASYM stains; moderate for DFA | Low for most stains; high for immunoperoxidase staining/DFA | Low–moderate/low | Moderate/low | No | Diagnosis, genotyping (only immunoperoxidase staining/DFA) | No | [11,51] |
Culture (mammalian cells) | Swab, skin lesions, fluid/exudate from vesicle base, mucosal sample without lesions, biopsies, conjunctival/corneal smear | Low–high (depending on the clinical context) | High | High/high | Low/no | No | Diagnosis, genotyping | No | ||
Antigen detection (ELISA, ICT) | Swab, vesicular fluid, or exudate from base of vesicle | High for fluid/exudate; low for swabs | High | Low–moderate/moderate | Low/no | No | Diagnosis, screening | Yes | ||
NAAT (PCR, IA) | Swab, skin lesions, fluid/exudate from vesicle base, mucosal sample without lesions, aqueous/ vitreous humor, corticospinal fluid, blood | Very high | Very high | Moderate–high | High/possible | Yes | Diagnosis, screening, genotyping | Possible | ||
HPV | NAAT (PCR, IA) | Swabs (EC), scrapes, tissue biopsies | Very high | Very high | Moderate–high (both) | High/possible | Yes | Diagnosis, screening, genotyping | Possible | [11,56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caruso, G.; Giammanco, A.; Virruso, R.; Fasciana, T. Current and Future Trends in the Laboratory Diagnosis of Sexually Transmitted Infections. Int. J. Environ. Res. Public Health 2021, 18, 1038. https://doi.org/10.3390/ijerph18031038
Caruso G, Giammanco A, Virruso R, Fasciana T. Current and Future Trends in the Laboratory Diagnosis of Sexually Transmitted Infections. International Journal of Environmental Research and Public Health. 2021; 18(3):1038. https://doi.org/10.3390/ijerph18031038
Chicago/Turabian StyleCaruso, Giorgia, Anna Giammanco, Roberta Virruso, and Teresa Fasciana. 2021. "Current and Future Trends in the Laboratory Diagnosis of Sexually Transmitted Infections" International Journal of Environmental Research and Public Health 18, no. 3: 1038. https://doi.org/10.3390/ijerph18031038
APA StyleCaruso, G., Giammanco, A., Virruso, R., & Fasciana, T. (2021). Current and Future Trends in the Laboratory Diagnosis of Sexually Transmitted Infections. International Journal of Environmental Research and Public Health, 18(3), 1038. https://doi.org/10.3390/ijerph18031038