The Prevalence of Insulin Resistance and the Associated Risk Factors in a Sample of 14–18-Year-Old Slovak Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Anthropometric Measurements
2.3. Blood Pressure and Resting Heart Rate Measurement
2.4. Biochemical Blood Analyses
2.5. Physical Fitness Assessment
2.6. Questionnaires
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jang, I.; Kim, J.S. Risk of Cardiovascular Disease Related to Metabolic Syndrome in College Students: A Cross-Sectional Secondary Data Analysis. Int. J. Environ. Res. Public Health 2019, 16, 3708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Health Information Center. Health Statistics Yearbook of the Slovak Republic; NHIC: Bratislava, Slovakia, 2019. [Google Scholar]
- Fabryova, L.; Hlavata, A.; Cizmarova, E.; Simurka, P. Recommendations for diagnosis and treatment of dyslipidaemia in children and adolescents. Pediat. Prax 2011, 12, 3–10. [Google Scholar]
- Simurka, P. Primary prevention of cardiovascular diseases in children. Cardiology 2008, 17, 75–78. [Google Scholar]
- Agirbasli, M.; Tanrikulu, A.M.; Berenson, G.S. Metabolic Syndrome: Bridging the Gap from Childhood to Adulthood. Cardiovasc. Ther. 2016, 34, 30–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlando, A.; Nava, E.; Giussani, M.; Genovesi, S. Adiponectin and Cardiovascular Risk. From Pathophysiology to Clinic: Focus on Children and Adolescents. Int. J. Mol. Sci. 2019, 20, 3228. [Google Scholar] [CrossRef] [Green Version]
- Stanik, J.; Barak, L.; Klimes, I.; Gasperikova, D.; Jancova, E.; Stanikova, D.; Ticha, L. Diabetes and Obesity in Children; Comenius University in Bratislava: Bratislava, Slovakia, 2015. [Google Scholar]
- Kimakova, T.; Kachlik, P. Monitoring of Selected Lifestyle Factors of University Students; Pavol Jozef Safarik University Kosice: Kosice, Slovakia, 2018. [Google Scholar]
- Reaven, G.M. Role of insulin resistance in human disease. Diabetes 1988, 38, 1595–1607. [Google Scholar] [CrossRef]
- Kiess, W.; Wabitsch, M.; Maffeis, C.; Sharma, A.M. Metabolic Syndrome and Obesity in Childhood and Adolescence; Karger Medical and Scientific Publishers: Basel, Switzerland, 2015. [Google Scholar]
- Alvim, R.O.; Zaniqueli, D.; Neves, F.S.; Pani, V.O.; Martins, C.R.; Peçanha, M.A.; Barbosa, M.C.R.; Faria, E.R.; Mill, J.G. Waist-to-height ratio is as reliable as biochemical markers to discriminate pediatric insulin resistance. J. Pediatr. 2019, 95, 428–434. [Google Scholar] [CrossRef]
- Cook, S.; Auinger, P.; Li, C.; Ford, E.S. Metabolic syndrome rates in United States adolescents, from the National Health and Nutrition Examination Survey, 1999–2002. J. Pediatr. 2008, 152, 165–170. [Google Scholar] [CrossRef]
- Kelly, A.S.; Steinberger, J.; Jacobs, D.R.; Hong, C.P.; Moran, A.; Sinaiko, A.R. Predicting cardiovascular risk in young adulthood from the metabolic syndrome, its component risk factors, and a cluster score in childhood. Int. J. Pediatr. Obes. 2011, 6, e283–e289. [Google Scholar] [CrossRef] [Green Version]
- Sovio, U.; Skow, A.; Falconer, C.; Park, M.H.; Viner, R.M.; Kinra, S. Improving prediction algorithms for cardiometabolic risk in children and adolescents. J. Obes. 2013, 2013, 684782. [Google Scholar] [CrossRef]
- Zimmet, P.; Alberti, G.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S.; et al. The metabolic syndrome in children and adolescents: The IDF consensus. Pediatr. Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Li, C.; Zhao, G.; Pearson, W.S.; Mokdad, A.H. Prevalence of the Metabolic Syndrome Among U.S. Adolescents Using the Definition from the International Diabetes Federation. Diabetes Care 2008, 31, 587–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, F.B.; Willet, W.C. Optimal diets for prevention of coronary heart disease. JAMA 2002, 288, 2569–2578. [Google Scholar] [CrossRef] [PubMed]
- Ambrosini, G.L.; Huang, R.C.; Mori, T.A.; Hands, B.P.; O’Sullivan, T.A.; de Klerk, N.H.; Beilin, L.J.; Oddy, W.H. Dietary patterns and markers for the metabolic syndrome in Australian adolescents. Nutr. Metabol. Cardiovasc. Dis. 2010, 20, 274–283. [Google Scholar] [CrossRef] [Green Version]
- Funtikova, A.N.; Navarro, E.; Bawaked, R.A.; Fíto, M.; Schröder, H. Impact of diet on cardiometabolic health in children and adolescents. Nutr. J. 2015, 14, 118. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.B. Resolved: There is sufficient scientific evidence that decreasing sugar-sweetened beverage consumption will reduce the prevalence of obesity and obesity-related diseases. Obesity Rev. 2013, 14, 606–619. [Google Scholar] [CrossRef]
- Ambrosini, G.L.; Oddy, W.H.; Huang, R.C.; Mori, T.A.; Beilin, L.J.; Jebb, S.A. Prospective associations between sugar-sweetened beverage intakes and cardiometabolic risk factors in adolescents. Am. J. Clin. Nutr. 2013, 98, 327–334. [Google Scholar] [CrossRef] [Green Version]
- De Andrade, M.I.S.; Oliveiraa, J.S.; Leala, V.S.; Limaa, N.M.S.; Bezerrab, P.B.; Santiagoa, E.R.C.; de Liraa, P.I.C. Prevalence of insulin resistance and association with metabolic risk factors and food consumption in adolescents—Recife/Brazil. Rev. Paul. Pediatr. 2020, 38, e2019016. [Google Scholar] [CrossRef]
- Faria, F.; Howe, C.; Faria, R.; Andaki, A.; Marins, J.C.; Amorim, P.R. Impact of Recreational Sports Activities on Metabolic Syndrome Components in Adolescents. Int. J. Environ. Res. Public Health 2020, 17, 143. [Google Scholar] [CrossRef] [Green Version]
- Jago, R.; Drews, K.L.; McMurray, R.G.; Thompson, D.; Volpe, S.L.; Moe, E.L.; Jakicic, J.M.; Pham, T.H.; Bruecker, S.; Blackshear, T.B.; et al. Fatness, fitness, and cardiometabolic risk factors among sixth-grade youth. Med. Sci. Sports Exerc. 2010, 42, 1502–1510. [Google Scholar] [CrossRef] [Green Version]
- Friedemann, C.; Heneghan, C.; Mahtani, K.; Thompson, M.; Perera, R.; Ward, A.M. Cardiovascular disease risk in healthy children and its association with body mass index: Systematic review and meta-analysis. BMJ 2012, 345, e4759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchan, D.S.; Young, J.D.; Boddy, L.M.; Malina, R.M.; Baker, J.S. Fitness and Adiposity Are Independently Associated with Cardiometabolic Risk in Youth. BioMed Res. Int. 2013, 261698. [Google Scholar] [CrossRef] [PubMed]
- Rauner, A.; Mess, F.; Woll, A. The relationship between physical activity, physical fitness and overweight in adolescents: A systematic review of studies published in or after 2000. BMC Pediatrics 2013, 13, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Noh, J.-W.; Kim, A.; Kwon, Y.D. Relationships between Sleep Patterns, Health Risk Behaviors, and Health Outcomes among School-Based Population of Adolescents: A Panel Analysis of the Korean Children and Youth Panel Survey. Int. J. Environ. Res. Public Health 2019, 16, 2278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuciene, R.; Dulskiene, V. Associations of short sleep duration with prehypertension and hypertension among Lithuanian children and adolescents: A cross-sectional study. BMC Public Health 2014, 14, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narang, I.; Manlhiot, C.; Davies-Shaw, J.; Gibson, D.; Chahal, N.; Stearne, K.; Fisher, A.; Dobbin, S.; McCrindle, B.W. Sleep disturbance and cardiovascular risk in adolescents. CMAJ 2012, 184, E913–E920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quist, J.S.; Sjödin, A.; Chaput, J.P.; Hjort, M.F. Sleep and cardiometabolic risk in children and adolescents. Sleep Med. Rev. 2016, 29, 76–100. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, A.; Li, L. Sleep duration and overweight/obesity in children: Implication for pediatric nursing. J. Spec. Pediatr. Nurs. 2012, 17, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Sevcikova, L.; Novakova, J.; Hamade, J. Physical Development of Children and Adolescents in Slovakia (in Slovak); Public Health Authority: Bratislava, Slovakia, 2004. [Google Scholar]
- McCarthy, H.D.; Cole, T.J.; Fry, T.; Jebb, S.A.; Prentice, A.M. Body fat reference curves for children. Int. J. Obes. 2006, 30, 598–602. [Google Scholar] [CrossRef] [Green Version]
- Simurka, P. Risk factors of atherosclerosis in childhood. Pediatr. Prax 2010, 11, 197–201. [Google Scholar]
- Cizmarova, E.; Hrebik, M.; Vrsanska, V. Diagnosis and treatment of hypertension in children and adolescents. Cardiology Lett. 2011, 20, 406–418. [Google Scholar]
- Mancia, G.; Laurent, S.; Agabiti-Rosei, E.; Ambrosioni, E.; Burnier, M.; Caulfield, M.J.; Cifkova, R.; Clément, D.; Coca, A.; Dominiczak, A. Reappraisal of European Guidelines on Hypertension Management: A European Society of Hypertension Task Force Document. J. Hypertens. 2009, 27, 2121–2158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobiasova, M. Atherogenic index of plasma [Log (triglycerides/HDL-cholesterol)]: Theoretical and practical implications. Clin. Chem. 2004, 50, 1113–1115. [Google Scholar] [CrossRef] [PubMed]
- Keskin, M.; Kurtoglu, S.; Kendirci, M.; Atabek, M.E.; Yazici, C. Homeostasis Model Assessment Is More Reliable Than the Fasting Glucose/Insulin Ratio and Quantitative Insulin Sensitivity Check Index for Assessing Insulin Resistance Among Obese Children and Adolescents. Pediatrics 2005, 115, e500–e503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morimoto, A.; Tatsumi, Y.; Soyano, F.; Miyamatsu, N.; Sonoda, N.; Godai, K.; Ohno, Y.; Noda, M.; Deura, K. Increase in homeostasis model assessment of insulin resistance (HOMA-IR) had a strong impact on the development of type 2 diabetes in Japanese individuals with impaired insulin secretion: The Saku study. PLoS ONE 2014, 9, e105827. [Google Scholar] [CrossRef] [PubMed]
- Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents: Summary Report. Pediatrics 2011, 128 (Suppl. 5), S213–S256. [CrossRef] [Green Version]
- Leunkeu, A.L.; Shephard, R.J.; Ahmaidi, S. Brief history of exercise clearance and prescription: 1. the era of heart rate recovery curves. Health Fitness J. Can. 2014, 7, 26–35. [Google Scholar] [CrossRef]
- Ritchie, S.A.; Connell, J.M. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 319–326. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Burrows, R.; Correa-Burrows, P.; Reyes, M.; Blanco, E.; Albala, C.; Gahagan, S. Healthy Chilean Adolescents with HOMA-IR ≥ 2.6 Have Increased Cardiometabolic Risk: Association with Genetic, Biological, and Environmental Factors. J. Diabetes Res. 2015, 2015, 783296. [Google Scholar] [CrossRef] [Green Version]
- De Andrade, M.I.; Oliveira, J.S.; Leal, V.S.; Lima, N.M.; Costa, E.C.; Aquino, N.B.; Lira, P.I. Identification of cutoff points for Homeostatic Model Assessment for Insulin Resistance index in adolescents: Systematic review. Rev. Paul. Pediatr. 2016, 34, 234–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocco, E.R.; Mory, D.B.; Bergamin, C.S.; Valente, F.; Miranda, V.L.; Calegare, B.F.A.; Silva, R.Q.; Dib, S.A. Optimal cutoff points for body mass index, waist circumference and HOMA-IR to identify a cluster of cardiometabolic abnormalities in normal glucose-tolerant Brazilian children and adolescents. Arq. Bras. Endocrinol. Metabol. 2011, 55, 638–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtoğlu, S.; Hatipoğlu, N.; Mazıcıoğlu, M.; Kendirici, M.; Keskin, M.; Kondolot, M. Insulin resistance in obese children and adolescents: HOMA-IR cut-off levels in the prepubertal and pubertal periods. J. Clin. Res. Pediatr. Endocrinol. 2010, 2, 100–106. [Google Scholar] [CrossRef]
- Van der Aa, M.P.; Knibbe, C.A.; de Boer, A.; Van der Vorst, M.M.J. Definition of insulin resistance affects prevalence rate in pediatric patients: A systematic review and call for consensus. J. Pediat. Endocrinol. Metab. 2017, 30, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tohatyova, A.; Jarcuskova, M.; Kuchta, M.; Holubcikova, J.; Joppova, E.; Kocisova, D.; Gonsorcik, J.; Gaspar, P.; Artemiou, P.; Schusterova, I. Prevalence of insulin resistance in obese and overweight high-school students in Kosice. Lek. Obzor 2015, 64, 477–480. [Google Scholar]
- De Morais, P.R.S.; Sousa, A.L.L.; de Jardim, T.S.V.; Nascente, F.M.N.; Mendonça, T.I.R.P.; Povoa, T.I.R.; de Carneiro, C.S.; Ferreira, V.R.; de Souza, W.K.S.B.; Jardim, P.C.B.V. Correlation of Insulin resistance with Anthropometric Measures and Blood Pressure in Adolescents. Arq. Bras. Cardiol. 2016, 106, 319–326. [Google Scholar] [CrossRef]
- Singh, Y.; Garg, M.K.; Tandon, N.; Marwaha, R.K. A study of insulin resistance by HOMA-IR and its cut-off value to identify metabolic syndrome in urban Indian adolescents. J. Clin. Res. Pediatr. Endocrinol. 2013, 5, 245–251. [Google Scholar] [CrossRef]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obesity Rev. 2012, 13, 275–286. [Google Scholar] [CrossRef]
- Nambiar, S.; Truby, H.; Davies, P.S.; Baxter, K. Use of the waist-height ratio to predict metabolic syndrome in obese children and adolescents. J. Paediatr. Child Health 2013, 49, E281–E287. [Google Scholar] [CrossRef]
- Velásquez-Rodríguez, C.M.; Velásquez-Villa, M.; Gómez-Ocampo, L.; Bermúdez-Cardona, J. Abdominal obesity and low physical activity are associated with insulin resistance in overweight adolescents: A cross-sectional study. BMC Pediatr. 2014, 14, 258. [Google Scholar] [CrossRef] [Green Version]
- Romualdo, M.C.S.; de Nóbrega, F.J.; Escrivão, M.A.M.S. Insulin resistance in obese children and adolescents. J. Pediatr. 2014, 90, 600–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, W.; Srinivasan, S.R.; Berenson, G.S. Persistent elevation of plasma insulin levels is associated with increased cardiovascular risk in children and young adults. The Bogalusa Heart Study. Circulation 1996, 93, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kang, H.T.; Shim, J.Y.; Lee, H.R. The association between the triglyceride to high-density lipoprotein cholesterol ratio with insulin resistance (HOMA-IR) in the general Korean population: Based on the National Health and Nutrition Examination Survey in 2007-2009. Diabetes Res. Clin. Pract. 2012, 97, 132–138. [Google Scholar] [CrossRef] [PubMed]
- De Vriendt, T.; Clays, E.; Maes, L.; de Bourdeaudhuij, I.; Vicente-Rodriguez, G.; Moreno, L.A.; Nagy, E.; Molnar, D.; Ortega, F.B.; Dietrich, S.; et al. European adolescents’ level of perceived stress and its relationship with body adiposity: The HELENA Study. Eur. J. Public Health 2012, 22, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Huybrechts, I.; de Vriendt, T.; Breidenassel, C.; Rogiers, J.; Vanaelst, B.; Cuenca-García, M.; Moreno, L.A.; González-Gross, M.; Roccaldo, R.; Kafatos, A.; et al. Mechanisms of stress, energy homeostasis and insulin resistance in European adolescents: The HELENA study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 1082–1089. [Google Scholar] [CrossRef]
- Dorenbos, E.; Rijks, J.M.; Adam, T.C.; Westerterp-Plantenga, M.S.; Vreugdenhil, A.C.E. Sleep efficiency as a determinant of insulin sensitivity in overweight and obese adolescents. Diabetes Obes. Metab. 2015, 17 (Suppl. 1), 90–98. [Google Scholar] [CrossRef]
- Coombs, N.A.; Stamatakis, E. Associations between objectively assessed and questionnaire-based sedentary behaviour with BMI-defined obesity among general population children and adolescents living in England. BMJ Open 2015, 5, e007172. [Google Scholar] [CrossRef] [Green Version]
- Altenburg, T.M.; de Kroon, M.L.A.; Renders, C.M.; Hirasing, R.A. TV Time but Not Computer Time Is Associated with Cardiometabolic Risk in Dutch Young Adults. PLoS ONE 2013, 8, e57749. [Google Scholar] [CrossRef] [Green Version]
- Matheson, D.M.; Killen, J.D.; Wang, Y.; Varady, A.; Robinson, T.N. Children’s food consumption during television viewing. Am. J. Clin. Nutr. 2004, 79, 1088–1094. [Google Scholar] [CrossRef] [Green Version]
- Lowry, R.; Michael, S.; Demissie, Z.; Kann, L.; Galuska, D.A. Associations of Physical Activity and Sedentary Behaviors with Dietary Behaviors among US High School Students. J. Obes. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, E.; Leech, R.; McNaughton, S.A.; Dunstan, D.W.; Lacy, K.E.; Salmon, J. Is the relationship between sedentary behaviour and cardiometabolic health in adolescents independent of dietary intake? A systematic review. Obes. Rev. 2015, 16, 795–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fa-Binefa, M.; Clará, A.; Pérez-Fernández, S.; Grau, M.; Dégano, I.R.; Marti-Lluch, R.; Ramos, R.; Marrugat, J.; Elosua, R. Early smoking-onset age and risk of cardiovascular disease and mortality. Prev. Med. 2019, 124, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Kelishadi, R.; Noori, A.; Qorbani, M.; Rahimzadeh, S.; Djalalinia, S.; Shafiee, G.; Motlagh, M.E.; Ardalan, G.; Ansari, H.; Asayesh, H.; et al. Are active and passive smoking associated with cardiometabolic risk factors in adolescents? The CASPIAN-III Study. Paediatr. Int. Child Health 2016, 36, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Cascales, R.; Sánchez-SanSegundo, M.; Ruiz-Robledillo, N.; Albaladejo-Blázquez, N.; Laguna-Pérez, A.; Zaragoza-Martí, A. Eat or Skip Breakfast? The Important Role of Breakfast Quality for Health-Related Quality of Life, Stress and Depression in Spanish Adolescents. Int. J. Environ. Res. Public Health 2018, 15, 1781. [Google Scholar] [CrossRef] [Green Version]
- Keski-Rahkonen, A.; Kaprio, J.; Rissanen, A.; Virkkunen, M.; Rose, R.J. Breakfast skipping and health-compromising behaviors in adolescents and adults. Eur. J. Clin. Nutr. 2003, 57, 842–853. [Google Scholar] [CrossRef] [Green Version]
- Hallström, L.; Labayen, I.; Ruiz, J.R.; Patterson, E.; Vereecken, C.A.; Breidenassel, C.; Gottrand, F.; Huybrechts, I.; Manios, Y.; Mistura, L.; et al. Breakfast consumption and CVD risk factors in European adolescents: The HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Public Health Nutr. 2013, 16, 1296–1305. [Google Scholar] [CrossRef] [Green Version]
- Kondaki, K.; Grammatikaki, E.; Jiménez-Pavón, D.; de Henauw, S.; González-Gross, M.; Sjöstrom, M.; Gottrand, F.; Molnar, D.; Moreno, L.A.; Kafatos, A.; et al. Daily sugar-sweetened beverage consumption and insulin resistance in European adolescents: The HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Public Health Nutr. 2013, 16, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Taskinen, M.R.; Packard, C.J.; Borén, J. Dietary Fructose and the Metabolic Syndrome. Nutrients 2019, 11, 1987. [Google Scholar] [CrossRef] [Green Version]
- Stefanikova, Z.; Jurkovicova, J.; Sevcikova, L.; Sobotova, L.; Sekretar, S.; Aghova, L. Contribution to monitoring the youth nutritional habits. In Living Conditions and Health; Jurkovicova, J., Stefanikova, Z., Eds.; Public Health Office of the Slovak Republic: Bratislava, Slovakia, 2009; pp. 143–149. [Google Scholar]
- Moreno, L.A.; Gottrand, F.; Huybrechts, I.; Ruiz, J.R.; González-Gross, M.; de Henauw, S.; HELENA Study Group. Nutrition and lifestyle in European adolescents: The HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) study. Adv. Nutr. 2014, 5, 615S–623S. [Google Scholar] [CrossRef] [Green Version]
- MacPherson, M.; de Groh, M.; Loukine, L.; Prud’homme, D.; Dubois, L. Prevalence of metabolic syndrome and its risk factors in Canadian children and adolescents: Canadian Health Measures Survey Cycle 1 (2007–2009) and Cycle 2 (2009–2011). Health Promot. Chronic Dis. Prev. Can. 2016, 36, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; de Groh, M.; Bancej, C. Socioeconomic gradients in cardiovascular risk in Canadian children and adolescents. Health Promot. Chronic Dis. Prev. Can. 2016, 36, 21–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parrino, C.; Vinciguerra, F.; La Spina, N.; Romeo, L.; Tumminia, A.; Baratta, R.; Squatrito, S.; Vigneri, R.; Frittitta, L. Influence of early life and parental factors on childhood overweight and obesity. J Endocrinol. Investig. 2016, 39, 1315–1321. [Google Scholar] [CrossRef] [PubMed]
- Lazzeri, G.; Pammolli, A.; Pilato, V.; Giacchi, M.V. Relationship between 8/9-yr-old school children BMI, parents’ BMI and educational level: A cross sectional survey. Nutr. J. 2011, 10, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Males | Females | p1 | |
---|---|---|---|---|
n | 1205 | 1424 | - | |
Age | (years) | 17.1 ± 1.0 | 17.1 ± 1.0 | 0.289 |
Body mass index | (kg.m−2) | 22.31(20.51, 24.75) | 21.30 (19.65, 23.66) | <0.001 |
Z-score BMI | 0.37 (−0.22, 1.16) | 0.16 (−0.38, 0.91) | <0.001 | |
Total body fat | (%) | 17.6 ± 7.4 | 30.4 ± 6.9 | <0.001 |
Waist circumference | (cm) | 79.3 ± 9.2 | 71.5 ± 7.8 | <0.001 |
Waist/height | 0.44 ± 0.05 | 0.43 ± 0.05 | <0.001 | |
Cholesterol, total | (mmol/L) | 3.80 ± 0.69 | 4.24 ± 0.75 | <0.001 |
LDL-cholesterol | (mmol/L) | 2.16 ± 0.58 | 2.34 ± 0.60 | <0.001 |
HDL-cholesterol | (mmol/L) | 1.25 ± 0.23 | 1.50 ± 0.30 | <0.001 |
Non-HDL-cholesterol | (mmol/L) | 2.55 ± 0.67 | 2.73 ± 0.68 | <0.001 |
Triglycerides | (mmol/L) | 0.75 (0.58, 1.01) | 0.79 (0.60, 1.04) | 0.036 |
Atherogenic index | −0.20 ± 0.23 | −0.26 ± 0.20 | <0.001 | |
Glucose | (mmol/L) | 4.93 ± 0.44 | 4.71 ± 0.75 | <0.001 |
hsCRP | (mg/L) | 0.43 (0.19–1.15) | 0.46 (0.20, 1.19) | 0.168 |
Insulin | (mIU/L) | 9.28 (6.87, 12.65) | 9.86 (7.41, 13.41) | 0.002 |
HOMA-IR | 2.53 ± 2.25 | 2.39 ± 1.58 | 0.077 | |
Systolic BP | (mmHg) | 122.6 ± 12.1 | 107.3 ± 9.4 | <0.001 |
Diastolic BP | (mmHg) | 72.7 ± 7.9 | 70.4 ± 7.6 | <0.001 |
Heart rate | (min−1) | 78.0 ± 13.1 | 81.1 ± 12.4 | <0.001 |
Ruffier index | 9.2 ± 4.0 | 10.5 ± 4.1 | <0.001 | |
High-risk markers prevalence | p2 | |||
Body mass index | overweight; n (%) | 212 (17.6) | 214 (15.0) | 0.075 |
obesity; n (%) | 158 (13.1) | 112 (7.9) | <0.001 | |
Body fat content | overweight; n (%) | 94 (7.9) | 195 (14.0) | <0.001 |
obesity; n (%) | 144 (12.2) | 201 (14.4) | 0.099 | |
Waist | central obesity; n (%) | 115 (9.5) | 181 (12.7) | 0.085 |
Waist/height | ≥0.5; n (%) | 148 (12.3) | 119 (8.4) | <0.001 |
Total cholesterol | ≥4.85 mmol/L; n (%) | 92 (7.6) | 272 (19.1) | <0.001 |
LDL-cholesterol | ≥3.25 mmol/L; n (%) | 51 (4.2) | 100 (7.0) | 0.002 |
HDL-cholesterol | ≤0.85 mmol/L; n (%) | 36 (3.0) | 7 (0.5) | <0.001 |
Non-HDL-cholesterol | >3.70 mmol/L; n (%) | 67 (5.6) | 114 (8.0) | 0.014 |
Triglycerides | ≥1.50 mmol/L; n (%) | 81 (6.7) | 107 (7.5) | 0.432 |
Atherogenic index | ≥0.21; n (%) | 53 (4.4) | 23 (1.6) | <0.001 |
Glucose | ≥5.6 mmol/L; n (%) | 55 (4.6) | 25 (1.8) | <0.001 |
hsCRP | >3 mg/L; n (%) | 92 (7.6) | 153 (10.7) | 0.007 |
Insulin | ≥20 mIU/L; n (%) | 100 (8.3) | 89 (6.2) | 0.036 |
HOMA-IR | ≥3.16; n (%) | 238 (19.8) | 251 (17.6) | 0.147 |
Systolic BP | hypertension range; n (%) | 147 (12.2) | 17 (1.2) | <0.001 |
Diastolic BP | hypertension range; n (%) | 53 (4.4) | 50 (3.5) | 0.242 |
Physical fitness | weak/insufficient n (%) | 461 (39.2) | 710 (52.6) | <0.001 |
Metabolic syndrome | IDF consensus; n (%) | 32 (2.7) | 6 (0.4) | <0.001 |
Variable | Males | Females | p | |
---|---|---|---|---|
n | 1.205 | 1.424 | ||
Smokers 1 (current/former) | n (%) | 433 (35.9) | 569 (40,0) | 0.031 |
Physical activity (duration per week) | (min) | 300.0 (90.0, 45.0) | 78.0 (16.1, 218.0) | <0.001 |
Sleeping duration (Mon-Fri) | (h) | 7.2 ± 1.1 | 7.1 ± 1.1 | 0.001 |
Sleeping duration (weekends) | (h) | 9.1 ± 1.4 | 9.3 ± 1.4 | 0.002 |
Working/gaming at the computer (Mon-Fri) | (h) | 3.4 ± 1.9 | 3.0 ± 1.8 | <0.001 |
Working/gaming at the computer (weekends) | (h) | 4.6 ± 2.6 | 3.8 ± 2.3 | <0.001 |
Watching TV (Mon-Fri) | (h) | 1.9 ± 1.6 | 2.0 ± 1.6 | 0.133 |
Watching TV (weekends) | (h) | 2.8 ± 2.2 | 3.0 ± 2.0 | 0.002 |
Learning (Mon-Fri) | (h) | 1.1 ± 0.9 | 1.8 ± 1.1 | <0.001 |
Learning (weekends) | (h) | 1.1 ± 1.0 | 1.8 ± 1.2 | <0.001 |
Sedentary activities overall (Mon-Fri) | (h) | 6.2 ± 2.7 | 6.7 ± 3.0 | <0.001 |
Sedentary activities overall (weekends) | (h) | 8.3 ± 3.7 | 8.5 ± 3.7 | 0.114 |
Frequent stress situations at school | n (%) | 243 (20.7) | 436 (31.0) | <0.001 |
Frequent stress situations in privacy | n (%) | 79 (6.9) | 127 (9.2) | 0.030 |
The average number of meals per day | 4.1 ± 1.4 | 4.0 ± 1.3 | 0.004 | |
Breakfast consumption (regularly, daily) | n (%) | 561 (52.7) | 554 (43.7) | <0.001 |
Selected Cardiometabolic Variables | AOR | 95% CI | AOR | 95% CI | |
---|---|---|---|---|---|
Males | Females | ||||
Total cholesterol | <4.10 mmol/L | 1 | 1 | ||
≥4.10 mmol/L | 0.87 | 0.53, 1.44 | 0.71 | 0.49, 1.04 | |
HDL-cholesterol | >1.10 mmol/L m. >1.25 mmol/L f. | 1 | - | 1 | - |
≤1.10 mmol/L m. ≤1.25 mmol/L f. | 1.32 | 0.91, 1.91 | 1.07 | 0.74, 1.55 | |
nonHDL-cholesterol | <3.2 mmol/L | 1 | - | 1 | - |
≥3.2 mmol/L | 0.93 | 0.51, 1.69 | 1.50 | 1.00, 2.26 * | |
Triglycerides | <1.15 mmol/L | 1 | - | 1 | - |
≥1.15 mmol/L | 3.77 | 2.28, 6.22 *** | 1.60 | 1.08, 2.38 * | |
Atherogenic index AIP | <0.11 | 1 | - | 1 | - |
≥0.11 | 0.93 | 0.48, 1.78 | 1.71 | 0.92, 3.18 | |
High-sensitive C-reactive protein | <1mg/L | 1 | - | 1 | - |
≥1mg/L | 1.23 | 0.85, 1.78 | 1.20 | 0.87, 1.66 | |
Systolic blood pressure | <90. percentile | 1 | - | 1 | - |
≥90. percentile | 1.40 | 0.97, 2.04 | 1.34 | 0.63, 2.85 | |
Body fat content (%) | normal/underweight | 1 | - | 1 | - |
overweight/obesity | 2.64 | 1.66, 4.21 *** | 2.29 | 1.65, 3.19 *** | |
Waist/height ratio | ≤0.5 | 1 | - | 1 | - |
>0.5 | 3.25 | 1.91, 5.51 *** | 1.96 | 1.24, 3.11 ** |
Selected Lifestyle Variables | AOR | 95% CI | AOR | 95% CI | |
---|---|---|---|---|---|
Males | Females | ||||
Ruffier index | ≤10 | 1 | - | 1 | - |
>10 | 2.13 | 1.49, 3.04 *** | 1.45 | 1.04,2.02 * | |
Physical activity duration/week | ≥225 min | 1 | - | 1 | - |
<225 min | 1.81 | 1.27, 2.57 ** | 1.75 | 1.13,2.72 * | |
Number of meals/day | ≥3-4 | 1 | - | 1 | - |
<3-4 | 0.89 | 0.45, 1.76 | 2.45 | 1.47,4.08 ** | |
Breakfast consumption | daily | 1 | - | 1 | - |
occasionally/not at all | 1.54 | 1.08, 2.18 * | 1.13 | 0.80,1.60 | |
Sweetened beverages consumption | exceptionally/not at all | 1 | - | 1 | - |
daily/several times a week | 0.87 | 0.58, 1.30 | 1.54 | 1.08,2.18 * | |
Smoking (current/former) | no | 1 | - | 1 | - |
yes | 0.66 | 0.45, 0.97 * | 0.78 | 0.54,1.10 | |
Frequent stress situations at school | no/exceptionally | 1 | - | 1 | - |
sometimes/often | 1.00 | 0.68, 1.47 | 0.59 | 0.39,0.87 ** | |
Frequent stress situations in privacy | no/exceptionally | 1 | - | 1 | - |
sometimes/often | 1.22 | 0.84, 1.78 | 1.04 | 0.74,1.45 | |
Sleeping duration (Mon-Fri) | ≥8 h | 1 | - | 1 | - |
<8 h | 1.41 | 0.97, 2.04 | 0.93 | 0.66,1.31 | |
Sleeping duration (weekends) | ≥8 h | 1 | - | 1 | - |
<8 h | 1.75 | 1.01, 3.01 * | 0.96 | 0.51,1.80 | |
Learning duration (Mon-Fri) | ≤2 h | 1 | - | 1 | - |
>2 h | 0.79 | 0.33, 1.87 | 1.02 | 0.64,1.61 | |
Learning duration (weekends) | ≤2 h | 1 | - | 1 | - |
>2 h | 1.00 | 0.50, 2.00 | 0.69 | 0.44,1.08 | |
Working/gaming at the computer (Mon-Fri) | ≤2 h | 1 | - | 1 | - |
>2 h | 0.94 | 0.62, 1.43 | 0.86 | 0.60,1.24 | |
Working/gaming at the computer (weekends) | ≤2 h | 1 | - | 1 | - |
>2 h | 1.27 | 0.76, 2.12 | 1.11 | 0.75,1.64 | |
Watching TV (Mon-Fri) | ≤2 h | 1 | - | 1 | - |
>2 h | 1.25 | 0.78, 2.01 | 0.90 | 0.60,1.42 | |
Watching TV (weekends) | ≤2 h | 1 | - | 1 | - |
>2 h | 1.06 | 0.70, 1.60 | 1.36 | 0.94,1.97 |
Selected Factors of Personal and Family History | AOR | 95% CI | AOR | 95% CI | |
---|---|---|---|---|---|
Males | Females | ||||
Birth weight | >2500g | 1 | - | 1 | - |
≤2500g | 1.32 | 0.58, 3.01 | 1.18 | 0.61, 2.27 | |
Breastfeeding duration | >3 months | 1 | - | 1 | - |
≤3 months | 1.15 | 0.83, 1.59 | 0.98 | 0.72, 1.33 | |
Father’s educational level † | university/higher vocational | 1 | - | 1 | - |
basic/secondary | 1.35 | 0.94, 1.94 | 1.84 | 1.24, 2.73 ** | |
Mother’s educational level † | university/higher vocational | 1 | - | 1 | - |
basic/secondary | 0.62 | 0.44, 0.88 ** | 0.97 | 0.68, 1.37 | |
Father’s current weight † | ≤90kg | 1 | - | 1 | - |
>90kg | 1.39 | 1.01, 1.90 * | 1.06 | 0.78, 1.44 | |
Mother’s current weight † | ≤70kg | 1 | - | 1 | - |
>70kg | 1.79 | 1.30, 2.46 *** | 1.15 | 0.84, 1.57 |
Variables | AOR | 95% CI | |
---|---|---|---|
Sex | females | 1 | - |
males | 1.35 | 0.99, 1.83 1 | |
Age group | <17 years | 1 | - |
≥17 years | 0.70 | 0.53, 0.92 * | |
HDL-cholesterol | >1.10 mmol/L m. >1.25 mmol/L f. | 1 | - |
≤1.10 mmol/L m. ≤1.25 mmol/L f. | 1.36 | 0.99, 1.86 2 | |
Triglycerides | <1.15 mmol/L | 1 | - |
≥1.15 mmol/L | 2.77 | 2.02, 3.80 *** | |
Body fat content (%) | normal/underweight | 1 | - |
overweight/obesity | 2.45 | 1.75, 3.43 *** | |
Waist/height ratio | ≤0.5 | 1 | - |
>0.5 | 3.20 | 2.08, 4.94 *** | |
Ruffier index | ≤10 | 1 | - |
>10 | 1.55 | 1.17, 2.06 ** | |
Physical activity duration/week | ≥225 min | 1 | - |
<225 min | 1.79 | 1.29, 2.48 *** | |
Breakfast consumption | daily | 1 | - |
occasionally/not at all | 1.42 | 1.08, 1.88 * | |
Sweetened beverages consumption | exceptionally/not at all | 1 | - |
daily/several times a week | 1.50 | 1.11, 2.08 ** | |
Smoking (current/former) | no | 1 | - |
yes | 0.71 | 0.53, 0.95 * | |
Frequent stress situations at school | no/exceptionally | 1 | - |
sometimes/often | 0.70 | 0.51, 0.96 * | |
Father’s educational level † | university/higher vocational | 1 | - |
basic/secondary | 1.46 | 1.05, 2.03 * | |
Mother’s educational level † | university/higher vocational | 1 | - |
basic/secondary | 0.72 | 0.53, 0.98 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurkovičová, J.; Hirošová, K.; Vondrová, D.; Samohýl, M.; Štefániková, Z.; Filová, A.; Kachútová, I.; Babjaková, J.; Argalášová, Ľ. The Prevalence of Insulin Resistance and the Associated Risk Factors in a Sample of 14–18-Year-Old Slovak Adolescents. Int. J. Environ. Res. Public Health 2021, 18, 909. https://doi.org/10.3390/ijerph18030909
Jurkovičová J, Hirošová K, Vondrová D, Samohýl M, Štefániková Z, Filová A, Kachútová I, Babjaková J, Argalášová Ľ. The Prevalence of Insulin Resistance and the Associated Risk Factors in a Sample of 14–18-Year-Old Slovak Adolescents. International Journal of Environmental Research and Public Health. 2021; 18(3):909. https://doi.org/10.3390/ijerph18030909
Chicago/Turabian StyleJurkovičová, Jana, Katarína Hirošová, Diana Vondrová, Martin Samohýl, Zuzana Štefániková, Alexandra Filová, Ivana Kachútová, Jana Babjaková, and Ľubica Argalášová. 2021. "The Prevalence of Insulin Resistance and the Associated Risk Factors in a Sample of 14–18-Year-Old Slovak Adolescents" International Journal of Environmental Research and Public Health 18, no. 3: 909. https://doi.org/10.3390/ijerph18030909
APA StyleJurkovičová, J., Hirošová, K., Vondrová, D., Samohýl, M., Štefániková, Z., Filová, A., Kachútová, I., Babjaková, J., & Argalášová, Ľ. (2021). The Prevalence of Insulin Resistance and the Associated Risk Factors in a Sample of 14–18-Year-Old Slovak Adolescents. International Journal of Environmental Research and Public Health, 18(3), 909. https://doi.org/10.3390/ijerph18030909