Can Industrial Collaborative Agglomeration Reduce Haze Pollution? City-Level Empirical Evidence from China
Abstract
:1. Introduction
2. Literature Review and Theoretical Hypotheses
3. Establishment of Empirical Model and Data Explanation
3.1. Measurement Model Setting
3.1.1. Spatial Econometric Model
3.1.2. Spatial Weight Matrix
3.2. Selection of Variables
3.2.1. Explained Variable: PM2.5 (PM)
3.2.2. Core Explanatory Variable: Industrial Co-Agglomeration (Agco)
3.2.3. Control Variables
3.2.4. Mediating Variables
3.3. Data Source
4. Empirical Regression Results and Discussion
4.1. Impact of Industrial Co-Agglomeration on Haze Pollution
4.1.1. Regression Results and Discussion
4.1.2. Robustness Analysis
4.1.3. Direct and Indirect Effects
4.1.4. Regional Sample Regression
4.2. Mediating Effect Tests Based on Urbanization and Energy Structure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ke, H.Q.; Yang, W.Y.; Liu, X.Y.; Fan, F. Does Innovation Efficiency Suppress the Ecological Footprint? Empirical Evidence from 280 Chinese Cities. Int. J. Environ. Res. Public Health 2020, 17, 6826. [Google Scholar] [CrossRef]
- Dong, F.; Yu, B.; Pan, Y. Examining the synergistic effect of CO2 emissions on PM2.5 emissions reduction: Evidence from China. J. Clean. Prod. 2019, 223, 759–771. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, S.L.; Hou, X.Y.; Cheng, F.Y.; Wu, X.; Dong, S.K.; Beazley, R. Temporal dynamics of SO2 and NOX pollution and contributions of driving forces in urban areas in China. Environ. Pollut. 2018, 242, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Li, X.; Cao, J.H.; Yang, L.L. China’s Economic Policy Choices for Governing Smog Pollution Based on Spatial Spillover Effects. Econ. Res. J. 2016, 51, 73–88. [Google Scholar]
- Ma, L.M.; Zhang, X. The Spatial Effect of China’s Haze Pollution and the Impact from Economic Change and Energy Structure. China Ind. Econ. 2014, 4, 19–31. [Google Scholar]
- Liang, W.; Yang, M.; Zhang, Y.W. Will the increase of the urbanization rate inevitably exacerbate haze pollution? A discussion of the spatial spillover effects of urbanization and haze pollution. Geogr. Res. 2017, 36, 1947–1958. [Google Scholar]
- Shen, J.; Wei, Y.D.; Yang, Z. The impact of environmental regulations on the location of pollution-intensive industries in China. J. Clean. Prod. 2017, 148, 785–794. [Google Scholar] [CrossRef]
- Lin, F.Q. Trade openness and air pollution: City-level empirical evidence from China. China Econ. Rev. 2017, 45, 78–88. [Google Scholar] [CrossRef]
- Cai, H.Y.; Xu, Y.Z. Co-agglomeration, trade openness and haze pollution. China Popul. Resour. Environ. 2018, 28, 93–102. [Google Scholar]
- Amiti, M. Location of vertically linked industries: Agglomeration versus comparative advantage. Eur. Econ. Rev. 2005, 49, 809–832. [Google Scholar] [CrossRef]
- Kolko, J. Urbanization, agglomeration and co-agglomeration of service industries. Agglom. Econ. 2010, 13, 151–180. [Google Scholar]
- Gao, J.M.; Li, X.H. Theoretical and Empirical Study on the Interactive Mechanism between Producer Services and Manufacturing. China Ind. Econ. 2011, 6, 34–52. [Google Scholar]
- Lin, B.Q.; Tan, R.P. Economic agglomeration and green economy efficiency in China. Econ. Res. J. 2019, 54, 119–132. [Google Scholar]
- Yang, H.Z.; Tao, W.; Liu, Y.; Qiu, M.H.; Liu, J.F.; Jiang, K.J.; Yi, K.; Xiao, Y.; Tao, S. The contribution of the Beijing, Tianjin and Hebei region’s iron and steel industry to local air pollution in winter. Environ. Pollut. 2019, 245, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Fan, F.; Zhang, J.Q. Are Small Cities More Environmentally Friendly? An Empirical Study from China. Int. J. Environ. Res. Public Health 2019, 16, 727. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Wang, D.F. The interaction and Spatial Spillover between Agglomeration and Pollution. China Ind. Econ. 2014, 6, 70–82. [Google Scholar]
- Li, T.; Han, D.; Feng, S.; Liang, L. Can industrial co-agglomeration between producer services and manufacturing reduce carbon intensity in China? Sustainability 2019, 11, 4024. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Wang, J.; Szmedra, P. Does Environmental Innovation Improve Environmental Productivity?—An Empirical Study Based on the Spatial Panel Data Model of Chinese Urban Agglomerations. Int. J. Environ. Res. Public Health 2020, 17, 6022. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Cao, X.; Ma, T. A spatial econometric empirical research on the impact of industrial agglomeration on haze pollution in China. Air Qual. Atmos. Health 2020, 13, 1305–1312. [Google Scholar] [CrossRef]
- Lu, W.; Tam, V.W.; Du, L.; Chen, H. Impact of industrial agglomeration on haze pollution: New evidence from Bohai Sea Economic Region in China. J. Clean. Prod. 2020, 280, 124414. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Y.H.; Cheng, Z.H.; Zhang, H.M. The Effect of Manufacturing Agglomeration on Haze Pollution in China. Int. J. Environ. Res. Public Health. 2018, 15, 2490. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.Y.; Chen, D.K. Air pollution, Government Regulations and High-quality Economic Development. Econ. Res. J. 2018, 53, 20–34. [Google Scholar]
- Zhang, J.; Yu, H.; Zhang, K.; Zhao, L.; Fan, F. Can Innovation Agglomeration Reduce Carbon Emissions? Evidence from China. Int. J. Environ. Res. Public Health 2021, 18, 382. [Google Scholar] [CrossRef] [PubMed]
- Vallés-Giménez, J.; Zárate-Marco, A. A Dynamic Spatial Panel of Subnational GHG Emissions: Environmental Effectiveness of Emissions Taxes in Spanish Regions. Sustainability 2020, 12, 2872. [Google Scholar] [CrossRef] [Green Version]
- Anselin, L. Spatial effects in econometric practice in environmental and resource economics. Am. J. Agric. Econ. 2001, 83, 705–710. [Google Scholar] [CrossRef]
- Hong, Y.; Lyu, X.; Chen, Y.; Li, W. Industrial agglomeration externalities, local governments’ competition and environmental pollution: Evidence from Chinese prefecture-level cities. J. Clean. Prod. 2020, 277, 123455. [Google Scholar] [CrossRef]
- Hen, N.; Peng, H. Can industrial agglomeration achieve the emission-reduction effect? Socio-Econ. Plan. Sci. 2020. [Google Scholar] [CrossRef]
- Yan, F.Z.; Su, L.; Qiao, J. The exploration of the relationship between the industrial agglomeration’s developments and the environment pollution—the evidence from the manufacturing in China. Stud. Sci. Sci. 2011, 1, 79–83. [Google Scholar]
- Li, S.Y.; Wang, S.J. An Empirical Study on the Effect of Industrial Agglomeration on Pollution in China. Stat. Decis. 2014, 8, 128–130. [Google Scholar]
- Yoon, S.; Nadvi, K. Industrial clusters and industrial ecology: Building ‘eco-collective efficiency’ in a South Korean cluster. Geoforum. 2018, 90, 159–173. [Google Scholar] [CrossRef]
- Chen, C.; Sun, Y.; Lan, Q.; Jiang, F. Impacts of industrial agglomeration on pollution and ecological efficiency-A spatial econometric analysis based on a big panel dataset of China’s 259 cities. J. Clean. Prod. 2020, 258, 120721. [Google Scholar] [CrossRef]
- Yang, Z.; Song, T.; Chahine, T. Spatial representations and policy implications of industrial co-agglomerations, a case study of Beijing. Habitat Int. 2016, 55, 32–45. [Google Scholar] [CrossRef]
- Solheim, M.C.W.; Tveterås, R. Benefitting from co-location? Evidence from the upstream oil and gas industry. Extr. Ind. Soc. 2017, 4, 904–914. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.W.; Cheng, Z.H. Research on the influence of Industrial Agglomeration on the Collaborative Innovation Efficiency. China Soft. Sci. 2017, 6, 89–98. [Google Scholar]
- Ding, W.; Gilli, M.; Mazzanti, M.; Nicolli, F. Green inventions and greenhouse gas emission dynamics: A close examination of provincial Italian data. Environ. Econ. Policy Stud. 2016, 18, 1–17. [Google Scholar]
- Tu, Z.G. Strategic Measures to Reduce China’s Carbon Emissions: Based on an Index Decomposition Analysis of Carbon Emissions in Eight Industries. Soc. Sci. China 2014, 35, 78–94. [Google Scholar]
- Brakman, S.; Garretsen, H.; Gigengack, R.; Van Marrewijk, C.; Wagenvoort, R. Negative Feedbacks in the Economy and Industrial Location. J. Reg. Sci. 1996, 36, 631–651. [Google Scholar] [CrossRef]
- Virkanen, J. Effect of Urbanization on Metal Deposition in the Bay of Toolonlahti, Southern of Finland. Mar. Pollut. Bull. 1998, 36, 729–738. [Google Scholar] [CrossRef]
- Ren, W.W.; Zhong, Y.; Meligrana, J.; Anderson, B.; Watt, W.E.; Chen, J.K.; Leung, H.K. Urbanization, Land Use, and Water Quality in Shanghai: 1947–1996. Environ. Int. 2003, 29, 649–659. [Google Scholar] [CrossRef]
- Zhang, K.; Dou, J.M. Study on the Mechanism of Agglomeration on Environmental Pollution. Chin. J. Popul. Sci. 2013, 5, 105–111. [Google Scholar]
- Dong, F.; Wang, Y.; Zheng, L.; Li, J.Z.; Xie, S.X. Can industrial agglomeration promote pollution agglomeration? Evidence from China. J. Clean. Prod. 2020, 246, 118960. [Google Scholar] [CrossRef]
- Arfi, W.B.; Hikkerova, L.; Sahut, J.M. External knowledge sources, green innovation and performance. Technol. Forecast. Soc. Chang. 2018, 129, 210–220. [Google Scholar] [CrossRef]
- Zeng, D.Z.; Zhao, L.X. Pollution havens and industrial agglomeration. J. Econ. Manag. 2009, 58, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.H.; Zhu, Y.M. The Study of the Industrial Agglomeration Effect on Misallocation of Resources. J. Quant. Tech. Econ. 2017, 4, 57–73. [Google Scholar]
- Zhang, H.; Han, A.H.; Yang, Q.L. Spatial effect analysis of synergetic agglomeration of manufacturing and producer services in China. J. Quant. Tech. Econ. 2017, 34, 3–20. [Google Scholar]
- Shen, N. Spatial agglomeration, scale threshold and technological innovation: An Empirical Analysis Based on census data of Chinese manufacturing enterprises. J. Manag. Eng. 2014, 4, 21–27. [Google Scholar]
- Xiong, L.; De Jong, M.; Wang, F.; Cheng, B.; Yu, C. Spatial Spillover Effects of Environmental Pollution in China’s Central Plains Urban Agglomeration. Sustainability 2018, 10, 994. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xu, Y.; Yao, X. Effects of industrial agglomeration on haze pollution: A chinese city-level study. Energy Policy 2021. [Google Scholar] [CrossRef]
- Fan, Q.; Yang, S.; Liu, S. Asymmetrically spatial effects of urban scale and agglomeration on haze pollution in China. Int. J. Environ. Res. Public Health 2019, 16, 4936. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Tang, D.; Yang, X. Investigating the spatio-temporal variations of the impact of urbanization on haze pollution using multiple indicators. Stoch. Environ. Res. Risk Assess. 2020. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, C.; Zhang, M. Does haze pollution promote the consumption of energy-saving appliances in China? An empirical study based on norm activation model. Res. Conserv. Recycl. 2019, 145, 220–229. [Google Scholar] [CrossRef]
- Elhorst, J.P. Dynamic Spatial Panels: Models, Methods and Inferences. J. Geogr. Syst. 2012, 14, 5–18. [Google Scholar] [CrossRef]
- Shao, S.; Yang, L.L.; Huang, T. Theoretical Model and Experience from China of Energy Rebound Effect. Econ. Res. J. 2013, 2, 96–109. [Google Scholar]
- Marshall, A. Elements of the Economics of Industry; Macmillan: London, UK, 1982. [Google Scholar]
- Fan, F.; Cao, D.; Ma, N. Is Improvement of Innovation Efficiency Conducive to Haze Governance? Empirical Evidence from 283 Chinese Cities. Int. J. Environ. Res. Public Health 2020, 17, 6095. [Google Scholar] [CrossRef]
- Donkelaar, A.V.; Martin, R.; Brauer, M.; Boys, B. Use of Satellite Observations for Long-term Exposure Assessment of Global Concentrations of Fine Particulate Matter. Environ. Health Perspect. 2015, 123, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Fan, F.; Lian, H.; Liu, X.Y.; Wang, X.L. Can environmental regulation promote urban green innovation Efficiency? An empirical study based on Chinese cities. J. Clean. Prod. 2021, 287, 125060. [Google Scholar] [CrossRef]
- Ellsion, G.; Glaeser, E.L. Geographic concentration in US manufacturing industries: A dartboard approach. J. Polit. Econ. 1997, 105, 889–927. [Google Scholar] [CrossRef] [Green Version]
- Helsley, R.W.; Strange, W.C. Co-agglomeration clusters, and the scale and composition of cities. J. Polit. Econ. 2014, 122, 1064–1093. [Google Scholar] [CrossRef]
- Ellison, G.; Glaeser, E.L.; Kerr, W.R. What Cause Industry Agglomeration? Evidence from Co-Agglomeration Patterns. Am. Econ. Rev. 2007, 100, 1195–1213. [Google Scholar] [CrossRef] [Green Version]
- Li, B. The interaction of clusters between manufacturing and producer services in China. Econ. Res. 2017, 30, 1427–1442. [Google Scholar] [CrossRef] [Green Version]
- Dietz, T.; Rosa, E.A. Rethinking the environmental impacts of population, affluence and technology. Hum. Ecol. Rev. 1994, 1, 277–300. [Google Scholar]
- Grossman, G.; Krueger, A. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Shao, S.; Zhang, K.; Dou, J.M. Effects of Economic Agglomeration on Energy Saving and Emission Reduction: Theory and Empirical Evidence from China. Manag World 2019, 35, 36–60. [Google Scholar]
- Shi, Q.; Lai, X.D. Identifying the underpin of green and low carbon technology innovation research: A literature review from 1994 to 2010. Technol. Forecast. Soc. Chang. 2013, 80, 839–886. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, S.; Fan, F.; Ye, X.H. Marketization as a channel of international technology diffusion and green total factor productivity: Research on the spillover effect from China’s first-tier cities. Technol. Anal. Strateg. Manag. 2020. [Google Scholar] [CrossRef]
- Xie, J.; Sun, Q.; Wang, S.; Li, X.; Fan, F. Does Environmental Regulation Affect Export Quality? Theory and Evidence from China. Int. J. Environ. Res. Public Health 2020, 17, 8237. [Google Scholar] [CrossRef] [PubMed]
- List, J.A.; Co, C.Y. The Effects of Environmental Regulations on Foreign Direct Investment. J. Environ. Econ. Manag. 2000, 40, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Fan, F.; Lian, H.; Wang, S. Can regional collaborative innovation improve innovation efficiency? An empirical study of Chinese cities. Growth Chang. 2020, 51, 440–463. [Google Scholar] [CrossRef]
- Yu, H.C.; Liu, Y.; Liu, C.L.; Fan, F. Spatiotemporal Variation and Inequality in China’s Economic Resilience across Cities and Urban Agglomerations. Sustainability 2018, 10, 4754. [Google Scholar] [CrossRef] [Green Version]
- Shao, S.; Li, X.; Cao, J.H. Urbanization Promotion and Haze Pollution Governance in China. Econ. Res. J. 2019, 02, 148–165. [Google Scholar]
- Elhorst, J.P. Software for spatial panels. Int. Reg. Sci. Rev. 2014, 37, 389–405. [Google Scholar] [CrossRef] [Green Version]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; CRC Press: New York, NY, USA, 2009. [Google Scholar]
- Baron, R.M.; Kenny, D.A. The Moderator-mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. J. Personal. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
Variable Type | Index | Sign | Description | Source |
---|---|---|---|---|
Explanatory variable | Haze Pollution | PM | Annual average concentration of PM2.5 | (https://beta.sedac.ciesin.columbia.edu/) |
Core explanatory variable | Industrial Co-agglomeration | Agco | Industrial co-agglomeration between manufacturing and producer services | Calculated by Equations (7) and (8) |
Control variable | Transportation | Tra | Urban road area (Km2) | China City Statistical Yearbook (2004–2017) |
Electricity consumption | Elec | Total electricity consumption of the whole society (Kw/h) | ||
Consumption level | Con | Total retail goods (104 yuan)/GDP | ||
Openness | Open | FDI (104 yuan) | ||
Technical level | Tec | Number of patent applications(pieces) | ||
GDP per capita | Eco | GDP/population | ||
Population density | Pop | Population/regional administrative area | ||
Mediating variable | Urbanization | City | Urban population/total population | |
Energy structure | Es | Total coal consumption/total energy consumption |
Test Project | W1 | W2 | ||
---|---|---|---|---|
χ2 | p-Value | χ2 | p-Value | |
LM-lag | 127.91 | 0.000 | 128.95 | 0.000 |
LM-error | 134.88 | 0.000 | 134.82 | 0.000 |
LM-lag (Robust) | 7.455 | 0.000 | 7.940 | 0.005 |
LM-error (Robust) | 1.955 | 0.157 | 1.498 | 0.229 |
Variable | OLS-FE | GMM | SAR | Dynamic SAR |
---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | |
L.LnPM | 0.6564 *** (23.39) | 0.6853 *** (19.27) | ||
LnAgco | 0.0024 (0.61) | 0.0039 * (1.92) | 0.0062 (0.19) | 0.0089 *** (2.78) |
LnsAgco | −0.0001 (0.43) | −0.0002 (1.60) | −0.0001 (−0.17) | −0.0004 ** (−2.17) |
InTra | 0.0135 *** (2.77) | 0.0161 *** (4.13) | 0.0079 * (1.91) | 0.1542 *** (2.88) |
InElec | 0.0056 ** (2.21) | 0.0044 ** (2.03) | 0.0047 ** (2.20) | 0.0220 *** (2.93) |
InCon | 0.0056 ** (2.16) | 0.0105 *** (3.35) | 0.0131 ** (2.33) | 0.0368 *** (5.20) |
InOpen | 0.0074 *** (2.96) | 0.0073 *** (3.01) | 0.0035 * (1.74) | 0.0075 *** (3.52) |
InTec | −0.0014 * (−1.92) | −0.0130 ** (−2.52) | −0.0087 * (−1.90) | −0.0217 *** (−3.50) |
InEco | −0.0124 (−1.58) | −0.0128 *** (−1.28) | −0.0135 ** (−2.11) | −0.0152 (−0.23) |
InPop | 0.0162 (0.91) | 0.0723 *** (9.48) | 0.0260 * (1.79) | 0.0345 *** (3.43) |
Log | 834.4522 | 819.7080 | ||
Rho | 0.0105 *** (22.32) | 0.5755 *** (30.63) | ||
R2 | 0.4400 | 0.6424 | 0.8951 | |
AR (2) [P] | 1.182 (0.3222) | |||
Sargan [P] | 143.38 (0.2311) | |||
Obs | 3962 | 3962 | 3962 | 3962 |
Variable | Replace Spatial Weight Matrix | Replace Time-Lag Order | Replace Spatial Model |
---|---|---|---|
W2 | Two Periods of Lag | GS2SLS | |
L.InPM | 0.6709 *** (3.94) | 0.5036 *** (3.48) | 0.6120 *** (6.38) |
InAgco | 0.0067 *** (2.82) | 0.0076 *** (2.77) | 0.0053 *** (3.21) |
InsAgco | −0.0003 *** (−2.92) | −0.0002 ** (−1.99) | −0.0003 *** (−2.77) |
InTra | 0.1558 *** (3.58) | 0.1310 *** (3.18) | 0.1456 *** (3.46) |
InElec | 0.0230 ** (3.72) | 0.0205 *** (3.14) | 0.0208 ** (2.00) |
InCon | 0.0229 ** (2.19) | 0.0327 *** (2.97) | 0.0233 ** (2.02) |
InOpen | 0.0089 *** (4.02) | 0.0077 *** (3.70) | 0.0053 ** (2.36) |
InTec | −0.0217 ** (−2.40) | −0.0145 *** (−3.13) | −0.0316 *** (−3.99) |
InEco | −0.0155 (−0.33) | −0.0135 (−0.14) | −0.0166 (−0.04) |
InPop | 0.0355 ** (2.43) | 0.0394 *** (2.81) | 0.0383 *** (5.33) |
Log | 878.9064 | 870.0668 | 1167.2516 |
Global Moran’I [P] | 0.1116 *** (0.000) | ||
Rho | 0.5579 (27.78) | 0.9192 *** (48.90) | |
R2 | 0.8733 | 0.6656 | 0.5152 |
Obs | 3962 | 3962 | 3962 |
W | Effect | InAgco | InsAgco | InTra | InElec | InCons | InOpen | InTec | InEco | InPop |
---|---|---|---|---|---|---|---|---|---|---|
W1 | SR-Direct | 0.0087 | −0.0002 | 0.0153 | 0.0252 | 0.0381 | 0.0132 | −0.0226 | 0.0013 | 0.0610 |
SR-Indirect | −0.0115 | 0.0005 | −0.0202 | 0.0333 | −0.0503 | 0.0174 | 0.0299 | −0.0018 | −0.0805 | |
LR-Direct | 0.0272 | −0.0004 | 0.0477 | 0.0787 | 0.1187 | 0.0412 | −0.0706 | 0.0044 | 0.1901 | |
LR-Indirect | −0.0295 | 0.0005 | −0.0517 | 0.0853 | −0.1287 | 0.0447 | 0.0765 | −0.0047 | −0.2061 | |
W2 | SR-Direct | 0.0082 | −0.0004 | 0.0160 | 0.0244 | 0.0311 | 0.0094 | −00231 | 0.0025 | 0.0645 |
SR-Indirect | −0.0153 | 0.0002 | −0.0212 | 0.0599 | −0.0347 | 0.0125 | −0.0273 | −0.0028 | −0.0757 | |
LR-Direct | 0.0241 | −0.0004 | 0.0166 | 0.0746 | 0.1105 | 0.0397 | −0.0687 | 0.0055 | 0.1773 | |
LR-Indirect | −0.0290 | 0.0005 | −0.0359 | 0.0810 | −0.1248 | 0.0411 | 0.0693 | −0.0058 | −0.2188 |
Variable | Eastern | Central | Western |
---|---|---|---|
L.InPM | 0.6298 *** (19.29) | 0.5875 *** (27.12) | 0.2034 *** (7.87) |
LnAgco | 0.0023 *** (2.64) | 0.0192 *** (2.22) | 0.0128 * (1.62) |
LnsAgco | −0.0007 *** (−3.92) | −0.0004 * (−1.69) | 0.0003 (0.36) |
InTra | 0.1333 ** (1.99) | 0.0050 ** (2.18) | 0.0032 ** (2.11) |
InElec | 0.0198 * (1.95) | 0.0144 ** (2.14) | 0.033 * (1.82) |
InCon | 0.0028 ** (2.34) | 0.0277 * (1.74) | 0.0064 (0.71) |
InOpen | 0.0070 ** (2.26) | 0.0074 * (1.79) | 0.0032 (0.89) |
InTec | −0.0196 *** (−2.68) | −0.0308 *** (−3.83) | −0.0035 (−0.46) |
InEco | −0.0005 (−0.08) | −0.0537 (−0.84) | −0.0146 (−1.02) |
InPop | 0.0058 ** (2.23) | 0.0730 *** (2.76) | 0.0556 (0.68) |
Log | 678.9064 | 670.0668 | 505.6538 |
Rho | 1.3942 *** (21.20) | 1.4459 *** (54.26) | 0.8303 *** (23.35) |
R2 | 0.7297 | 0.5928 | 0.7321 |
Obs | 1313 | 1300 | 1066 |
Variable | M = Urbanization | Variable | M = Energy Structure | ||||
---|---|---|---|---|---|---|---|
(4) | (12) | (13) | (4) | (12) | (13) | ||
L.InCity | 0.4466 *** (9.38) | L.InEs | 0.4943 *** (42.61) | ||||
L.InPM | 0.6824 *** (49.57) | 0.6814 *** (49.50) | L.InPM | 0.6824 *** (49.57) | |||
InCity | 0.0103 ** (2.24) | InEs | 0.0300 *** (4.00) | ||||
LnAgco | 0.0090 *** (2.84) | 0.0147 *** (2.80) | 0.0076 *** (2.84) | LnAgco | 0.0090 *** (2.84) | 0.0105 *** (3.23) | 0.0057 * (1.81) |
LnsAgco | −0.0004 ** (−2.01) | 0.0021 ** (2.29) | −0.0003 ** (−1.98) | Ln(Agco)2 | −0.0004 ** (−2.01) | 0.0032 ** (2.21) | −0.0002 ** (−2.03) |
Control | Yes | Yes | Yes | Control | Yes | Yes | Yes |
Log | 834.4522 | 683.0518 | 833.1456 | Log | 834.4522 | 635.7155 | 879.0334 |
Rho | 4.1853 *** (20.62) | 0.1751 * (1.67) | 4.1479 *** (21.78) | Rho | 4.1853 *** (20.62) | 0.1396 *** (4.33) | 3.1629 *** (58.09) |
R2 | 0.8688 | 0.7393 | 0.8691 | R2 | 0.8688 | 0.8958 | 0.9439 |
Obs | 3962 | 3962 | 3962 | Obs | 3962 | 3962 | 3962 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Y.; Ye, S.; Yu, H. Can Industrial Collaborative Agglomeration Reduce Haze Pollution? City-Level Empirical Evidence from China. Int. J. Environ. Res. Public Health 2021, 18, 1566. https://doi.org/10.3390/ijerph18041566
Ye Y, Ye S, Yu H. Can Industrial Collaborative Agglomeration Reduce Haze Pollution? City-Level Empirical Evidence from China. International Journal of Environmental Research and Public Health. 2021; 18(4):1566. https://doi.org/10.3390/ijerph18041566
Chicago/Turabian StyleYe, Yunling, Sheng Ye, and Haichao Yu. 2021. "Can Industrial Collaborative Agglomeration Reduce Haze Pollution? City-Level Empirical Evidence from China" International Journal of Environmental Research and Public Health 18, no. 4: 1566. https://doi.org/10.3390/ijerph18041566
APA StyleYe, Y., Ye, S., & Yu, H. (2021). Can Industrial Collaborative Agglomeration Reduce Haze Pollution? City-Level Empirical Evidence from China. International Journal of Environmental Research and Public Health, 18(4), 1566. https://doi.org/10.3390/ijerph18041566