Recent Developments in the Determination of Biomarkers of Tobacco Smoke Exposure in Biological Specimens: A Review
Abstract
:1. Brief Introduction
2. Biomarkers
2.1. Nicotine and Tobacco Alkaloids
2.2. Carbon Monoxide (CO)
2.3. Tobacco-Specific N-Nitrosamines (TSNA)
2.4. Polycyclic Aromatic Hydrocarbons (PAHs)
2.5. Volatile Organic Compounds (VOCs)
2.6. Aromatic Amines and Heterocyclic Amines
2.7. Metals
2.8. Thiocyanates
3. Biological Specimens and Cut-Off Concentrations
4. Sample Preparation Techniques
5. Analytical Techniques for the Determination of Biomarkers
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Narkowicz, S.; Polkowska, Ż.; Namieśnik, J. Analysis of Markers of Exposure to Constituents of Environmental Tobacco Smoke (ETS). Crit. Rev. Anal. Chem. 2012, 42, 16–37. [Google Scholar] [CrossRef]
- Yousuf, H.; Hofstra, M.; Tijssen, J.; Leenen, B.; Lindemans, J.W.; van Rossum, A.; Narula, J.; Hofstra, L. Estimated Worldwide Mortality Attributed to Secondhand Tobacco Smoke Exposure, 1990–2016. JAMA Netw. Open 2020, 3, e201177. [Google Scholar] [CrossRef] [PubMed]
- Kawachi, I.; Colditz, G.A. Workplace exposure to passive smoking and risk of cardiovascular disease: Summary of epidemiologic studies. Environ. Health Perspect. 1999, 107 (Suppl. 6), 847–851. [Google Scholar]
- Hackshaw, A.K.; Law, M.R.; Wald, N.J. The accumulated evidence on lung cancer and environmental tobacco smoke. BMJ 1997, 315, 980–988. [Google Scholar] [CrossRef] [Green Version]
- Narkowicz, S.; Polkowska, Ż.; Kiełbratowska, B.; Namieśnik, J. Environmental Tobacco Smoke: Exposure, Health Effects, and Analysis. Crit. Rev. Environ. Sci. Technol. 2013, 43, 121–161. [Google Scholar] [CrossRef]
- Ramdzan, A.N.; Almeida, M.I.G.S.; McCullough, M.J.; Segundo, M.A.; Kolev, S.D. Determination of salivary cotinine as tobacco smoking biomarker. TrAC Trends Anal. Chem. 2018, 105, 89–97. [Google Scholar] [CrossRef]
- Peck, M.J.; Sanders, E.B.; Scherer, G.; Lüdicke, F.; Weitkunat, R. Review of biomarkers to assess the effects of switching from cigarettes to modified risk tobacco products. Biomarkers 2018, 23, 213–244. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.M.; Edwards, S.H.; Arab, A.; Del Valle-Pinero, A.Y.; Yang, L.; Hatsukami, D.K. Biomarkers of Tobacco Exposure: Summary of an FDA-Sponsored Public Workshop. Cancer Epidemiol. Biomarkers Prev. 2017, 26, 291–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yildiz, D. Nicotine, its metabolism and an overview of its biological effects. Toxicon 2004, 43, 619–632. [Google Scholar] [CrossRef] [PubMed]
- Husgafvel-Pursiainen, K. Biomarkers in the assessment of exposure and the biological effects of environmental tobacco smoke. Scand. J. Work. Environ. Health 2002, 28 (Suppl. 2), 21–29. [Google Scholar]
- Benowitz, N.L.; Jacob, P. Metabolism of nicotine to cotinine studied by a dual stable isotope method. Clin. Pharmacol. Ther. 1994, 56, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.I.; Norris, H.-R.K.; Rollins, D.E.; Tiffany, S.T.; Wilkins, D.G. A novel validated procedure for the determination of nicotine, eight nicotine metabolites and two minor tobacco alkaloids in human plasma or urine by solid-phase extraction coupled with liquid chromatography–electrospray ionization–tandem mass spectrometr. J. Chromatogr. B 2010, 878, 725–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schick, S.F.; Blount, B.C.; Jacob, P.; Saliba, N.A.; Bernert, J.T.; El Hellani, A.; Jatlow, P.; Pappas, R.S.; Wang, L.; Foulds, J.; et al. Biomarkers of exposure to new and emerging tobacco delivery products. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017, 313, L425–L452. [Google Scholar] [CrossRef] [Green Version]
- Scheidweiler, K.B.; Marrone, G.F.; Shakleya, D.M.; Singleton, E.G.; Heishman, S.J.; Huestis, M.A. Oral fluid nicotine markers to assess smoking status and recency of use. Ther. Drug Monit. 2011, 33, 609–618. [Google Scholar] [CrossRef] [Green Version]
- Swortwood, M.J.; Bartock, S.H.; Scheidweiler, K.B.; Shaw, S.; Filis, P.; Douglas, A.; O’Shaughnessy, P.J.; Soffientini, U.; Lucendo-Villarin, B.; Iredale, J.P.; et al. Quantification of ethyl glucuronide, ethyl sulfate, nicotine, and its metabolites in human fetal liver and placenta. Forensic Toxicol. 2018, 36, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Byrd, G.D.; Davis, R.A.; Ogden, M.W. A Rapid LC-MS-MS Method for the Determination of Nicotine and Cotinine in Serum and Saliva Samples from Smokers: Validation and Comparison with a Radioimmunoassay Method. J. Chromatogr. Sci. 2005, 43, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Lewis, S.J.; Cherry, N.M.; Mcl. Niven, R.; Barber, P.V.; Wilde, K.; Povey, A.C. Cotinine levels and self-reported smoking status in patients attending a bronchoscopy clinic. Biomarkers 2003, 8, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.-S.; Kim, J.-G.; Shin, Y.-J.; Jee, S.H. Sensitive and simple method for the determination of nicotine and cotinine in human urine, plasma and saliva by gas chromatography–mass spectrometry. J. Chromatogr. B 2002, 769, 177–183. [Google Scholar] [CrossRef]
- Vartiainen, E. Validation of self reported smoking by serum cotinine measurement in a community-based study. J. Epidemiol. Community Heal. 2002, 56, 167–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhar, P. Measuring tobacco smoke exposure: Quantifying nicotine/cotinine concentration in biological samples by colorimetry, chromatography and immunoassay methods. J. Pharm. Biomed. Anal. 2004, 35, 155–168. [Google Scholar] [CrossRef]
- Benowitz, N.L.; Bernert, J.T.; Caraballo, R.S.; Holiday, D.B.; Wang, J. Optimal Serum Cotinine Levels for Distinguishing Cigarette Smokers and Nonsmokers Within Different Racial/Ethnic Groups in the United States Between 1999 and 2004. Am. J. Epidemiol. 2009, 169, 236–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benowitz, N.L.; Dains, K.M.; Dempsey, D.; Wilson, M.; Jacob, P. Racial Differences in the Relationship Between Number of Cigarettes Smoked and Nicotine and Carcinogen Exposure. Nicotine Tob. Res. 2011, 13, 772–783. [Google Scholar] [CrossRef] [PubMed]
- St.Helen, G.; Goniewicz, M.L.; Dempsey, D.; Wilson, M.; Jacob, P.; Benowitz, N.L. Exposure and Kinetics of Polycyclic Aromatic Hydrocarbons (PAHs) in Cigarette Smokers. Chem. Res. Toxicol. 2012, 25, 952–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacob, P., III; Yu, L.; Duan, M.; Ramos, L.; Yturralde, O.; Benowitz, N.L. Determination of the nicotine metabolites cotinine and trans-3′-hydroxycotinine in biologic fluids of smokers and non-smokers using liquid chromatography–tandem mass spectrometry: Biomarkers for tobacco smoke exposure and for phenotyping cytochrome P450 2. J. Chromatogr. B 2011, 879, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Hukkanen, J.; Jacob, P.; Benowitz, N.L. Metabolism and Disposition Kinetics of Nicotine. Pharmacol. Rev. 2005, 57, 79–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacob, P.; Hatsukami, D.; Severson, H.; Hall, S.; Yu, L.; Benowitz, N.L. Anabasine and anatabine as biomarkers for tobacco use during nicotine replacement therapy. Cancer Epidemiol. Biomarkers Prev. 2002, 11, 1668–1673. [Google Scholar]
- Scherer, G. Carboxyhemoglobin and thiocyanate as biomarkers of exposure to carbon monoxide and hydrogen cyanide in tobacco smoke. Exp. Toxicol. Pathol. 2006, 58, 101–124. [Google Scholar] [CrossRef]
- Sandberg, A.; Sköld, C.M.; Grunewald, J.; Eklund, A.; Wheelock, Å.M. Assessing Recent Smoking Status by Measuring Exhaled Carbon Monoxide Levels. PLoS ONE 2011, 6, e28864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavvadias, D.; Scherer, G.; Cheung, F.; Errington, G.; Shepperd, J.; McEwan, M. Determination of tobacco-specific N -nitrosamines in urine of smokers and non-smokers. Biomarkers 2009, 14, 547–553. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans Personal habits and indoor combustions. Volume 100 E. A review of human carcinogens. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100, 1–538. [Google Scholar]
- Shah, K.A.; Karnes, H.T. A review of the analysis of tobacco-specific nitrosamines in biological matrices. Crit. Rev.Toxicol. 2010, 40, 305–327. [Google Scholar] [CrossRef] [PubMed]
- Stepanov, I. Tobacco-Specific Nitrosamines and Their Pyridine-N-glucuronides in the Urine of Smokers and Smokeless Tobacco Users. Cancer Epidemiol. Biomarkers Prev. 2005, 14, 885–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goniewicz, M.L.; Havel, C.M.; Peng, M.W.; Jacob, P.; Dempsey, D.; Yu, L.; Zielinska-Danch, W.; Koszowski, B.; Czogala, J.; Sobczak, A.; et al. Elimination Kinetics of the Tobacco-Specific Biomarker and Lung Carcinogen 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanol. Cancer Epidemiol. Biomarkers Prev. 2009, 18, 3421–3425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hecht, S.S.; Carmella, S.G.; Chen, M.; Dor Koch, J.F.; Miller, A.T.; Murphy, S.E.; Jensen, J.A.; Zimmerman, C.L.; Hatsukami, D.K. Quantitation of urinary metabolites of a tobacco-specific lung carcinogen after smoking cessation. Cancer Res. 1999, 59, 590–596. [Google Scholar]
- Carmella, S.G.; Ming, X.; Olvera, N.; Brookmeyer, C.; Yoder, A.; Hecht, S.S. High throughput liquid and gas chromatography-tandem mass spectrometry assays for tobacco-specific nitrosamine and polycyclic aromatic hydrocarbon metabolites associated with lung cancer in smokers. Chem. Res. Toxicol. 2013, 26, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Vogel, R.I.; Carmella, S.G.; Stepanov, I.; Hatsukami, D.K.; Hecht, S.S. The ratio of a urinary tobacco-specific lung carcinogen metabolite to cotinine is significantly higher in passive than in active smokers. Biomarkers 2011, 16, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Hecht, S.S. 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanol and its Glucuronides in the Urine of Infants Exposed to Environmental Tobacco Smoke. Cancer Epidemiol. Biomarkers Prev. 2006, 15, 988–992. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.A.; Schillo, B.A.; Moilanen, M.M.; Lindgren, B.R.; Murphy, S.; Carmella, S.; Hecht, S.S.; Hatsukami, D.K. Tobacco Smoke Exposure in Nonsmoking Hospitality Workers before and after a State Smoking Ban. Cancer Epidemiol. Biomarkers Prev. 2010, 19, 1016–1021. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.-M.; Knezevich, A.D.; Wang, R.; Gao, Y.-T.; Hecht, S.S.; Stepanov, I. Urinary levels of the tobacco-specific carcinogen N’-nitrosonornicotine and its glucuronide are strongly associated with esophageal cancer risk in smokers. Carcinogenesis 2011, 32, 1366–1371. [Google Scholar] [CrossRef]
- Li, Z.; Sandau, C.D.; Romanoff, L.C.; Caudill, S.P.; Sjodin, A.; Needham, L.L.; Patterson, D.G. Concentration and profile of 22 urinary polycyclic aromatic hydrocarbon metabolites in the US population. Environ. Res. 2008, 107, 320–331. [Google Scholar] [CrossRef]
- Hecht, S.S.; Chen, M.; Yagi, H.; Jerina, D.M.; Carmella, S.G. r-1,t-2,3,c-4-Tetrahydroxy-1,2,3,4-tetrahydrophenanthrene in human urine: A potential biomarker for assessing polycyclic aromatic hydrocarbon metabolic activation. Cancer Epidemiol. Biomarkers Prev. 2003, 12, 1501–1508. [Google Scholar]
- Suwan-ampai, P.; Navas-Acien, A.; Strickland, P.T.; Agnew, J. Involuntary Tobacco Smoke Exposure and Urinary Levels of Polycyclic Aromatic Hydrocarbons in the United States, 1999 to 2002. Cancer Epidemiol. Biomarkers Prev. 2009, 18, 884–893. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Carmella, S.G.; Upadhyaya, P.; Hochalter, J.B.; Rauch, D.; Oliver, A.; Jensen, J.; Hatsukami, D.; Wang, J.; Zimmerman, C.; et al. Immediate Consequences of Cigarette Smoking: Rapid Formation of Polycyclic Aromatic Hydrocarbon Diol Epoxides. Chem. Res. Toxicol. 2011, 24, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.-Z.; Moldoveanu, S.C. Gas chromatography–mass spectrometry of carbonyl compounds in cigarette mainstream smoke after derivatization with 2,4-dinitrophenylhydrazine. J. Chromatogr. A 2004, 1027, 25–35. [Google Scholar] [CrossRef]
- Ashley, D.L.; Bonin, M.A.; Cardinali, F.L.; McCraw, J.M.; Wooten, J.V. Measurement of volatile organic compounds in human blood. Environ. Health Perspect. 1996, 104, 871–877. [Google Scholar]
- Yuan, J.-M.; Gao, Y.-T.; Wang, R.; Chen, M.; Carmella, S.G.; Hecht, S.S. Urinary levels of volatile organic carcinogen and toxicant biomarkers in relation to lung cancer development in smokers. Carcinogenesis 2012, 33, 804–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alwis, K.U.; Blount, B.C.; Britt, A.S.; Patel, D.; Ashley, D.L. Simultaneous analysis of 28 urinary VOC metabolites using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS). Anal. Chim. Acta 2012, 750, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Riedel, K.; Scherer, G.; Engl, J.; Hagedorn, H.-W.; Tricker, A.R. Determination of Three Carcinogenic Aromatic Amines in Urine of Smokers and Nonsmokers. J. Anal. Toxicol. 2006, 30, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Turesky, R.J.; Le Marchand, L. Metabolism and Biomarkers of Heterocyclic Aromatic Amines in Molecular Epidemiology Studies: Lessons Learned from Aromatic Amines. Chem. Res. Toxicol. 2011, 24, 1169–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marano, K.M.; Naufal, Z.S.; Kathman, S.J.; Bodnar, J.A.; Borgerding, M.F.; Garner, C.D.; Wilson, C.L. Cadmium exposure and tobacco consumption: Biomarkers and risk assessment. Regul. Toxicol. Pharmacol. 2012, 64, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Amzal, B.; Julin, B.; Vahter, M.; Wolk, A.; Johanson, G.; Åkesson, A. Population Toxicokinetic Modeling of Cadmium for Health Risk Assessment. Environ. Health Perspect. 2009, 117, 1293–1301. [Google Scholar] [CrossRef]
- Jain, N.B.; Potula, V.; Schwartz, J.; Vokonas, P.S.; Sparrow, D.; Wright, R.O.; Nie, H.; Hu, H. Lead Levels and Ischemic Heart Disease in a Prospective Study of Middle-Aged and Elderly Men: The VA Normative Aging Study. Environ. Health Perspect. 2007, 115, 871–875. [Google Scholar] [CrossRef] [Green Version]
- Glatz, Z.; Nováková, S.; Štěrbová, H. Analysis of thiocyanate in biological fluids by capillary zone electrophoresis. J. Chromatogr. A 2001, 916, 273–277. [Google Scholar] [CrossRef]
- Chamberlain, J. (Ed.) The Analysis of Drugs in Biological Fluids, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1995; ISBN 978-0849324925. [Google Scholar]
- Kerrigan, S. Sampling, storage and stability. In Clarke’s Analytical Forensic Toxicology; Pharmaceutical Press: London, UK, 2011; pp. 445–457. [Google Scholar]
- Committe of Systematic Toxicological Analysis Recommendations on Sample Collection. Int. Assoc. Forensic Toxicol. 2008, XXIX, 1–7.
- Instituto Nacional de Medicina Legal e Ciências Forenses. Norma Procedimental: Recomendações para a Colheita e Acondicionamento de Amostras em Toxicologia Forense. Available online: https://www.inmlcf.mj.pt/wdinmlWebsite/Data/file/OutrasInformacoes/PareceresOrientacoesServico/Normas/NP-INMLCF-009-Rev01.pdf (accessed on 15 January 2021).
- Jones, A.W. Alcohol, its analysis in blood and breath for forensic purposes, impairment effects, and acute toxicity. Wiley Interdiscip. Rev. Forensic Sci. 2019, 1, e1353. [Google Scholar] [CrossRef]
- Osborn, M.; Howard, M.; Morley, S.; McCarthy, H. Guidelines on Autopsy Practice: Autopsy When Drugs or Poisoning may be Involved. Available online: www.nice.org.uk/accreditation (accessed on 23 August 2019).
- Jenkins, A.J. (Ed.) Drug Testing in Alternate Biological Specimens; Humana Press: Totowa, NJ, USA, 2008; ISBN 9781588297099. [Google Scholar]
- Barroso, M.; Gallardo, E.; Vieira, D.N.; López-Rivadulla, M.; Queiroz, J.A. Hair: A complementary source of bioanalytical information in forensic toxicology. Bioanalysis 2011, 3, 67–79. [Google Scholar] [CrossRef]
- Pragst, F.; Balikova, M.A. State of the art in hair analysis for detection of drug and alcohol abuse. Clin. Chim. Acta 2006, 370, 17–49. [Google Scholar] [CrossRef] [PubMed]
- Barroso, M.; Gallardo, E. Hair analysis for forensic applications: Is the future bright? Bioanalysis 2014, 6, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Kintz, P. Hair Analysis in Forensic Toxicology: An Updated Review with a Special Focus on Pitfalls. Curr. Pharm. Des. 2018, 23, 5480–5486. [Google Scholar] [CrossRef]
- Chen, H.; Xiang, P.; Shen, M. Determination of clozapine in hair and nail: The role of keratinous biological materials in the identification of a bloated cadaver case. J. Forensic Leg. Med. 2014, 22, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Morini, L.; Colucci, M.; Ruberto, M.G.; Groppi, A. Determination of ethyl glucuronide in nails by liquid chromatography tandem mass spectrometry as a potential new biomarker for chronic alcohol abuse and binge drinking behavior. Anal. Bioanal. Chem. 2012, 402, 1865–1870. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, M.R. Nails: An adequate alternative matrix in forensic toxicology for drug analysis? Bioanalysis 2014, 6, 2189–2191. [Google Scholar] [CrossRef]
- Krumbiegel, F.; Hastedt, M.; Tsokos, M. Nails are a potential alternative matrix to hair for drug analysis in general unknown screenings by liquid-chromatography quadrupole time-of-flight mass spectrometry. Forensic Sci. Med. Pathol. 2014, 10, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Solimini, R.; Minutillo, A.; Kyriakou, C.; Pichini, S.; Roberta, R.; Busardo, F.P. Nails in Forensic Toxicology: An Update. Curr. Pharm. Des. 2017, 23, 5468–5479. [Google Scholar] [CrossRef]
- Shu, I.; Jones, J.; Jones, M.; Lewis, D.; Negrusz, A. Detection of Drugs in Nails: Three Year Experience. J. Anal. Toxicol. 2015, 39, 624–628. [Google Scholar] [CrossRef] [Green Version]
- Yaemsiri, S.; Hou, N.; Slining, M.M.; He, K. Growth rate of human fingernails and toenails in healthy American young adults. J. Eur. Acad. Dermatol. Venereol. 2010, 24, 420–423. [Google Scholar] [CrossRef]
- Gallardo, E.; Queiroz, J.A. The role of alternative specimens in toxicological analysis. Biomed. Chromatogr. 2008, 22, 795–821. [Google Scholar] [CrossRef]
- Gallardo, E.; Barroso, M.; Queiroz, J.A. Current technologies and considerations for drug bioanalysis in oral fluid. Bioanalysis 2009, 1, 637–667. [Google Scholar] [CrossRef]
- Queiroz, J.A.; Gallardo, E.; Barroso, M. What are the recent advances in forensic oral fluid bioanalysis? Bioanalysis 2013, 5, 2077–2079. [Google Scholar] [CrossRef] [PubMed]
- Desrosiers, N.A.; Huestis, M.A. Oral Fluid Drug Testing: Analytical Approaches, Issues and Interpretation of Results. J. Anal. Toxicol. 2019, 43, 415–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Concheiro, M.; Huestis, M.A. Drug exposure during pregnancy: Analytical methods and toxicological findings. Bioanalysis 2018, 10, 587–606. [Google Scholar] [CrossRef] [PubMed]
- McMillin, G.A.; Wood, K.E.; Strathmann, F.G.; Krasowski, M.D. Patterns of Drugs and Drug Metabolites Observed in Meconium: What Do They Mean? Ther. Drug Monit. 2015, 37, 568–580. [Google Scholar] [CrossRef] [PubMed]
- Demkowska, I.; Polkowska, Z.; Kiełbratowska, B.; Namiésnik, J. Application of ion chromatography for the determination of inorganic ions, especially thiocyanates, in human semen samples as biomarkers of environmental tobacco smoke exposure. J. Anal. Toxicol. 2010, 34, 533–538. [Google Scholar] [CrossRef] [Green Version]
- Narkowicz, S.; Polkowska, Ż.; Marć, M.; Simeonov, V.; Namieśnik, J. Determination of thiocyanate (biomarkers of ETS) and other inorganic ions in human nasal discharge samples using ion chromatography. Ecotoxicol. Environ. Saf. 2013, 96, 131–138. [Google Scholar] [CrossRef]
- Feng, S.; Cummings, O.; McIntire, G. Nicotine and cotinine in oral fluid: Passive exposure vs active smoking. Pract. Lab. Med. 2018, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L.; Nardone, N.; Jain, S.; Dempsey, D.A.; Addo, N.; Helen, G.S.; Jacob, P. Comparison of Urine 4-(Methylnitrosamino)-1-(3) Pyridyl-1-butanol and cotinine for assessment of active and passive smoke exposure in urban adolescents. Cancer Epidemiol. Biomarkers Prev. 2018, 27, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Gray, T.R.; Magri, R.; Shakleya, D.M.; Huestis, M.A. Meconium Nicotine and Metabolites by Liquid Chromatography-Tandem Mass Spectrometry: Differentiation of Passive and Nonexposure and Correlation with Neonatal Outcome Measures. Clin. Chem. 2008, 54, 2018–2027. [Google Scholar] [CrossRef]
- Miller, E.I.; Murray, G.J.; Rollins, D.E.; Tiffany, S.T.; Wilkins, D.G. Validation of a liquid chromatography-tandem mass spectrometry method for the detection of nicotine biomarkers in hair and an evaluation of wash procedures for removal of environmental nicotine. J. Anal. Toxicol. 2011, 35, 321–332. [Google Scholar] [CrossRef] [Green Version]
- McGuffey, J.E.; Wei, B.; Bernert, J.T.; Morrow, J.C.; Xia, B.; Wang, L.; Blount, B.C. Validation of a LC-MS/MS method for quantifying urinary nicotine, six nicotine metabolites and the minor tobacco alkaloids—Anatabine and anabasine—In smokers’ urine. PLoS ONE 2014, 9, e101816. [Google Scholar] [CrossRef] [Green Version]
- Papaseit, E.; Farré, M.; Graziano, S.; Pacifici, R.; Pérez-Mañá, C.; García-Algar, O.; Pichini, S. Monitoring nicotine intake from e-cigarettes: Measurement of parent drug and metabolites in oral fluid and plasma. Clin. Chem. Lab. Med. 2017, 55, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Ladror, D.; Pitt, B.; Funk, W. Quantification of cotinine in dried blood spots as a biomarker of exposure to tobacco smoke. Biomarkers 2018, 23, 44–50. [Google Scholar] [CrossRef]
- Stepanov, I.; Hecht, S.S. Detection and Quantitation of N’-Nitrosonornicotine in Human Toenails by Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 945–948. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Ortuño, R.; Martínez-Sánchez, J.M.; Fu, M.; Fernández, E.; Pascual, J.A. Evaluation of tobacco specific nitrosamines exposure by quantification of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in human hair of non-smokers. Sci. Rep. 2016, 6, 25043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Ortuño, R.; Martínez-Sánchez, J.M.; Fernández, E.; Pascual, J.A. High-throughput wide dynamic range procedure for the simultaneous quantification of nicotine and cotinine in multiple biological matrices using hydrophilic interaction liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 8463–8473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallart-Mateu, D.; Elbal, L.; Armenta, S.; De La Guardia, M. Passive exposure to nicotine from e-cigarettes. Talanta 2016, 152, 329–334. [Google Scholar] [CrossRef]
- Kim, I.; Darwin, W.D.; Huestis, M.A. Simultaneous determination of nicotine, cotinine, norcotinine, and trans-3′-hydroxycotinine in human oral fluid using solid phase extraction and gas chromatography-mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 814, 233–240. [Google Scholar] [CrossRef]
- Shakleya, D.M.; Huestis, M.A. Optimization and validation of a liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of nicotine, cotinine, trans-3′-hydroxycotinine and norcotinine in human oral fluid. Anal. Bioanal. Chem. 2009, 395, 2349–2357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, T.R.; Shakleya, D.M.; Huestis, M.A. Quantification of nicotine, cotinine, trans-3′-hydroxycotinine, nornicotine and norcotinine in human meconium by liquid chromatography/tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 863, 107–114. [Google Scholar] [CrossRef] [Green Version]
- López-Rabuñal, Á.; Lendoiro, E.; González-Colmenero, E.; Concheiro-Guisán, A.; Concheiro-Guisán, M.; Peñas-Silva, P.; Macias-Cortiña, M.; López-Rivadulla, M.; Cruz, A.; de-Castro-Ríos, A. Assessment of Tobacco Exposure During Pregnancy by Meconium Analysis and Maternal Interview. J. Anal. Toxicol. 2020, 44, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Inukai, T.; Kaji, S.; Kataoka, H. Analysis of nicotine and cotinine in hair by on-line in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry as biomarkers of exposure to tobacco smoke. J. Pharm. Biomed. Anal. 2018, 156, 272–277. [Google Scholar] [CrossRef]
- Toraño, J.S.; Van Kan, H.J.M. Simultaneous determination of the tobacco smoke uptake parameters nicotine, cotinine and thiocyanate in urine, saliva and hair, using gas chromatography-mass spectrometry for characterisation of smoking status of recently exposed subjects. Analyst 2003, 128, 838–843. [Google Scholar] [CrossRef]
- Ramdzan, A.N.; Barreiros, L.; Almeida, M.I.G.S.; Kolev, S.D.; Segundo, M.A. Determination of salivary cotinine through solid phase extraction using a bead-injection lab-on-valve approach hyphenated to hydrophilic interaction liquid chromatography. J. Chromatogr. A 2016, 1429, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H.; Inoue, R.; Yagi, K.; Saito, K. Determination of nicotine, cotinine, and related alkaloids in human urine and saliva by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2009, 49, 108–114. [Google Scholar] [CrossRef]
- Chen, C.Y.; Jhou, Y.T.; Lee, H.L.; Lin, Y.W. Simultaneous, rapid, and sensitive quantification of 8-hydroxy-2′-deoxyguanosine and cotinine in human urine by on-line solid-phase extraction LC-MS/MS: Correlation with tobacco exposure biomarkers NNAL. Anal. Bioanal. Chem. 2016, 408, 6295–6306. [Google Scholar] [CrossRef]
- da Fonseca, B.M.; Moreno, I.E.D.; Magalhães, A.R.; Barroso, M.; Queiroz, J.A.; Ravara, S.; Calheiros, J.; Gallardo, E. Determination of biomarkers of tobacco smoke exposure in oral fluid using solid-phase extraction and gas chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 889–890, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; Xia, Y.; Wong, J.; Nicodemus, K.J.; Xu, M.; Lee, J.; Guillot, T.; Li, J. Quantitative analysis of five tobacco-specific N -nitrosamines in urine by liquid chromatography-atmospheric pressure ionization tandem mass spectrometry. Biomed. Chromatogr. 2014, 28, 375–384. [Google Scholar] [CrossRef]
- Narkowicz, S.; Jaszczak, E.; Polkowska, Ż.; Kiełbratowska, B.; Kotłowska, A.; Namieśnik, J. Determination of thiocyanate as a biomarker of tobacco smoke constituents in selected biological materials of human origin. Biomed. Chromatogr. 2018, 32, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Martín Santos, P.; Campo, L.; Olgiati, L.; Polledri, E.; del Nogal Sánchez, M.; Fustinoni, S. Development of a method to profile 2- to 4-ring polycyclic aromatic hydrocarbons in saliva samples from smokers and non-smokers by headspace-solid-phase microextraction-gas chromatography-triple quadrupole tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1152, 122273. [Google Scholar] [CrossRef]
- Carrizo, D.; Nerín, I.; Domeño, C.; Alfaro, P.; Nerín, C. Direct screening of tobacco indicators in urine and saliva by Atmospheric Pressure Solid Analysis Probe coupled to quadrupole-time of flight mass spectrometry (ASAP-MS-Q-TOF-). J. Pharm. Biomed. Anal. 2016, 124, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Cantwell, F.F.; Losier, M.B.T.-C.A.C. Chapter 11 Liquid—Liquid extraction. In Sampling and Sample Preparation for Field and Laboratory; Elsevier: Amsterdam, The Netherlands, 2002; Volume 37, pp. 297–340. ISBN 0166-526X. [Google Scholar]
- Ashri, N.Y.; Abdel-Rehim, M. Sample treatment based on extraction techniques in biological matrices. Bioanalysis 2011, 3, 2003–2018. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.-W.; Xu, B.-Y.; Qiao, S.; Zhao, G.; Xu, J.-J.; Chen, H.-Y.; Xie, F.-W. A microfluidic cigarette smoke collecting platform for simultaneous sample extraction and multiplex analysis. Talanta 2016, 150, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Liigand, P.; Kaupmees, K.; Haav, K.; Liigand, J.; Leito, I.; Girod, M.; Antoine, R.; Kruve, A. Think Negative: Finding the Best Electrospray Ionization/MS Mode for Your Analyte. Anal. Chem. 2017, 89, 5665–5668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momoh, P.; Fandino, A.; Aisawa, E.; Schlabach, T.; Miller, K.; Stafford, G. iFunnel Technology for Enhanced Sensitivity in Tandem LC/MS: Technical Overview. Available online: http://www.ingenieria-analitica.com/downloads/dl/file/id/2947/product/110/ifunnel_technology_for_enhanced_sensitivity_in_tandem_lc_ms.pdf (accessed on 20 December 2020).
- Arndt, D.; Wachsmuth, C.; Buchholz, C.; Bentley, M. A complex matrix characterization approach, applied to cigarette smoke, that integrates multiple analytical methods and compound identification strategies for non-targeted liquid chromatography with high-resolution mass spectrometry. Rapid Commun. Mass Spectrom. 2020, 34, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | Sample (Amount) | Sample Preparation | Analytical Technique | LOD, ng/mL (pg/mg of Hair) | LOQ, ng/mL (pg/mg of Hair) | Recovery (%) | Reference |
---|---|---|---|---|---|---|---|
Nicotine and tobacco alkaloids | |||||||
Nicotine, Cotinine | Hair: 20 mg | Incubation: 1 mL 1 M NaOH, 2 M KCl aqueous solution (30 min at 80 °C); LLE (5 mL dichloromethane and 5 mL dichloromethane:isopropanol (75:25)) | LC-MS/MS (iFunnel ionization +) | - | 0.10–25 | - | [88] |
Nicotine, Cotinine | Hair: 10 mg | Incubation: IS solution (80 °C, 30 min); LLE: 0.5 mL of dichloromethane | LC-MS/MS (ESI+) | 0.66–8.6 | 2–26 | >90 | [89] |
Urine and Oral fluid: 0.5 mL | LLE: 0.5 mL of dichloromethane | 0.0132–0.158 | 0.04–0.48 | ||||
Cotinine Oxide, Nicotine 1′ Oxide, trans-3′-hydroxycotinine, Norcotinine, Cotinine, Nornicotine, Anatabine, Anabasine, Nicotine | Urine: 0.1 mL | Enzymatic hydrolisis: 160 μL of β-Glucuronidase solution (for free samples); PP: 0.5 mL of cold acetone | LC-MS/MS (ESI+) | 0.41–3.53 | - | 76–99 | [84] |
Nicotine, Cotinine | Oral fluid: 0.5 mL | SPE: Phenomenex Trace B | LC-MS/MS (n.s.) | - | 1–2 | - | [80] |
Nicotine | Oral fluid: 0.25 mL | LLME: chloroform | GC-MS (EI) | - | - | - | [90] |
IONSCAN®-LS IMS (⁶³Ni foil radioactive ionization source) | 9 | - | 99 | ||||
Nicotine, Cotinine, trans-3′-hidroxicotinine | Oral Fluid and Plasma: 0.5 mL | LLE: 2 mL of chloroform/isopropyl alcohol | LC-MS/MS (ESI) | - | - | - | [85] |
Nicotine, Cotinine, Norcotinine, trans-3′-hidroxicotinine | Oral Fluid: 0.5 mL | SPE: Clean Screen® ZSDAU020, 200 mg–10 mL | GC/MS (EI) | 5 | 5 | 67–117.8 | [91] |
Nicotine, Cotinine, Norcotinine, trans-3′-hidroxicotinine | Oral Fluid: 0.5 mL | SPE: Clean Screen® ZSDAU020 | LC-MS/MS (ESI+) | - | 0.2–1 | 63.6–101.2 | [92] |
Nicotine, Cotinine, trans-3′-hidroxicotinine, Nornicotine, Norcotinine | Meconium: 500 mg | Enzymatic hydrolysis (for total concentration): 0.1 M β-Glucoronidase potassium phosphate buffer; SPE: Clean Screen® ZSDAU020 | LC-MS/MS (APCI+) | 1.25–5 | 1.25–5 | 56.2–95.7 | [93] |
Nicotine, Cotinine, trans-3′-hidroxicotinine | Meconium: 250 mg | Hydrolysis with 3 M KOH for 30 min at 60 °C, addition of 500 μL 1 M HCl. SPE: Oasis®MCX | LC-MS/MS (ESI+) | 2–10 | 2–10 | 73.2–125.4 | [94] |
Nicotine, Cotinine | Hair: 1–2 mg | Incubation: distilled water (80 °C, 30 min); in-tube SPME: Carboxen 1006 PLOT capillary column (60 cm × 0.32 mm i.d.) | LC-MS/MS (ESI+) | 0.13–0.45 (pg/mL) | 4.4–7.5 | 87–96.1 | [95] |
Nicotine, Cotinine | Hair: 20 mg | Incubation: 800 μL of water (10 min, 100 °C); LLE: 100 μL of dichloromethane | GC-MS (n.s.) | - | - | ≈80–90 | [96] |
Urine: 0.8 mL | LLE: 150 μL of alkylating solution (HTAB+ PFBBr in methanol: dichloromethane (1:2, v/v)) and 100 µL of a saturated sodium chloride solution | 0.06–0.6 | - | ||||
Oral fluid: 0.8 mL | LLE: 100 μL of dichloromethane and 100 µL of a saturated sodium chloride solution | 0.6 | - | ||||
Nicotine-N-β-D-Glucuronide, Cotinine-N-Oxide, trans-3′-hydroxycotinine, Norcotinine, trans-Nicotine-1′-oxide, Cotinine, Nornicotine, Nicotine, Anatabine, Anabasine and Cotinine-N-β-D-Glucuronide | Urine: 1 mL | Acidification: 1.5 mL of 5 mM aqueous ammonium formate (pH 2.5); SPE: combination of Oasis® HLB and Oasis® MCX cartridges | LC-MS/MS (ESI+) | 1–25 | 1–50 | 52–88 | [12] |
Plasma: 1 mL | PP: 1 mL of 10% aqueous trichloroacetic acid; SPE: combination of Oasis® HLB and Oasis® MCX cartridges | 0.25–25 | 1–50 | 51–118 | |||
Nicotine-N-β-D-Glucuronide, Cotinine-N-Oxide, trans-3′-Hydroxycotinine, Norcotinine, trans-Nicotine-1′-oxide, Cotinine, Nornicotine, Nicotine, Anatabine, Anabasine and Cotinine-N-β-D-Glucuronide | Hair: 20 mg | Incubation: 1 mL of 1 M sodium hydroxide solution (1 h, room temperature); SPE: Oasis® MCX | LC-MS/MS (ESI+) | 0.1–0.10 | 0.5–0.10 | 13.5–117.8 | [83] |
Cotinine | Blood: 5 drops (finger-prick DBS) or 0.05 mL (reconstitued DBS) | DBS: 100 μL methanol | LC-MS/MS (ESI+) | - | 0.25 | - | [86] |
Cotinine | Oral fluid: 1 mL | PP: 10 μL acetonitrile (4 °C, 20 min); μSPE-BI-LOV: OASIS® HLB cartidges | HPLC-DAD | 1.5 | 3 | 95.9 | [97] |
Nicotine, Cotinine, Nornicotine, Anabasine, and Anatabine | Oral fluid: 0.2 mL | In-tube SPME: CP-Pora PLOT amine capillary column (60 cm × 0.32 mm i.d., 10 µm film thickness) | LC-MS (ESI+) | 0.015–0.040 | - | 83–98.2 | [98] |
Urine: 0.1 mL | 83.2–97.4 | ||||||
Cotinine | Urine: 0.02 mL | Automated on-line SPE: Extraction column (Inertsil ODS-3 33 mm × 4.6 mm, 5 μm) and 10-port switching valve (two-position microelectric actuator from Valco Instrument Co., Ltd. Houston, TX, USA) | LC-MS/MS (ESI+) | 0.005 | 0.02 | - | [99] |
Cotinine-N-glucuronide, Nicotine-N-glucuronide, trans-3′-hydroxycotinine-O-glucuronide, trans-3′-Hydroxycotinine, Cotinine, Nicotine | Liver and Placenta: 0.25 g | SLE: Isolute-supported liquid extraction columns | LC-MS/MS (ESI+) | 0.7–7 ng/mg | 1–10 ng/mg | 31.3–107 | [15] |
Nicotine, Cotinine, trans-3′-hydroxycotinine | Oral fluid: 0.2 mL | SPE: Oasis® MCX cartidges | GC-MS/MS (EI+) | 0.5 | 0.5 | 84.6–99.8 | [100] |
Tobacco-specific N-nitrosamines (TSNA) | |||||||
NNAL, NNAL-O-Gluc, and NNAL-N-Gluc | Urine: 0.08 mL | True Paper 96-well plates with PBS followed by Isolute SLE+ diatomaceous earth solid-phase extraction 96-well plates and Oasis® MCX SPE cartidges | LC-MS/MS (ESI+) | - | - | - | [35] |
Urine: 0.06 mL | True Paper 96-well plates with alcaline hydrolsis (0.5 M sodium hydroxide) followed by Isolute SLE+ diatomaceous earth solid-phase extraction 96-well plates and Oasis® MCX SPE cartidges | - | - | - | |||
Urine: 0.04 mL | True Paper 96-well plates with enzymatic hydrolsis (β-Glucoronidase) followed by Isolute SLE+ diatomaceous earth solid-phase extraction 96-well plates and Oasis® MCX SPE cartidges | - | - | - | |||
NNN | Toenails: 40–100 mg | Incubation: 2 mL 1 N sodium hydroxide (50 °C, overnight); SPE: Chem Elut and Oasis® MCX; NPE: Bond-Elut Silica cartridges | LC-MS/MS (ESI+) | - | - | - | [87] |
NNN, NNK, NNAL | Hair: 20 mg | Incubation: 1 mL 1 M NaOH, 2 M KCl aqueous solution (30 min at 80 °C); LLE (5 mL dichloromethane and 5 mL dichloromethane:isopropanol (75:25)) | LC-MS/MS (iFunnel ionization +) | - | 0.10–25 | - | [88] |
NNAL, NNN, NNK, NAB, NAT | Urine: 5 mL | Total TSNA procedure: Enzymatic hydrolisis (0.5 mL β-Glucoronidase); SPE (Chem Elut); MIP’s: NNAL MIP | LC-MS/MS (ESI+) | 0.00004–0.01 | - | 53–67 | [101] |
Free TSNA procedure: SPE (Chem Elut); MIP’s: NNAL MIP | |||||||
Thiocyanate | |||||||
Thiocyanate | Nasal fluid: ≈0.5 g | Direct injection | Ion chromatography (anionic) | 0.02 | - | - | [79] |
Thiocyanate | Hair: 20 mg | Incubation: 800 μL of water (10 min, 100 °C); LLE: 100 μL of dichloromethane | GC-MS (n.s.) | - | <0.5 | ≈80 to 90 | [96] |
Urine: 0.8 mL | LLE: 150 μL of alkylating solution (HTAB+ PFBBr in methanol: dichloromethane (1:2, v/v)) and 100 µL of a saturated sodium chloride solution | 0.06 | 1.0 | ||||
Oral fluid: 0.8 mL | LLE: 100 μL of dichloromethane and 100 µL of a saturated sodium chloride solution | - | <0.5 | ||||
Thiocyanate | Placenta: 5 g | ASE with water; diatomaceous earth mixture | Ion chromatography (anionic) | 0.01 | - | 92.7 | [102] |
Thiocyanate | Semen: n.s. | Direct injection | Ion chromatography (anionic) | 0.01 | 0.03 | - | [78] |
Polycyclic aromatic hydrocarbons (PAHs) | |||||||
Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene | Oral fluid: 0.5 mL | HS-SPME: (PDMS- 100 µm) | GC-MS/MS (EI+) | 0.0007–0.0222 | 0.0008–0.0264 | - | [103] |
1-hydroxypyrene, 9-hydroxyphenanthrene, Muconic acid, 3-Hydroxypropylmercapturic acid | Urine and Oral fluid: 0.3 mL | Direct injection | ASAP-Q-TOF-MS (API+) | 100–500 (for 1-hydroxypyrene, 9-hydroxyphenanthrene) | 1000–3000 (for 1-hydroxypyrene, 9-hydroxyphenanthrene) | - | [104] |
9-hydroxyphenanthrene, 1-hydroxypyrene | LLE: 1 mL of chloroform-methanol (1:2, v/v) | UHPLC-MS/MS (APCI+) | 10–50 | 100–500 | - | ||
PheT | Urine: 0.1 mL | V-bottomed 96-well collection plates with enzymatic hydrolisis (β-Glucoronidase and arylsulfatase) followed by Strata SDB-L SPE | GC-MS/MS (NICI) | - | - | - | [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, H.; Cruz-Vicente, P.; Rosado, T.; Barroso, M.; Passarinha, L.A.; Gallardo, E. Recent Developments in the Determination of Biomarkers of Tobacco Smoke Exposure in Biological Specimens: A Review. Int. J. Environ. Res. Public Health 2021, 18, 1768. https://doi.org/10.3390/ijerph18041768
Marques H, Cruz-Vicente P, Rosado T, Barroso M, Passarinha LA, Gallardo E. Recent Developments in the Determination of Biomarkers of Tobacco Smoke Exposure in Biological Specimens: A Review. International Journal of Environmental Research and Public Health. 2021; 18(4):1768. https://doi.org/10.3390/ijerph18041768
Chicago/Turabian StyleMarques, Hernâni, Pedro Cruz-Vicente, Tiago Rosado, Mário Barroso, Luís A. Passarinha, and Eugenia Gallardo. 2021. "Recent Developments in the Determination of Biomarkers of Tobacco Smoke Exposure in Biological Specimens: A Review" International Journal of Environmental Research and Public Health 18, no. 4: 1768. https://doi.org/10.3390/ijerph18041768
APA StyleMarques, H., Cruz-Vicente, P., Rosado, T., Barroso, M., Passarinha, L. A., & Gallardo, E. (2021). Recent Developments in the Determination of Biomarkers of Tobacco Smoke Exposure in Biological Specimens: A Review. International Journal of Environmental Research and Public Health, 18(4), 1768. https://doi.org/10.3390/ijerph18041768