The Motor Impact of the Static Balance in the Up Plank Position on Three Different Balls in Physical Activities of Physical Education Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Program of the Static Balance
2.4. Measures
2.5. Research Instruments
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Craciunescu, O.; Lungu, M.; Zarnescu, O.; Gaspar, A.; Moldovan, L. Polyurethane-based materials covered with natural polymers for medical applications. Mater. Plast. 2008, 45, 163–166. [Google Scholar]
- Dusa, F.S.; Badau, A.; Badau, D.; Trambitas, C.; Brinzaniuc, K. Investigating the deformation parameters of PVC fitness balls in relation to the height and body mass index of the users. Mater. Plast. 2017, 54, 606–609. [Google Scholar] [CrossRef]
- Badau, A.; Badau, D.; Enoiu, R.S. Evaluation of stable balance capacity by using bosu ball surfaces on different pressure levels. Mater. Plast. 2019, 56, 216–219. [Google Scholar] [CrossRef]
- Micarelli, A.; Viziano, A.; Granito, I.; Micarelli, R.X.; Felicioni, A.; Alessandrini, M. Changes in body composition in unilateral vestibular hypofunction: Relationships between bioelectrical impedance analysis and neuro-otological parameters. Eur. Arch. Oto-Rhino. Laryngol. 2021, 1–9. [Google Scholar] [CrossRef]
- Schedler, S.; Tenelsen, F.; Wich, L.; Muehlbauer, T. Effects of balance training on balance performance in youth: Role of training difficulty. BMC Sports Sci. Med. Rehabilit. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Muhlfay, G.; Fabian, Z.; Neagoe, R.; Horvath, K.U. Applications of 3D planning, plastic materials and additive manufacturing in functional rehabilitations in the head and neck surgery. Mater. Plast. 2018, 55, 431–433. [Google Scholar] [CrossRef]
- Rogers, M.W.; Mille, M.-L. Balance perturbations. Handb. Clin. Neurol. 2018, 159, 85–105. [Google Scholar]
- Paillard, T. Plasticity of the postural function to sport and/or motor experience. Neurosci. Biobehav. Rev. 2017, 72, 129–152. [Google Scholar] [CrossRef] [PubMed]
- Seidel, O.; Carius, D.; Kenville, R.; Ragert, P. Motor learning in a complex balance task and associated neuroplasticity: A comparison between endurance athletes and nonathletes. J. Neurophysiol. 2017, 118, 1849–1860. [Google Scholar] [CrossRef] [PubMed]
- Raicea, V.; Kovacs, J.; Moraru, L.; Suciu, H. Coronary sinus lactate as marker of myocardial ischemia in cardiac surgery: Correlation with morbidity and mortality after cardiac surgery/Lactatul din sinusul coronarian-marker al ischemiei miocardice în chirurgia cardiacă: Corelaţii cu morbiditatea şI mortalitatea postoperatorie. Rev. Romana Med. Lab. 2015, 23, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Halmaciu, I.; Suciu, B.A.; Trambitas, C.; Vunvulea, V.; Ivanescu, A.; Clipa, A.; Adascalitei, P.; Brinzaniuc, K.; Fodor, D. It is useful to use plastic anatomical models in teaching human anatomy? Mater. Plast. 2018, 55, 414–418. [Google Scholar] [CrossRef]
- Sarto, F.; Cona, G.; Chiossi, F.; Paoli, A.; Bisiacchi, P.; Patron, E.; Marcolin, G. Dual-tasking effects on static and dynamic postural balance performance: A comparison between endurance and team sport athletes. PeerJ 2020, 8, e9765. [Google Scholar] [CrossRef]
- Paillard, T. Relationship between sport expertise and postural skills. Front. Psychol. 2019, 10. [Google Scholar] [CrossRef]
- Zemková, E. Sport-specific balance. Sports Med. 2014, 44, 579–590. [Google Scholar] [CrossRef] [PubMed]
- De La Torre, J.; Marin, J.; Polo, M.; Marín, J.J. Applying the minimal detectable change of a static and dynamic balance test using a portable stabilometric platform to individually assess patients with balance disorders. Healthcare 2020, 8, 402. [Google Scholar] [CrossRef]
- Vaičienė, G.; Berškienė, K.; Slapsinskaite, A.; Mauricienė, V.; Razon, S. Not only static: Stabilization manoeuvres in dynamic exercises – A pilot study. PLoS ONE 2018, 13, e0201017. [Google Scholar] [CrossRef] [Green Version]
- Carter, J.M.; Beam, W.C.; Mcmahan, S.G.; Barr, M.L.; Brown, L.E. The effects of stability ball training on spinal stability in sedentary individuals. J. Strength Cond. Res. 2006, 20, 429–435. [Google Scholar] [CrossRef]
- Yu, W.; Cha, S.; Seo, S. The effect of ball exercise on the balance ability of young adults. J. Phys. Ther. Sci. 2017, 29, 2087–2089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, D. Effects of medicine ball training in fitness performance of high school physical education students. J. Phys. Educ. Recreat. Dance 2008, 79, 9. [Google Scholar] [CrossRef]
- Caballero, C.; Barbado, D.; Urbán, T.; García-Herrero, J.A.; Moreno, F.J. Functional variability in team-handball players during balance is revealed by non-linear measures and is related to age and expertise level. Entropy 2020, 22, 822. [Google Scholar] [CrossRef] [PubMed]
- Sekendiz, B.; Cug, M.; Korkusuz, F. Effects of Swiss-ball core strength training on strength, endurance, flexibility, and balance in sedentary women. J. Strength Cond. Res. 2010, 24, 3032–3040. [Google Scholar] [CrossRef] [Green Version]
- Willardson, J.M. Core stability training: Applications to sports conditioning programs. J. Strength Cond. Res. 2007, 21, 979–985. [Google Scholar] [CrossRef]
- Suciu, B.A.; Gurzu, S.; Marginean, L.; Milutin, D.; Halmaciu, I.; Jung, I.; Branzaniuc, K.; Molnar, C. Significant shrinkage of multifocal liver metastases and long-term survival in a patient with rectal cancer, after trans-arterial chemoembolization (TACE). Medicine 2015, 94, e1848. [Google Scholar] [CrossRef]
- Suciu, B.A.; Halmaciu, I.; Bud, V.; Copotoiu, C.; Fodor, D.R.P.; Trambitas, C.; Vunvulea, V.; Molnar, C.; Brinzaniuc, K. Using polypropylene for bronchial stump closure after pulmonary resections. Mater. Plast. 2017, 54, 520–522. [Google Scholar] [CrossRef]
- Ciobotaru, V.; Socolescu, A.M. Caracterizarea unor condensate salicilformaldehidaminice. Mater. Plast. 2008, 45, 236–240. [Google Scholar]
- Burgaz, E.; Gencoglu, O.; Goksuzoglu, M. Ondokuz Mayis University Carbon black reinforced natural rubber/butadiene rubber and natural rubber/butadiene rubber/styrene-butadiene rubber composites: Part II. Dynamic mechanical properties and fatigue behavior. Res. Eng. Struct. Mater. 2019, 5, 1–13. [Google Scholar] [CrossRef]
- Oprea, S.; Potolinca, O. Synthesis and characterization of polyurethane elastomers based on 4,5-dibromofluorescein and various crosslinkers. Mater. Plast. 2009, 6, 408–412. [Google Scholar]
- Gradinaru, L.M.; Vlad, S.; Drobota, M.; Spiridon, M.; Istrate, I. A Facile Activation Method for Improving the Wettability of Polyurethane Surfaces. Mater. Plast. 2019, 56, 416–420. [Google Scholar] [CrossRef]
- Ahmed, R.M.; Ibrahiem, A.A.; El-Bayoumi, A.S.; Atta, M.M. Structural, mechanical, and dielectric properties of polyvinylchloride/graphene nano platelets composites. Int. J. Polym. Anal. Charact. 2021, 26, 68–83. [Google Scholar] [CrossRef]
- Neto, C.F.; Neto, G.R.; Araújo, A.T.; Sousa, M.S.C.; Sousa, J.B.C.; Batista, G.R.; Reis, V.M.M.R. Can programmed or self-selected physical activity affect physical fitness of adolescents? J. Hum. Kinet. 2014, 43, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Dos S Andrade, M.; Fachina, R.J.; Cruz, W.; Benedito-Silva, A.A.; Da Silva, A.C.; De Lira, C.A. Strength field tests performance are correlated with isokinetic strength of shoulder rotator muscles in female handball players. J. Sports Med. Phys. Fit. 2014, 54, 403–409. [Google Scholar]
- Ia, A.R. Effects of center of mass kinematics on ball velocity during jump throwing in handball. MOJ Appl. Bionics Biomech. 2018, 2, 1. [Google Scholar] [CrossRef]
- Badau, D.; Badau, A. Identifying the incidence of exercise dependence attitudes, levels of body perception, and preferences for use of fitness technology monitoring. Int. J. Environ. Res. Public Health 2018, 15, 2614. [Google Scholar] [CrossRef] [Green Version]
- Jankauskiene, R.; Baceviciene, M.; Pajaujiene, S.; Badau, D. Are adolescent body image concerns associated with health-compromising physical activity behaviours? Int. J. Environ. Res. Public Health 2019, 16, 1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ene-Voiculescu, V.; Ene-Voiculescu, C.; Abramiuc, A. Current selection procedures in the naval pentathlon. Mircea cel Batran Naval Academy Scientific Bulletin 2017, 20, 420–422. [Google Scholar]
- Ene-Voiculescu, V.; Ene-Voiculescu, C. Psychomotricity: The body as self-expression. Mircea cel Batran Naval Acad. Sci. Bull. 2018, 21, 1–6. [Google Scholar]
- Nicola, P.; Ardeleanu, E.; Strat, L.; Baaj, T.; Gurgus, D.; Gadau, C.; Dorobantu, M.; Darabont, R.; Tilea, I.; Varga, A.; et al. Evaluation of biochemical and clinical parameters of hypertension with type 2 diabetes mellitus. Rev. Chim. 2018, 69, 2402–2406. [Google Scholar] [CrossRef]
- Omboni, S.; Posokhov, I.; Parati, G.; Rogoza, A.; Kotovskaya, Y.; Arystan, A.; Avolio, A.; Barkan, V.; Bulanova, N.; Muñoz, E.C.; et al. Ambulatory blood pressure and arterial stiffness web-based telemonitoring in patients at cardiovascular risk. First results of the VASOTENS (Vascular health ASsessment Of The hypertensive patients) Registry. J. Clin. Hypertens. 2019, 21, 1155–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Keeffe, B.T.; MacDonncha, C.; Donnelly, A.E. Students’ attitudes towards and experiences of the Youth-fit health-related fitness test battery. Eur. Phys. Educ. Rev. 2021, 27, 41–56. [Google Scholar] [CrossRef]
- Liebenson, C. Plank to push-up. J. Bodyw. Mov. Ther. 2016, 20, 937–938. [Google Scholar] [CrossRef]
- Tong, T.K.; Wu, S.; Nie, J. Sport-specific endurance plank test for evaluation of global core muscle function. Phys. Ther. Sport 2014, 15, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Strand, S.L.; Hjelm, J.; Shoepe, T.C.; Fajardo, M.A. Norms for an isometric muscle endurance test. J. Hum. Kinet. 2014, 40, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Oliva-Lozano, J.M.; Muyor, J.M. Core muscle activity during physical fitness exercises: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 4306. [Google Scholar] [CrossRef] [PubMed]
- Escamilla, R.F.; Lewis, C.; Pecson, A.; Imamura, R.; Andrews, J.R. Muscle activation among supine, prone, and side position exercises with and without a Swiss ball. Sports Health. Multidiscip. Approach 2016, 8, 372–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuruike, M.; Munson, M.; Hirose, N.; Nishime, R.S. Core stability muscle activity during standing lower body twisting exercises. Int. J. Sports Phys. Ther. 2020, 15, 1052–1060. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, N.P.; Santelices, O.Y.; Maghanoy, M.N.; Wisdom Valleser, C. Comparative analysis of the table tennis plastic ball and celluloid ball in terms of racket angle. In Proceedings of the 15th ITTF Sports Science Congress, Düsseldorf, Germany, 27–28 May 2017; pp. 131–143. [Google Scholar]
- Ismail, K.A.; Stronge, W. Viscoplastic analysis for direct impact of sports balls. Int. J. Non Linear Mech. 2012, 47, 16–21. [Google Scholar] [CrossRef]
- Yang, C.; Luo, N.; Cui, Q.; Chen, H.; Gao, Q.; Liang, M.; Zhou, S.; Yu, Q.; Zhang, J.; Zhang, M.; et al. Altered brain functional connectivity density in fast-ball sports athletes with early stage of motor training. Front. Psychol. 2020, 11. [Google Scholar] [CrossRef]
- Buszard, T.; Reid, M.; Masters, R.; Farrow, D. Scaling the equipment and play area in children’s sport to improve motor skill acquisition: A systematic review. Sports Med. 2016, 46, 829–843. [Google Scholar] [CrossRef] [Green Version]
- León-Quismondo, J.; García-Unanue, J.; Burillo, P. Best practices for fitness center business sustainability: A qualitative vision. Sustainability 2020, 12, 5067. [Google Scholar] [CrossRef]
- Thompson, P.D.; Baggish, A.L.; Franklin, B.; Jaworski, C.; Riebe, D. American College of sports medicine expert consensus statement to update recommendations for screening, staffing, and emergency policies to prevent cardiovascular events at health fitness facilities. Curr. Sports Med. Rep. 2020, 19, 223–231. [Google Scholar] [CrossRef]
- Gallo, P.M. A health fitness professional, group exercise instructor, and clinical exercise physiologist walk into a fitness facility. ACSM Health Fit. J. 2020, 24, 40–42. [Google Scholar] [CrossRef]
- Doria, M.; Nalebuff, B. Measuring competitive balance in sports. J. Quant. Anal. Sports. 2021, 17, 29–46. [Google Scholar] [CrossRef]
- Sember, V.; Grošelj, J.; Pajek, M. Balance tests in pre-adolescent children: Retest reliability, construct validity, and relative ability. Int. J. Environ. Res. Public Health 2020, 17, 5474. [Google Scholar] [CrossRef]
- Nepocatych, S.; Ketcham, C.J.; Vallabhajosula, S.; Balilionis, G. The effects of unstable surface balance training on postural sway, stability, functional ability and flexibility in women. J. Sports Med. Phys. Fit. 2016, 58, 27–34. [Google Scholar]
- Kaewkannate, K.; Kim, S. A comparison of wearable fitness devices. BMC Public Health 2016, 16, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Alfrey, L.; Gard, M. Figuring out the prevalence of fitness testing in physical education: A figurational analysis. Eur. Phys. Educ. Rev. 2019, 25, 187–202. [Google Scholar] [CrossRef]
- Cavaggioni, L.; Ongaro, L.; Zannin, E.; Iaia, F.M.; Alberti, G. Effects of different core exercises on respiratory parameters and abdominal strength. J. Phys. Ther. Sci. 2015, 27, 3249–3253. [Google Scholar] [CrossRef] [Green Version]
- Ervin, R.B.; Fryar, C.D.; Wang, C.-Y.; Miller, I.M.; Ogden, C.L. Strength and body weight in US children and adolescents. Pediatrics 2014, 134, e782–e789. [Google Scholar] [CrossRef] [Green Version]
- Sylvia, L.G.; Bernstein, E.E.; Hubbard, J.L.; Keating, L.; Anderson, E.J. Practical guide to measuring physical activity. J. Acad. Nutr. Diet. 2014, 114, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Araújo, L.S.; Wasley, D.; Redding, E.; Atkins, L.; Perkins, R.; Ginsborg, J.; Williamon, A. Fit to perform: A profile of higher education music students’ physical fitness. Front. Psychol. 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Osipov, A.; Ratmanskaya, T.; Nagovitsyn, R.; Zhuikova, S.; Iermakov, S. Increasing the level of cardiorespiratory and strength endurance of female students by means of mixed training (Kangoo–jumps fitness and resistance training). Phys. Act. Rev. 2020, 8, 38–47. [Google Scholar] [CrossRef]
- Liu, F.; Jones, A.; Evans, K.; Tsang, R.; Ao, L.M. Trunk muscle endurance in Chinese adults. J. Back Musculoskelet. Rehabil. 2018, 31, 593–602. [Google Scholar] [CrossRef]
- Calatayud, J.; Escriche-Escuder, A.; Cruz-Montecinos, C.; Andersen, L.L.; Pérez-Alenda, S.; Aiguadé, R.; Casaña, J.; Escuder, E.; Montecinos, C.; Alenda, P. Tolerability and muscle activity of core muscle exercises in chronic low-back pain. Int. J. Environ. Res. Public Health 2019, 16, 3509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calatayud, J.; Casaña, J.; Martín, F.; Jakobsen, M.D.; Andersen, L.L.; Colado, J.C. Electromyographic effect of using different attentional foci during the front plank exercise. Am. J. Phys. Med. Rehabil. 2019, 98, 26–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talaghir, L.; Mocanu, G.; Iconomescu, T.; Mindrescu, V. Development of speed manifestation forms during physical education classes at university. Human. Sport. Med. 2018, 18, 95–102. [Google Scholar] [CrossRef] [Green Version]
- De Paulo, T.R.S.; Winters-Stone, K.M.; Viezel, J.; Rossi, F.E.; Aro, B.L.; Trindade, A.C.A.C.; Codogno, J.S.; Junior, I.F.F. Comparing exercise responses to aerobic plus resistance training between postmenopausal breast cancer survivors undergoing aromatase inhibitor therapy and healthy women. Disabil. Rehabilit. 2018, 41, 2175–2182. [Google Scholar] [CrossRef]
- Blasimann, A.; Eberle, S.; Scuderi, M. Effekt eines Rumpfkräftigungsprogramms (inklusive Unterarm- und seitlichem Unterarmstütz) auf die Verletzungsrate von erwachsenen Fußballspielern: Eine systematische Literaturübersicht. Sportverletz. Sportschaden 2018, 32, 35–46. [Google Scholar] [CrossRef] [PubMed]
Positions | Types of Balls | Tests | X (s) | SD | Min. (s) | Max (s) | S-W |
---|---|---|---|---|---|---|---|
Up plank position with 2 support points (arms, legs) | on the medical ball | Ti | 30.068 | 11.233 | 8.62 | 56.12 | 0.817 |
Tf | 33.488 | 15.840 | 10.62 | 91.71 | 0.893 | ||
on the handball ball | Ti | 32.601 | 16.957 | 9.27 | 77.45 | 0.855 | |
Tf | 36.338 | 21.678 | 10.62 | 85.32 | 0.891 | ||
on the fitness ball | Ti | 49.210 | 26.737 | 15.11 | 98.27 | 0.907 | |
Tf | 54.190 | 33.207 | 18.58 | 120.27 | 0.875 | ||
Up plank position with 3 support points (right arm, left arm, legs) | on the medical ball | Ti | 51.232 | 12.429 | 31.12 | 75.13 | 0.907 |
Tf | 54.325 | 13.485 | 34.59 | 84.59 | 0.893 | ||
on the handball ball | Ti | 71.618 | 30.499 | 28.44 | 132.12 | 0.869 | |
Tf | 78.701 | 35.024 | 34.65 | 148.60 | 0.875 | ||
on the fitness ball | Ti | 87.000 | 35.303 | 34.78 | 156.13 | 0.808 | |
Tf | 91.839 | 40.778 | 48.92 | 174.25 | 0.821 |
Positions | Types of Balls | Tests | X (sec.) | DX (sec.) | DSD | t | p | SP |
---|---|---|---|---|---|---|---|---|
Up plank position with 2 support points (arms, legs) | on the medical ball | Ti | 30.068 | −3.420 | 10.963 | −2.161 | 0.036 | 0.826 |
Tf | 33.488 | |||||||
on the handball ball | Ti | 32.601 | −3.737 | 11.537 | −2.244 | 0.030 | 0.815 | |
Tf | 36.338 | |||||||
on the fitness ball | Ti | 49.210 | −4.980 | 16.411 | −2.103 | 0.041 | 0.897 | |
Tf | 54.190 | |||||||
Up plank position with 3 support points (right arm, left arm, legs) | on the medical ball | Ti | 51.232 | −3.093 | 9.6511 | −2.220 | 0.031 | 0.882 |
Tf | 54.325 | |||||||
on the handball ball | Ti | 71.618 | −7.082 | 19.811 | −2.477 | 0.017 | 0.873 | |
Tf | 78.701 | |||||||
on the fitness ball | Ti | 87.000 | −4.839 | 14.737 | −2.275 | 0.028 | 0.849 | |
Tf | 91.839 |
Groups | Positions | Types of Balls | Tests | X (s) | SD | Min. (s) | Max (s) | S-W |
---|---|---|---|---|---|---|---|---|
Individual sports (22 n) | Up plank position with 2 support points (arms, legs) | on the medical ball | Ti | 28.379 | 10.844 | 8.62 | 41.63 | 0.897 |
Tf | 34.768 | 19.569 | 10.62 | 91.71 | 0.892 | |||
on the handball ball | Ti | 31.262 | 12.360 | 10.62 | 50.87 | 0.866 | ||
Tf | 36.976 | 21.496 | 10.62 | 85.32 | 0.872 | |||
on the fitness ball | Ti | 48.058 | 24.745 | 15.11 | 91.71 | 0.903 | ||
Tf | 53.223 | 32.488 | 18.58 | 120.27 | 0.923 | |||
Up plank position with 3 support points (right arm, left arm, legs) | on the medical ball | Ti | 54.830 | 12.726 | 31.12 | 75.13 | 0.893 | |
Tf | 56.186 | 12.632 | 34.59 | 75.13 | 0.914 | |||
on the handball ball | Ti | 76.162 | 30.098 | 34.65 | 118.60 | 0.795 | ||
Tf | 78.819 | 38.531 | 34.65 | 148.60 | 0.807 | |||
on the fitness ball | Ti | 84.920 | 33.577 | 34.78 | 125.13 | 0.893 | ||
Tf | 93.690 | 41.973 | 48.92 | 174.25 | 0.869 | |||
Team sports (26 n) | Up plank position with 2 support points (arms, legs) | on the medical ball | Ti | 31.382 | 11.555 | 10.62 | 56.12 | 0.875 |
Tf | 32.493 | 12.517 | 10.62 | 56.97 | 0.808 | |||
on the handball ball | Ti | 33.642 | 19.992 | 9.27 | 77.45 | 0.821 | ||
Tf | 35.841 | 22.214 | 10.62 | 85.32 | 0.817 | |||
on the fitness ball | Ti | 50.106 | 28.623 | 18.58 | 98.27 | 0.866 | ||
Tf | 54.943 | 34.353 | 18.58 | 120.27 | 0.872 | |||
Up plank position with 3 support points (right arm, left arm, legs) | on the medical ball | Ti | 48.433 | 11.666 | 32.88 | 70.20 | 0.819 | |
Tf | 52.877 | 14.178 | 34.65 | 84.59 | 0.816 | |||
on the handball ball | Ti | 68.084 | 30.903 | 28.44 | 132.12 | 0.871 | ||
Tf | 78.609 | 32.793 | 34.65 | 132.02 | 0.869 | |||
on the fitness ball | Ti | 88.618 | 37.141 | 48.92 | 156.13 | 0.875 | ||
Tf | 90.400 | 40.569 | 48.92 | 174.25 | 0.866 |
Groups | Positions | Types of Balls | Tests | X (s) | DX (s) | DSD | t | p | SP |
---|---|---|---|---|---|---|---|---|---|
Individual sports (22 n) | Up plank position with 2 support points (arms, legs) | on the medical ball | Ti | 28.379 | −6.389 | 14.921 | −1.962 | 0.064 | 0.876 |
Tf | 34.768 | ||||||||
on the handball ball | Ti | 31.262 | −5.714 | 14.687 | −1.783 | 0.090 | 0.902 | ||
Tf | 36.976 | ||||||||
on the fitness ball | Ti | 48.058 | −5.165 | 15.774 | −1.501 | 0.149 | 0.858 | ||
Tf | 53.223 | ||||||||
Up plank position with 3 support points (right arm, left arm, legs) | on the medical ball | Ti | 54.830 | −1.355 | 5.470 | −1.136 | 0.269 | 0.802 | |
Tf | 56.186 | ||||||||
on the handball ball | Ti | 76.162 | −2.657 | 18.122 | −0.672 | 0.509 | 0.815 | ||
Tf | 78.819 | ||||||||
on the fitness ball | Ti | 84.920 | −8.770 | 20.602 | −1.951 | 0.065 | 0.862 | ||
Tf | 93.690 | ||||||||
Team sports (26 n) | Up plank position with 2 support points (arms, legs) | on the medical ball | Ti | 31.382 | −1.111 | 5.773 | −1.000 | 0.327 | 0.807 |
Tf | 32.493 | ||||||||
on the handball ball | Ti | 33.642 | −2.199 | 8.311 | −1.375 | 0.181 | 0.832 | ||
Tf | 35.841 | ||||||||
on the fitness ball | Ti | 50.106 | −4.836 | 17.187 | −1.462 | 0.156 | 0.848 | ||
Tf | 54.943 | ||||||||
Up plank position with 3 support points (right arm, left arm, legs) | on the medical ball | Ti | 48.433 | −4.444 | 11.875 | −1.945 | 0.063 | 0.836 | |
Tf | 52.877 | ||||||||
on the handball ball | Ti | 68.084 | −10.524 | 20.705 | −2.641 | 0.014 | 0.829 | ||
Tf | 78.609 | ||||||||
on the fitness ball | Ti | 88.618 | −1.782 | 6.629 | −1.397 | 0.174 | 0.842 | ||
Tf | 90.400 |
Positions | Types of Balls | Tests | X (s) | SD | t | p | SP |
---|---|---|---|---|---|---|---|
Up plank position with 2 support points (arms, legs) | on the medical ball | Ti: individual vs. team sports | −3.003 | 17.479 | −0.621 | 0.542 | 0.823 |
Tf: individual vs. team sports | 2.591 | 22.033 | 0.539 | 0.596 | 0.861 | ||
on the handball ball | Ti: individual vs. team sports | −1.102 | 24.522 | -0.206 | 0.839 | 0.826 | |
Tf: individual vs. team sports | 1.783 | 32.325 | 0.253 | 0.803 | 0.849 | ||
on the fitness ball | Ti: individual vs. team sports | 1.174 | 41.342 | 0.130 | 0.898 | 0.828 | |
Tf: individual vs. team sports | 0.121 | 53.633 | 0.010 | 0.992 | 0.841 | ||
Up plank position with 3 support points (right arm, left arm, legs) | on the medical ball | Ti: individual vs. team sports | 5.982 | 12.946 | 2.118 | 0.047 | 0.847 |
Tf: individual vs. team sports | 1.624 | 17.709 | 0.420 | 0.679 | 0.818 | ||
on the handball ball | Ti: individual vs. team sports | 7.611 | 42.180 | 0.827 | 0.418 | 0.852 | |
Tf: individual vs. team sports | 4.271 | 47.728 | 0.410 | 0.686 | 0.819 | ||
on the fitness ball | Ti: individual vs. team sports | 1.147 | 49.289 | 0.107 | 0.916 | 0.807 | |
Tf: individual vs. team sports | 8.488 | 53.216 | 0.731 | 0.473 | 0.817 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badau, D.; Badau, A.; Manolache, G.; Ene, M.I.; Neofit, A.; Grosu, V.T.; Tudor, V.; Sasu, R.; Moraru, R.; Moraru, L. The Motor Impact of the Static Balance in the Up Plank Position on Three Different Balls in Physical Activities of Physical Education Students. Int. J. Environ. Res. Public Health 2021, 18, 2043. https://doi.org/10.3390/ijerph18042043
Badau D, Badau A, Manolache G, Ene MI, Neofit A, Grosu VT, Tudor V, Sasu R, Moraru R, Moraru L. The Motor Impact of the Static Balance in the Up Plank Position on Three Different Balls in Physical Activities of Physical Education Students. International Journal of Environmental Research and Public Health. 2021; 18(4):2043. https://doi.org/10.3390/ijerph18042043
Chicago/Turabian StyleBadau, Dana, Adela Badau, Gabriel Manolache, Mircea Ion Ene, Adriana Neofit, Vlad Teodor Grosu, Virgil Tudor, Radu Sasu, Raluca Moraru, and Liviu Moraru. 2021. "The Motor Impact of the Static Balance in the Up Plank Position on Three Different Balls in Physical Activities of Physical Education Students" International Journal of Environmental Research and Public Health 18, no. 4: 2043. https://doi.org/10.3390/ijerph18042043
APA StyleBadau, D., Badau, A., Manolache, G., Ene, M. I., Neofit, A., Grosu, V. T., Tudor, V., Sasu, R., Moraru, R., & Moraru, L. (2021). The Motor Impact of the Static Balance in the Up Plank Position on Three Different Balls in Physical Activities of Physical Education Students. International Journal of Environmental Research and Public Health, 18(4), 2043. https://doi.org/10.3390/ijerph18042043