The Influence of Eating at Home on Dietary Diversity and Airway Inflammation in Portuguese School-Aged Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Diet and Minimum Dietary Diversity for Women (MDD-W) at Reproductive Age Assessment
2.3. Current Respiratory and Asthma Symptoms Assessment
2.4. Spirometry and Asthma Assessment
2.5. Fractional Exhaled Nitric Oxide (eNO) Assessment
2.6. Other Covariates
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Julia, V.; Macia, L.; Dombrowicz, D. The impact of diet on asthma and allergic diseases. Nat. Rev. Immunol. 2015, 15, 308–322. [Google Scholar] [CrossRef]
- Wypych, T.P.; Marsland, B.J.; Ubags, N.D.J. The Impact of Diet on Immunity and Respiratory Diseases. Ann. Am. Thorac. Soc. 2017, 14 (Suppl. 5), S339–S347. [Google Scholar] [CrossRef]
- Garcia-Larsen, V.; Del Giacco, S.R.; Moreira, A.; Bonini, M.; Charles, D.; Reeves, T.; Carlsen, K.-H.; Haahtela, T.; Bonini, S.; Fonseca, J.; et al. Asthma and dietary intake: An overview of systematic reviews. Allergy 2016, 71, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Varraso, R. Nutrition and Asthma. Curr. Allergy Asthma Rep. 2012, 12, 201–210. [Google Scholar] [CrossRef]
- Tapsell, L.C.; Neale, E.P.; Satija, A.; Hu, F.B. Foods, nutrients, and dietary patterns: Interconnections and implications for dietary guidelines. Adv. Nutr. 2016, 7, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Cunha, P.; Moreira, A.; Moreira, P.; Delgado, L. Dietary diversity and childhood asthma-Dietary acid load, an additional nutritional variable to consider. Allergy 2020, 75, 2418–2420. [Google Scholar] [CrossRef]
- Arimond, M.; Ruel, M.T. Dietary Diversity Is Associated with Child Nutritional Status: Evidence from 11 Demographic and Health Surveys. J. Nutr. 2004, 134, 2579–2585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drewnowski, A.; Henderson, S.A.; Shore, A.B.; Fischler, C.; Preziosi, P.; Hercberg, S. Diet quality and dietary diversity in France: Implications for the French paradox. J. Am. Diet. Assoc. 1996, 96, 663–669. [Google Scholar] [CrossRef]
- Kennedy, E. Dietary diversity, diet quality, and body weight regulation. Nutr. Rev. 2004, 62, S78–S81. [Google Scholar] [CrossRef]
- Burggraf, C.; Teuber, R.; Brosig, S.; Meier, T. Review of a priori dietary quality indices in relation to their construction criteria. Nutr. Rev. 2018, 76, 747–764. [Google Scholar] [CrossRef] [Green Version]
- Cunha, P.; Paciência, I.; Cavaleiro Rufo, J.; Castro Mendes, F.; Farraia, M.; Barros, R.; Silva, D.; Delgado, L.; Padrão, P.; Moreira, A.; et al. Dietary Acid Load: A Novel Nutritional Target in Overweight/Obese Children with Asthma? Nutrients 2019, 11, 2255. [Google Scholar] [CrossRef] [Green Version]
- Guilleminault, L.; Williams, E.J.; Scott, H.A.; Berthon, B.S.; Jensen, M.; Wood, L.G. Diet and Asthma: Is It Time to Adapt Our Message? Nutrients 2017, 9, 1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arvaniti, F.; Priftis, K.N.; Papadimitriou, A.; Papadopoulos, M.; Roma, E.; Kapsokefalou, M.; Anthracopoulos, M.B.; Panagiotakos, D.B. Adherence to the Mediterranean type of diet is associated with lower prevalence of asthma symptoms, among 10–12 years old children: The PANACEA study. Pediatric Allergy Immunol. 2011, 22, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Castro-Rodriguez, J.A.; Garcia-Marcos, L. What Are the Effects of a Mediterranean Diet on Allergies and Asthma in Children? Front. Pediatrics 2017, 5, 72. [Google Scholar] [CrossRef] [Green Version]
- Papamichael, M.M.; Itsiopoulos, C.; Susanto, N.H.; Erbas, B. Does adherence to the Mediterranean dietary pattern reduce asthma symptoms in children? A systematic review of observational studies. Public Health Nutr. 2017, 20, 2722–2734. [Google Scholar] [CrossRef]
- Barros, R.; Moreira, A.; Fonseca, J.; Ferraz de Oliveira, J.; Delgado, L.; Castel-Branco, M.G.; Haahtela, T.; Lopes, C.; Moreira, P. Adherence to the Mediterranean diet and fresh fruit intake are associated with improved asthma control. Allergy 2008, 63, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Andrianasolo, R.M.; Kesse-Guyot, E.; Adjibade, M.; Hercberg, S.; Galan, P.; Varraso, R. Associations between dietary scores with asthma symptoms and asthma control in adults. Eur. Respir. J. 2018, 52, 1702572. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Kesse-Guyot, E.; Dumas, O.; Garcia-Aymerich, J.; Leynaert, B.; Pison, C.; Le Moual, N.; Romieu, I.; Siroux, V.; Camargo, C.A.; et al. Longitudinal study of diet quality and change in asthma symptoms in adults, according to smoking status. Br. J. Nutr. 2017, 117, 562–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarazona-Meza, C.E.; Hanson, C.; Pollard, S.L.; Romero Rivero, K.M.; Galvez Davila, R.M.; Talegawkar, S.; Rojas, C.; Rice, J.L.; Checkley, W.; Hansel, N.N. Dietary patterns and asthma among Peruvian children and adolescents. BMC Pulm. Med. 2020, 20, 63. [Google Scholar] [CrossRef]
- Lachat, C.; Nago, E.; Verstraeten, R.; Roberfroid, D.; Van Camp, J.; Kolsteren, P. Eating out of home and its association with dietary intake: A systematic review of the evidence. Obes. Rev. 2012, 13, 329–346. [Google Scholar] [CrossRef]
- Goffe, L.; Rushton, S.; White, M.; Adamson, A.; Adams, J. Relationship between mean daily energy intake and frequency of consumption of out-of-home meals in the UK National Diet and Nutrition Survey. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 131. [Google Scholar] [CrossRef] [PubMed]
- Moreira, T.; Severo, M.; Oliveira, A.; Ramos, E.; Rodrigues, S.; Lopes, C. Eating out of home and dietary adequacy in preschool children. Br. J. Nutr. 2015, 114, 297–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Au, L.E.; Rosen, N.J.; Fenton, K.; Hecht, K.; Ritchie, L.D. Eating School Lunch Is Associated with Higher Diet Quality among Elementary School Students. J. Acad. Nutr. Diet. 2016, 116, 1817–1824. [Google Scholar] [CrossRef] [PubMed]
- Kinderknecht, K.; Harris, C.; Jones-Smith, J. Association of the Healthy, Hunger-Free Kids Act with Dietary Quality Among Children in the US National School Lunch Program. JAMA 2020, 324, 359–368. [Google Scholar] [CrossRef]
- Andrade, G.C.; Gombi-Vaca, M.F.; da Costa Louzada, M.L.; Azeredo, C.M.; Levy, R.B. The consumption of ultra-processed foods according to eating out occasions. Public Health Nutr. 2020, 23, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Onita, B.M.; Azeredo, C.M.; Jaime, P.C.; Levy, R.B.; Rauber, F.J.A. Eating context and its association with ultra-processed food consumption by British children. Appetite 2020, 157, 105007. [Google Scholar] [CrossRef]
- Women’s Dietary Diversity Project (WDDP) Study Group. Development of a Dichotomous Indicator for Population-Level Assessment of Dietary Diversity in Women of Reproductive Age. Curr. Dev. Nutr. 2017, 1. [Google Scholar] [CrossRef] [Green Version]
- Fung, T.T.; Isanaka, S.; Hu, F.B.; Willett, W.C. International food group–based diet quality and risk of coronary heart disease in men and women. Am. J. Clin. Nutr. 2018, 107, 120–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caswell, B.L.; Talegawkar, S.A.; Siamusantu, W.; West, K.P., Jr.; Palmer, A.C. A 10-Food Group Dietary Diversity Score Outperforms a 7-Food Group Score in Characterizing Seasonal Variability and Micronutrient Adequacy in Rural Zambian Children. J. Nutr. 2018, 148, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Paciência, I.; Cavaleiro Rufo, J.; Silva, D.; Martins, C.; Mendes, F.; Farraia, M.; Delgado, L.; de Oliveira Fernandes, E.; Padrão, P.; Moreira, P.; et al. Exposure to indoor endocrine-disrupting chemicals and childhood asthma and obesity. Allergy 2019, 74, 1277–1291. [Google Scholar] [CrossRef]
- Walker, J.L.; Ardouin, S.; Burrows, T. The validity of dietary assessment methods to accurately measure energy intake in children and adolescents who are overweight or obese: A systematic review. Eur. J. Clin. Nutr. 2018, 72, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Leech, R.M.; Worsley, A.; Timperio, A.; McNaughton, S.A. Understanding meal patterns: Definitions, methodology and impact on nutrient intake and diet quality. Nutr. Res. Rev. 2015, 28, 1–21. [Google Scholar] [CrossRef] [Green Version]
- FAO. Minimum Dietary Diversity for Women: A Guide for Measurement; FAO: Rome, Italy, 2016; Volume 82. [Google Scholar]
- Asher, M.I.; Keil, U.; Anderson, H.R.; Beasley, R.; Crane, J.; Martinez, F.; Mitchell, E.A.; Pearce, N.; Sibbald, B.; Stewart, A.W.; et al. International Study of Asthma and Allergies in Childhood (ISAAC): Rationale and methods. Eur. Respir. J. 1995, 8, 483–491. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Castro Mendes, F.; Paciência, I.; Rufo, J.C.; Silva, D.; Cunha, P.; Farraia, M.; Delgado, L.; Moreira, P.; Moreira, A. Asthma and body mass definitions affect estimates of association: Evidence from a community-based cross-sectional survey. ERJ Open Res. 2019, 5, 00076–02019. [Google Scholar] [CrossRef]
- Dweik, R.A.; Boggs, P.B.; Erzurum, S.C.; Irvin, C.G.; Leigh, M.W.; Lundberg, J.O.; Olin, A.C.; Plummer, A.L.; Taylor, D.R. An official ATS clinical practice guideline: Interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am. J. Respir. Crit. Care Med. 2011, 184, 602–615. [Google Scholar] [CrossRef] [Green Version]
- Kuczmarski, R.J.; Ogden, C.L.; Grummer-Strawn, L.M.; Flegal, K.M.; Guo, S.S.; Wei, R.; Johnson, C.J.H. CDC Growth Charts: United States Advance Data from Vital and Health Statistics; No. 314; National Center for Health Statistics: Hyattsville, MD, USA, 2000. [Google Scholar]
- Mancino, L.; Todd, J.E.; Guthrie, J.F.; Lin, B.-H. How Food Away from Home Affects Children’s Diet Quality; USDA: Washington, DC, USA, 2010. [Google Scholar]
- Ziauddeen, N.; Page, P.; Penney, T.L.; Nicholson, S.; Kirk, S.F.; Almiron-Roig, E. Eating at food outlets and leisure places and “on the go” is associated with less-healthy food choices than eating at home and in school in children: Cross-sectional data from the UK National Diet and Nutrition Survey Rolling Program (2008–2014). Am. J. Clin. Nutr. 2018, 107, 992–1003. [Google Scholar] [CrossRef] [PubMed]
- Taher, A.K.; Evans, N.; Evans, C.E.L. The cross-sectional relationships between consumption of takeaway food, eating meals outside the home and diet quality in British adolescents. Public Health Nutr. 2019, 22, 63–73. [Google Scholar] [CrossRef]
- Viegas, C.; Afonso, C.; Lima, J.P.; Mateus, M.P.; Rocha, A. Oferta alimentar de menus infantis em restaurantes de centros comerciais portugueses: Estudo qualitativo. J. Acta Port. Nutr. 2020, 21, 10–14. [Google Scholar] [CrossRef]
- Pereira-da-Silva, L.; Rêgo, C.; Pietrobelli, A. The Diet of Preschool Children in the Mediterranean Countries of the European Union: A Systematic Review. Int. J. Environ. Res. Public Health 2016, 13, 572. [Google Scholar] [CrossRef] [Green Version]
- Vepsäläinen, H.; Mikkilä, V.; Erkkola, M.; Broyles, S.T.; Chaput, J.P.; Hu, G.; Kuriyan, R.; Kurpad, A.; Lambert, E.V.; Maher, C.; et al. Association between home and school food environments and dietary patterns among 9–11-year-old children in 12 countries. Int. J. Obes. Suppl. 2015, 5, S66–S73. [Google Scholar] [CrossRef]
- Rodrigues, S.S.P.; Caraher, M.; Trichopoulou, A.; de Almeida, M.D.V. Portuguese households’ diet quality (adherence to Mediterranean food pattern and compliance with WHO population dietary goals): Trends, regional disparities and socioeconomic determinants. Eur. J. Clin. Nutr. 2008, 62, 1263–1272. [Google Scholar] [CrossRef] [Green Version]
- Cardinale, F.; Tesse, R.; Fucilli, C.; Loffredo, M.S.; Iacoviello, G.; Chinellato, I.; Armenio, L. Correlation between exhaled nitric oxide and dietary consumption of fats and antioxidants in children with asthma. J. Allergy Clin. Immunol. 2007, 119, 1268–1270. [Google Scholar] [CrossRef]
- Barros, R.; Moreira, A.; Fonseca, J.; Delgado, L.; Graça Castel-Branco, M.; Haahtela, T.; Lopes, C.; Moreira, P. Dietary intake of α-linolenic acid and low ratio of n-6:n-3 PUFA are associated with decreased exhaled NO and improved asthma control. Br. J. Nutr. 2011, 106, 441–450. [Google Scholar] [CrossRef] [Green Version]
- Tenero, L.; Piazza, M.; Zanoni, L.; Bodini, A.; Peroni, D.; Piacentini, G.L. Antioxidant supplementation and exhaled nitric oxide in children with asthma. Allergy Asthma Proc. 2016, 37, e8–e13. [Google Scholar] [CrossRef] [PubMed]
- Chambers, D.C.; Ayres, J.G. Effects of nitrogen dioxide exposure and ascorbic acid supplementation on exhaled nitric oxide in healthy human subjects. Thorax 2001, 56, 774–778. [Google Scholar] [CrossRef] [Green Version]
- Sudini, K.; Diette, G.B.; Breysse, P.N.; McCormack, M.C.; Bull, D.; Biswal, S.; Zhai, S.; Brereton, N.; Peng, R.D.; Matsui, E.C. A Randomized Controlled Trial of the Effect of Broccoli Sprouts on Antioxidant Gene Expression and Airway Inflammation in Asthmatics. J. Allergy Clin. Immunol. Pract. 2016, 4, 932–940. [Google Scholar] [CrossRef] [Green Version]
- Ricciardolo, F.L.; Di Stefano, A.; Sabatini, F.; Folkerts, G. Reactive nitrogen species in the respiratory tract. Eur. J. Pharmacol. 2006, 533, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Nagase, H. The role of fractional nitric oxide in exhaled breath (FeNO) in clinical practice of asthma. Rinsho Byori Jpn. J. Clin. Pathol. 2014, 62, 1226–1233. [Google Scholar]
- Silva, D.; Severo, M.; Paciência, I.; Rufo, J.; Martins, C.; Moreira, P.; Padrão, P.; Delgado, L.; Moreira, A. Setting definitions of childhood asthma in epidemiologic studies. Pediatric Allergy Immunol. Off. Publ. Eur. Soc. Pediatric Allergy Immunol. 2019, 30, 708–715. [Google Scholar] [CrossRef]
- Venter, C.; Greenhawt, M.; Meyer, R.W.; Agostoni, C.; Reese, I.; du Toit, G.; Feeney, M.; Maslin, K.; Nwaru, B.I.; Roduit, C.; et al. EAACI position paper on diet diversity in pregnancy, infancy and childhood: Novel concepts and implications for studies in allergy and asthma. Allergy 2020, 75, 497–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, C.Y.; Nkosi, V.; Wichmann, J. Respiratory Health Symptoms among Schoolchildren in Relation to Possible Food-Related Risk and Protective Factors. Int. J. Environ. Res. Public Health 2018, 15, 502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, J.-S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef]
- Biró, G.; Hulshof, K.F.; Ovesen, L.; Amorim Cruz, J.A. Selection of methodology to assess food intake. Eur. J. Clin. Nutr. 2002, 56 (Suppl. 2), S25–S32. [Google Scholar]
- Ortega, R.M.; Pérez-Rodrigo, C.; López-Sobaler, A.M. Dietary assessment methods: Dietary records. Nutr. Hosp. 2015, 31 (Suppl. 3), 38–45. [Google Scholar] [PubMed]
- Mattioli, V.; Zanolin, M.E.; Cazzoletti, L.; Bono, R.; Cerveri, I.; Ferrari, M.; Pirina, P.; Garcia-Larsen, V. Dietary flavonoids and respiratory diseases: A population-based multi-case–control study in Italian adults. Public Health Nutr. 2020, 23, 2548–2556. [Google Scholar] [CrossRef] [PubMed]
Participants Characteristics | G1, n = 193 (32.70) | G2, n = 204 (34.60) | G3, n = 135 (22.90) | G4, n = 58 (9.80) | Total, n = 590 | p-Value |
---|---|---|---|---|---|---|
Age (years) | 9.00 (8.00–9.00) | 9.00 (8.00–9.00) | 9.00 (8.00–9.00) | 9.00 (8.00–9.00) | 9.00 (8.00–9.00) | 0.967 |
Female sex, n (%) | 100 (51.80) | 91 (44.60) | 66 (48.90) | 32 (55.20) | 289 (49.0) | 0.381 |
Atopy 1, n (%) | 60 (31.40) | 76 (37.40) | 49 (36.80) | 19 (32.80) | 204 (34.90) | 0.586 |
Self-reported medical diagnosis of FA, n (%) | 13 (6.70) | 13 (6.40) | 5 (3.70) | 5 (8.60) | 36 (6.10) | 0.540 |
BMI categories 2, n (%) | 0.346 | |||||
Underweight | 7 (3.60) | 12 (5.90) | 4 (3.00) | 5 (8.60) | 20 (4.70) | |
Normal weight | 129 (66.80) | 151 (74.00) | 95 (70.40) | 42 (72.40) | 417 (70.7) | |
Overweight | 34 (17.60) | 23 (11.30) | 19 (14.10) | 5 (8.60) | 81 (13.70) | |
Obese | 23 (11.90) | 18 (8.80) | 17 (12.60) | 6 (10.3) | 64 (10.80) | |
Parental education 3, n (%) | 0.620 | |||||
≤9 | 48 (33.80) | 60 (36.10) | 40 (36.00) | 21 (44.70) | 169 (36.30) | |
≥10 and ≤12 | 39 (27.50) | 52 (31.30) | 38 (34.20) | 13 (27.70) | 142 (30.50) | |
>12 | 55 (38.70) | 54 (32.50) | 33 (29.70) | 13 (27.70) | 155 (33.30) | |
Maternal smoking during pregnancy, n (%) | 47 (26.40) | 50 (26.20) | 31 (25.00) | 14 (26.90) | 142 (26.10) | 0.991 |
Tobacco at home, n (%) | 56 (34.10) | 74 (43.00) | 40 (34.80) | 21 (41.20) | 191 (38.0) | 0.308 |
Child nutritional supplementation, n (%) | 22 (13.30) | 26 (14.20) | 18 (14.90) | 13 (25.00) | 79 (15.10) | 0.210 |
Increased levels of eNO 4, n (%) | 17 (8.90) | 32 (15.80) | 18 (13.50) | 8 (13.80) | 75 (12.80) | 0.230 |
Positive bronchodilation 5, n (%) | 13 (6.70) | 6 (2.90) | 9 (6.70) | 4 (6.90) | 32 (5.40) | 0.290 |
Asthma definitions, n (%) | ||||||
Ever | 11 (6.00) | 21 (10.70) | 5 (3.80) | 4 (7.10) | 41 (7.20) | 0.097 |
Medical diagnosis with asthma symptoms or +BD | 19 (9.80) | 20 (9.80) | 9 (6.70) | 6 (10.30) | 54 (9.20) | 0.725 |
Medical diagnosis and under asthma treatment | 9 (4.70) | 16 (7.80) | 4 (3.00) | 4 (6.90) | 33 (5.60) | 0.238 |
Lung function | ||||||
FVC, L | 1.90 (1.67–2.16) | 1.90 (1.71–2.14) | 1.89 (1.69–2.19) | 1.81 (1.64–2.06) | 1.89 (1.69–2.14) | 0.338 |
FVC, % predicted | 105.91 (96.94–116.77) | 103.09 (94.55–112.10) | 104.39 (95.90–114.44) | 109.68 (99.67; 118.20) | 104.66 (95.73–115.29) | 0.075 |
FEV1, L | 1.77 (1.57–1.97) | 1.75 (1.60–1.98) | 1.77 (1.59–1.95) | 1.67 (1.55–1.86) | 1.75 (1.58–1.95) | 0.446 |
FEV1, % predicted | 102.10 (91.46–112.67) | 99.09 (90.34–108.95) | 99.5 (93.52–108.28) | 103.73 (95.21–114.38) | 100.76 (91.65–110.20) | 0.202 |
FEF25-75, L/s | 2.36 (1.92–2.67) | 2.27 (1.94–2.61) | 2.23 (1.97–2.62) | 2.28 (2.03–2.59) | 2.28 (1.95–2.63) | 0.890 |
FEF25-75, % predicted | 93.80 (83.16–108.92) | 91.32 (81.76–109.42) | 94.65 (83.00–109.54) | 95.85 (81.88–104.79) | 93.76 (82.41–108.60) | 0.954 |
FEV1 reversibility, % | 3.80 (0.00; 7.45) | 2.98 (0.00–6.06) | 3.66 (0.00–6.71) | 2.68 (0.53–6.76) | 3.47 (0.00–6.70) | 0.863 |
FEF25-75 reversibility, % | 10.04 (2.09–18.94) | 10.27 (1.03.19.35) | 10.81 (2.73–20.59) | 10.27 2.62–16.50) | 10.27 (2.09–19.02) | 0.875 |
Asthma symptoms 6, n (%) | ||||||
Wheezing | 16 (8.30) | 20 (9.80) | 9 (6.70) | 5 (8.60) | 50 (8.50) | 0.791 |
Cough | 19 (9.80) | 25 (12.30) | 17 (12.60) | 8 (13.80) | 69 (11.70) | 0.788 |
Current respiratory symptoms 7, n (%) | ||||||
Breathing difficulties | 18 (10.60) | 24 (13.00) | 8 (6.60) | 4 (7.80) | 54 (10.20) | 0.311 |
Irritative cough | 47 (27.20) | 51 (27.40) | 46 (37.70) | 11 (21.60) | 155 (29.10) | 0.096 |
MDD-W indicator (≥5), n (%) | 155 (80.3) | 162 (79.4) | 91 (67.4) | 34 (58.60) | 442 (74.90) | 0.001 |
Concerning food score | 3.00 (2.00; 3.00) | 3.00 (2.00; 3.00) | 3.00 (2.00; 3.00) | 3.00 (2.00; 4.00) | 3.00 (2.00; 3.00) | 0.142 |
Total Energy Intake (kcal) | 2067.80 (1793.74–2340.08) | 2228.00 (1898.18–2515.23) | 2246.84 (1886.95–2511.18) | 2465.77 (1969.71–2862.35) | 2179.14 (1872.71–2487.68) | <0.001 |
Food Groups from MDD-W | G1, n = 193 (32.70) | G2, n = 204 (34.60) | G3, n= 135 (22.90) | G4, n = 58 (9.80) | Total, n = 590 | p-Value |
---|---|---|---|---|---|---|
Grains, white roots and tubers, and plantains | 193 (100) | 204 (100) | 135 (100) | 58 (100) | 590 (100) | -- |
Pulses (beans, peas, and lentils) | 51 (26.40) | 53 (26.00) | 34 (25.30) | 10 (17.20) | 148 (25.10) | 0.538 |
Nuts and seeds | 3 (1.60) | 6 (2.90) | 0 (0.00) | 1 (1.70) | 10 (1.70) | 0.235 |
Dairy | 148 (76.70) | 162 (79.40) | 110 (81.50) | 53 (91.40) | 473 (80.20) | 0.099 |
Meat, poultry, and fish | 188 (97.40) | 200 (98.00) | 132 (97.80) | 55 (94.80) | 575 (97.50) | 0.582 |
Eggs | 18 (9.30) | 16 (7.80) | 10 (7.40) | 4 (6.90) | 48 (8.10) | 0.895 |
Dark green leafy vegetables | 36 (18.70) | 46 (22.50) | 29 (21.50) | 12 (20.70) | 123 (20.80) | 0.812 |
Other vitamin A-rich fruits and vegetables | 66 (34.20) | 65 (31.90) | 34 (25.20) | 15 (25.90) | 180 (30.50) | 0.283 |
Other vegetables | 174 (90.20) | 173 (84.80) | 103 (76.30) | 34 (58.60) | 484 (82.00) | <0.001 |
Other fruits | 160 (82.90) | 168 (82.40) | 102 (75.60) | 33 (56.90) | 463 (78.50) | <0.001 |
Other oils and fats | 116 (60.10) | 116 (56.86) | 74 (54.81) | 37 (63.79) | 343 (58.13) | 0.611 |
Savory and fried snacks | 15 (7.77) | 13 (6.37) | 14 (10.37) | 5 (8.62) | 47 (7.97) | 0.612 |
Sweets | 129 (66.84) | 162 (79.41) | 99 (73.33) | 49 (84.48) | 439 (74.41) | 0.009 |
Sugar-sweetened beverages | 164 (84.97) | 180 (88.23) | 121 (89.63) | 52 (89.66) | 517 (87.62) | 0.564 |
Red meat and/or processed | 84 (43.52) | 93 (45.59) | 53 (39.26) | 25 (43.10) | 255 (43.22) | 0.720 |
MDD-W Score | G1 | G2 | G3 | G4 | p-Value |
---|---|---|---|---|---|
Crude | 5.37 (5.20; 5.55) * | 5.36 (5.19; 5.23) * | 5.10 (4.89; 5.30) | 4.74 (0.16; 4.42) | 0.002 |
Adjusted | 4.98 (4.46; 5.49) * | 4.88 (4.35; 5.42) * | 4.75 (4.20; 5.31) | 4.24 (3.63; 4.84) | 0.005 |
Outcomes | Crude Model | p-Value | Model 1 | p-Value | Model 2 | p-Value |
---|---|---|---|---|---|---|
Increased levels of eNO | 0.57 (0.34; 0.96) | 0.035 | 0.46 (0.24; 0.88) | 0.019 | 0.46 (0.24; 0.89) | 0.020 |
+BD | 0.72 (0.33; 1.56) | 0.723 | 0.57 (0.24; 1.35) | 0.203 | 0.56 (0.24; 1.33) | 0.562 |
Asthma definitions | ||||||
Eve | 0.83 (0.41; 1.68) | 0.832 | 1.16 (0.44; 3.01) | 0.769 | 1.19 (0.45; 3.13) | 0.727 |
Medical diagnosis with asthma symptoms or +BD | 0.95 (0.50; 1.81) | 0.881 | 1.03 (0.47; 2.22) | 0.950 | 1.02 (0.47; 2.21) | 0.965 |
Medical diagnosis and under asthma treatment | 0.76 (0.35; 1.63) | 0.478 | 1.17 (0.41; 3.37) | 0.770 | 1.18 (0.41; 3.41) | 0.761 |
Asthma symptoms | ||||||
Wheezing | 1.07 (0.54; 2.10) | 0.853 | 1.68 (0.66; 4.26) | 0.275 | 1.68 (0.66; 4.27) | 0.279 |
Cough | 1.12 (0.62; 2.03) | 0.699 | 2.39 (1.02; 5.60) | 0.046 | 2.48 (1.05; 5.87) | 0.038 |
Current respiratory symptoms | ||||||
Breathing difficulties | 0.76 (0.41; 1.39) | 0.370 | 0.90 (0.41; 1.96) | 0.792 | 0.89 (0.41; 1.96) | 0.782 |
Irritative cough | 1.11 (0.72; 1.71) | 0.631 | 1.57 (0.91; 2.68) | 0.103 | 1.58 (0.92; 2.71) | 0.098 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Castro-Mendes, F.; Cunha, P.; Paciência, I.; Cavaleiro Rufo, J.; Farraia, M.; Silva, D.; Padrão, P.; Delgado, L.; Moreira, A.; Moreira, P. The Influence of Eating at Home on Dietary Diversity and Airway Inflammation in Portuguese School-Aged Children. Int. J. Environ. Res. Public Health 2021, 18, 2646. https://doi.org/10.3390/ijerph18052646
de Castro-Mendes F, Cunha P, Paciência I, Cavaleiro Rufo J, Farraia M, Silva D, Padrão P, Delgado L, Moreira A, Moreira P. The Influence of Eating at Home on Dietary Diversity and Airway Inflammation in Portuguese School-Aged Children. International Journal of Environmental Research and Public Health. 2021; 18(5):2646. https://doi.org/10.3390/ijerph18052646
Chicago/Turabian Stylede Castro-Mendes, Francisca, Pedro Cunha, Inês Paciência, João Cavaleiro Rufo, Mariana Farraia, Diana Silva, Patrícia Padrão, Luís Delgado, André Moreira, and Pedro Moreira. 2021. "The Influence of Eating at Home on Dietary Diversity and Airway Inflammation in Portuguese School-Aged Children" International Journal of Environmental Research and Public Health 18, no. 5: 2646. https://doi.org/10.3390/ijerph18052646
APA Stylede Castro-Mendes, F., Cunha, P., Paciência, I., Cavaleiro Rufo, J., Farraia, M., Silva, D., Padrão, P., Delgado, L., Moreira, A., & Moreira, P. (2021). The Influence of Eating at Home on Dietary Diversity and Airway Inflammation in Portuguese School-Aged Children. International Journal of Environmental Research and Public Health, 18(5), 2646. https://doi.org/10.3390/ijerph18052646