Sustained Effects of High-Intensity Interval Exercise and Moderate-Intensity Continuous Exercise on Inhibitory Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Exercise Protocols
2.4. Flanker Task
2.5. Statistical Analysis
3. Results
3.1. Accuracy
3.2. RT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [Green Version]
- Ludyga, S.; Gerber, M.; Brand, S.; Holsboertrachsler, E.; Puhse, U. Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology 2016, 53, 1611–1626. [Google Scholar] [CrossRef]
- Kao, S.C.; Drollette, E.S.; Ritondale, J.P.; Khan, N.A.; Hillman, C.H. The acute effects of high-intensity interval training and moderate-intensity continuous exercise on declarative memory and inhibitory control. Psychol. Sport Exerc. 2018, 38, 90–99. [Google Scholar] [CrossRef]
- Leahy, A.A.; Mavilidi, M.F.; Smith, J.J.; Hillman, C.H.; Eather, N.; Barker, D.; Lubans, D.R. Review of High-Intensity Interval Training for Cognitive and Mental Health in Youth. Med. Sci. Sports Exerc. 2020, 52, 2224–2234. [Google Scholar] [CrossRef] [PubMed]
- Haverkamp, B.F.; Wiersma, R.; Vertessen, K.; van Ewijk, H.; Oosterlaan, J.; Hartman, E. Effects of physical activity interventions on cognitive outcomes and academic performance in adolescents and young adults: A meta-analysis. J. Sports Sci. 2020, 38, 2637–2660. [Google Scholar] [CrossRef]
- Lambrick, D.; Stoner, L.; Grigg, R.; Faulkner, J. Effects of continuous and intermittent exercise on executive function in children aged 8-10 years. Psychophysiology 2016, 53, 1335–1342. [Google Scholar] [CrossRef] [Green Version]
- Paschen, L.; Lehmann, T.; Kehne, M.; Baumeister, J. Effects of Acute Physical Exercise with Low and High Cognitive Demands on Executive Functions in Children: A Systematic Review. Pediatric Exerc. Sci. 2019, 31, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Wohlwend, M.; Olsen, A.; Håberg, A.K.; Palmer, H.S. Exercise Intensity-Dependent Effects on Cognitive Control Function during and after Acute Treadmill Running in Young Healthy Adults. Front. Psychol. 2017, 8, 406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.H.; Karageorghis, C.I.; Wang, C.C.; Chu, C.H.; Kao, S.C.; Hung, T.M.; Chang, Y.-K. Effects of acute aerobic and resistance exercise on executive function: An ERP study. J. Sci. Med. Sport 2019, 22, 1367–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peiffer, R.; Darby, L.A.; Fullenkamp, A.; Morgan, A.L. Effects of Acute Aerobic Exercise on Executive Function in Older Women. J. Sports Sci. Med. 2015, 14, 574–583. [Google Scholar] [PubMed]
- Yanagisawa, H.; Dan, I.; Tsuzuki, D.; Kato, M.; Okamoto, M.; Kyutoku, Y.; Soya, H. Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage 2010, 50, 1702–1710. [Google Scholar] [CrossRef] [PubMed]
- Kamijo, K.; Hayashi, Y.; Sakai, T.; Yahiro, T.; Tanaka, K.; Nishihira, Y. Acute effects of aerobic exercise on cognitive function in older adults. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2009, 64, 356–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashihara, K.; Maruyama, T.; Murota, M.; Nakahara, Y. Positive effects of acute and moderate physical exercise on cognitive function. J. Physiol. Anthropol. 2009, 28, 155–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehren, A.; Diaz Luque, C.; Brandes, M.; Lam, A.P.; Thiel, C.M.; Philipsen, A.; Özyurt, J. Intensity-Dependent Effects of Acute Exercise on Executive Function. Neural Plast. 2019, 2019, 8608317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soga, K.; Shishido, T.; Nagatomi, R. Executive function during and after acute moderate aerobic exercise in adolescents. Psychol. Sport Exerc. 2015, 16, 7–17. [Google Scholar] [CrossRef]
- Schwarck, S.; Schmicker, M.; Dordevic, M.; Rehfeld, K.; Müller, N.; Müller, P. Inter-Individual Differences in Cognitive Response to a Single Bout of Physical Exercise-A Randomized Controlled Cross-Over Study. J. Clin. Med. 2019, 8, 1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stroth, S.; Kubesch, S.; Dieterle, K.; Ruchsow, M.; Heim, R.; Kiefer, M. Physical fitness, but not acute exercise modulates event-related potential indices for executive control in healthy adolescents. Brain Res. 2009, 1269, 114–124. [Google Scholar] [CrossRef]
- Eddolls, W.T.B.; McNarry, M.A.; Stratton, G.; Winn, C.O.N.; Mackintosh, K.A. High-Intensity Interval Training Interventions in Children and Adolescents: A Systematic Review. Sports Med. (Auckl. NZ) 2017, 47, 2363–2374. [Google Scholar] [CrossRef] [Green Version]
- Costigan, S.A.; Eather, N.; Plotnikoff, R.C.; Hillman, C.H.; Lubans, D.R. High-Intensity Interval Training for Cognitive and Mental Health in Adolescents. Med. Sci. Sports Exerc. 2016, 48, 1985–1993. [Google Scholar] [CrossRef]
- Tsukamoto, H.; Suga, T.; Takenaka, S.; Tanaka, D.; Takeuchi, T.; Hamaoka, T.; Isaka, T.; Hashimoto, T. Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise. Physiol. Behav. 2016, 155, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Kao, S.C.; Westfall, D.R.; Soneson, J.; Gurd, B.; Hillman, C.H. Comparison of the acute effects of high-intensity interval training and continuous aerobic walking on inhibitory control. Psychophysiology 2017, 54, 1335–1345. [Google Scholar] [CrossRef]
- Cooper, S.B.; Bandelow, S.; Nute, M.L.; Dring, K.J.; Stannard, R.L.; Morris, J.G.; Nevill, M.E. Sprint-based exercise and cognitive function in adolescents. Prev. Med. Rep. 2016, 4, 155–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, S.B.; Dring, K.J.; Morris, J.G.; Sunderland, C.; Bandelow, S.; Nevill, M.E. High intensity intermittent games-based activity and adolescents’ cognition: Moderating effect of physical fitness. BMC Public Health 2018, 18, 603. [Google Scholar] [CrossRef]
- Ludyga, S.; Puhse, U.; Lucchi, S.; Marti, J.; Gerber, M. Immediate and sustained effects of intermittent exercise on inhibitory control and task-related heart rate variability in adolescents. J. Sci. Med. Sport 2019, 22, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Netz, Y.; Abu-Rukun, M.; Tsuk, S.; Dwolatzky, T.; Carasso, R.; Levin, O.; Dunsky, A. Acute aerobic activity enhances response inhibition for less than 30 min. Brain Cogn. 2016, 109, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.K.; Labban, J.D.; Gapin, J.I.; Etnier, J.L. The effects of acute exercise on cognitive performance: A meta-analysis. Brain Res. 2012, 1453, 87–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, S.; Reading, J.; Shephard, R.J. Revision of the Physical Activity Readiness Questionnaire (PAR-Q). Can. J. Sport Sci. J. Can. Des Sci. Sport 1992, 17, 338–345. [Google Scholar] [PubMed]
- Mahon, A.D.; Marjerrison, A.D.; Lee, J.D.; Woodruff, M.E.; Hanna, L.E. Evaluating the prediction of maximal heart rate in children and adolescents. Res. Q. Exerc. Sport 2010, 81, 466–471. [Google Scholar] [CrossRef]
- Alves, C.R.; Tessaro, V.H.; Teixeira, L.A.; Murakava, K.; Roschel, H.; Gualano, B.; Takito, M.Y. Influence of acute high-intensity aerobic interval exercise bout on selective attention and short-term memory tasks. Percept. Motor Skills 2014, 118, 63–72. [Google Scholar] [CrossRef]
- Kamijo, K.; Nishihira, Y.; Higashiura, T.; Kuroiwa, K. The interactive effect of exercise intensity and task difficulty on human cognitive processing. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 2007, 65, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Borg, G. Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 1970, 2, 92–98. [Google Scholar] [PubMed]
- Eriksen, B.A.; Eriksen, C.W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 1974, 16, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Hillman, C.H.; Snook, E.M.; Jerome, G.J. Acute cardiovascular exercise and executive control function. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 2003, 48, 307–314. [Google Scholar] [CrossRef]
- Hillman, C.H.; Pontifex, M.B.; Raine, L.B.; Castelli, D.M.; Hall, E.E.; Kramer, A.F. The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience 2009, 159, 1044–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spencer, K.M.; Coles, M.G. The lateralized readiness potential: Relationship between human data and response activation in a connectionist model. Psychophysiology 1999, 36, 364–370. [Google Scholar] [CrossRef]
- Fan, J.; McCandliss, B.D.; Sommer, T.; Raz, A.; Posner, M.I. Testing the efficiency and independence of attentional networks. J. Cogn. Neurosci. 2002, 14, 340–347. [Google Scholar] [CrossRef]
- Yerkes, R.M.; Dodson, J.D. The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. 1908, 18, 459–482. [Google Scholar] [CrossRef] [Green Version]
- Querido, J.S.; Sheel, A.W. Regulation of cerebral blood flow during exercise. Sports Med. (Auckl. NZ) 2007, 37, 765–782. [Google Scholar] [CrossRef] [PubMed]
- Audiffren, M.; Tomporowski, P.D.; Zagrodnik, J. Acute aerobic exercise and information processing: Modulation of executive control in a Random Number Generation task. Acta Psychol. (Amst.) 2009, 132, 85–95. [Google Scholar] [CrossRef]
- Hsieh, S.S.; Chueh, T.Y.; Huang, C.J.; Kao, S.C.; Hillman, C.H.; Chang, Y.K.; Hung, T.M. Systematic review of the acute and chronic effects of high-intensity interval training on executive function across the lifespan. J. Sports Sci. 2020, 1–13. [Google Scholar] [CrossRef]
- Hashimoto, T.; Tsukamoto, H.; Takenaka, S.; Olesen, N.D.; Petersen, L.G.; Sørensen, H.; Nielsen, H.B.; Secher, N.H.; Ogoh, S. Maintained exercise-enhanced brain executive function related to cerebral lactate metabolism in men. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2018, 32, 1417–1427. [Google Scholar] [CrossRef] [Green Version]
- Weng, T.B.; Pierce, G.L.; Darling, W.G.; Voss, M.W. Differential Effects of Acute Exercise on Distinct Aspects of Executive Function. Med. Sci. Sports Exerc. 2015, 47, 1460–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gothe, N.; Pontifex, M.B.; Hillman, C.; McAuley, E. The acute effects of yoga on executive function. J. Phys. Act. Health 2013, 10, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Medicine ACoS. ACSM’s Guidelines for Exercise Testing and Prescription, 9th ed.; Williams & Wilkins: Lippincott, PA, USA, 2014. [Google Scholar]
- Drollette, E.S.; Scudder, M.R.; Raine, L.B.; Moore, R.D.; Saliba, B.J.; Pontifex, M.B.; Hillman, C.H. Acute exercise facilitates brain function and cognition in children who need it most: An ERP study of individual differences in inhibitory control capacity. Dev. Cogn. Neurosci. 2014, 7, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Themanson, J.R.; Hillman, C.H. Cardiorespiratory fitness and acute aerobic exercise effects on neuroelectric and behavioral measures of action monitoring. Neuroscience 2006, 141, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Colcombe, S.J.; Kramer, A.F.; Erickson, K.I.; Scalf, P.; McAuley, E.; Cohen, N.J.; Webb, A.; Jerome, G.J.; Marquez, D.X.; Elavsky, S. Cardiovascular fitness, cortical plasticity, and aging. Proc. Natl. Acad. Sci. USA 2004, 101, 3316–3321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. [Google Scholar] [CrossRef]
- Mcmorris, T.; Turner, A.; Hale, B.J.; Sproule, J.J.E.-C.I. Beyond the Catecholamines Hypothesis for an Acute Exercise–Cognition Interaction. Exerc.-Cogn. Interact. Neurosci. Perspect. 2016, 65–103. [Google Scholar] [CrossRef]
- Mcmorris, T.; Tomporowski, P.D.; Audiffren, M. Exercise and Cognitive Function: A Neuroendocrinological Explanation; John Wiley Sons: Chichester, UK, 2009; pp. 41–68. [Google Scholar] [CrossRef]
- Kemppainen, J.; Aalto, S.; Fujimoto, T.; Kalliokoski, K.K.; Långsjö, J.; Oikonen, V.; Rinne, J.; Nuutila, P.; Knuuti, J. High intensity exercise decreases global brain glucose uptake in humans. J. Physiol. 2005, 568 Pt 1, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Van Hall, G.; Strømstad, M.; Rasmussen, P.; Jans, O.; Zaar, M.; Gam, C.; Quistorff, B.; Secher, N.H.; Nielsen, H.B. Blood lactate is an important energy source for the human brain. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2009, 29, 1121–1129. [Google Scholar] [CrossRef]
- Bailey, C.E. Cognitive accuracy and intelligent executive function in the brain and in business. Ann. N. Y. Acad. Sci. 2007, 1118, 122–141. [Google Scholar] [CrossRef] [PubMed]
Variable | n = 41 |
---|---|
Gender (male/female) | 21/20 |
Age (years) | 20.19 ± 1.36 |
Height (cm) | 171.34 ± 9.46 |
Weight (kg) | 62.04 ± 12.18 |
BMI (kg/m2) | 20.94 ± 2.62 |
Estimated HRmax (bpm) | 193.83 ± 0.95 |
Mean HIIE HR (bpm) | 157.3 ± 8.69 |
Mean MICE HR (bpm) | 134.80 ± 2.85 |
HIIE RPE | 13.41 ± 1.92 |
MICE RPE | 10.85 ± 1.90 |
Congruent | Incongruent | Interference Score | |||||||
---|---|---|---|---|---|---|---|---|---|
HIIE | MICE | Control | HIIE | MICE | Control | HIIE | MICE | Control | |
Accuracy t0 | 98.54 ± 2.89 | 98.21 ± 3.08 | 96.99 ± 4.27 | 88.62 ± 11.15 | 88.70 ± 9.37 | 85.28 ± 15.09 | 9.92 ± 10.97 | 9.51 ± 9.59 | 11.71 ± 14.09 |
t1 | 97.72 ± 5.79 | 99.11 ± 2.24 | 97.80 ± 4.38 | 91.14 ± 8.68 | 90.65 ± 7.39 | 88.29 ± 9.92 | 6.59 ± 8.96 | 8.46 ± 6.67 | 9.51 ± 8.93 |
t2 | 98.05 ± 2.47 | 98.29 ± 3.66 | 98.54 ± 2.69 | 91.79 ± 8.13 | 90.41 ± 10.28 | 88.78 ± 10.51 | 6.26 ± 7.89 | 7.89 ± 9.45 | 9.76 ± 9.53 |
t3 | 98.62 ± 2.68 | 98.37 ± 2.80 | 98.78 ± 2.08 | 92.11 ± 8.22 | 90.41 ± 8.00 | 87.89 ± 9.74 | 6.50 ± 8.46 | 7.97 ± 7.49 | 10.89 ± 9.52 |
t4 | 97.89 ± 4.20 | 98.05 ± 5.82 | 98.54 ± 2.79 | 90.73 ± 9.35 | 89.51 ± 8.52 | 88.54 ± 10.62 | 7.15 ± 9.05 | 8.54 ± 7.60 | 10.00 ± 9.94 |
RT | |||||||||
t0 | 384.10 ± 33.35 | 385.41 ± 34.00 | 385.59 ± 33.15 | 455.94 ± 38.95 | 458.82 ± 44.94 | 456.10 ± 32.58 | 71.84 ± 20.71 | 73.41 ± 27.38 | 70.51 ± 18.69 |
t1 | 379.81 ± 30.01 | 388.11 ± 34.31 | 384.64 ± 35.64 | 440.03 ± 31.86 | 454.15 ± 43.72 | 451.82 ± 38.85 | 60.22 ± 17.54 | 66.04 ± 23.17 | 67.18 ± 20.84 |
t2 | 378.39 ± 32.10 | 386.29 ± 34.12 | 381.98 ± 38.60 | 440.51 ± 36.19 | 453.19 ± 41.43 | 446.28 ± 39.52 | 62.12 ± 20.50 | 66.90 ± 22.47 | 64.31 ± 18.86 |
t3 | 379.90 ± 29.79 | 386.19 ± 30.60 | 378.08 ± 32.59 | 440.03 ± 33.54 | 450.47 ± 41.62 | 448.55 ± 37.09 | 60.13 ± 20.32 | 64.19 ± 23.68 | 70.47 ± 22.62 |
t4 | 380.98 ± 28.98 | 384.32 ± 31.33 | 375.42 ± 32.23 | 441.31 ± 32.25 | 449.25 ± 36.51 | 442.63 ± 36.73 | 60.32 ± 18.43 | 64.93 ± 23.80 | 67.21 ± 20.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, S.; Mou, H.; Qiu, F. Sustained Effects of High-Intensity Interval Exercise and Moderate-Intensity Continuous Exercise on Inhibitory Control. Int. J. Environ. Res. Public Health 2021, 18, 2687. https://doi.org/10.3390/ijerph18052687
Tian S, Mou H, Qiu F. Sustained Effects of High-Intensity Interval Exercise and Moderate-Intensity Continuous Exercise on Inhibitory Control. International Journal of Environmental Research and Public Health. 2021; 18(5):2687. https://doi.org/10.3390/ijerph18052687
Chicago/Turabian StyleTian, Shudong, Hong Mou, and Fanghui Qiu. 2021. "Sustained Effects of High-Intensity Interval Exercise and Moderate-Intensity Continuous Exercise on Inhibitory Control" International Journal of Environmental Research and Public Health 18, no. 5: 2687. https://doi.org/10.3390/ijerph18052687
APA StyleTian, S., Mou, H., & Qiu, F. (2021). Sustained Effects of High-Intensity Interval Exercise and Moderate-Intensity Continuous Exercise on Inhibitory Control. International Journal of Environmental Research and Public Health, 18(5), 2687. https://doi.org/10.3390/ijerph18052687