Short Communication: Integrase Strand Transfer Inhibitors Drug Resistance Mutations in Puerto Rico HIV-Positive Individuals
Abstract
:1. Introduction
2. Methods
2.1. Ethics Statement
2.2. Nucleotide Acid Purification and PCR Amplification
2.3. Sequencing Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Puerto Rico HIV/AIDS Surveillance Summary. 2019. Available online: http://www.salud.gov.pr/Estadisticas-Registros-y-Publicaciones/Estadisticas%20VIH/Estad%C3%ADsticas%20Generales/2019/Agosto%202019/Puerto%20Rico%20HIVAIDS%20Surveillance%20Summary.pdf (accessed on 16 December 2020).
- Informe Semestal de la Vigilancia de VIH en Puerto Rico. 2018. Available online: http://www.salud.gov.pr/Estadisticas-Registros-y-Publicaciones/Estadisticas%20VIH/Bolet%C3%ADn%20Semestral%20de%20la%20Vigilancia%20del%20VIH/Infor me%20Semestral%20-%20Diciembre%202017.pdf (accessed on 16 December 2020).
- Cubano, L.A.; Cumba, L.; del Sepulveda-Torres, L.C.; Boukli, N.; Rios-Olivares, E. Prevalence of drug resistance and associated mutations in a population of Hiv-1+ Puerto Ricans in 2005. Bol. Asoc. Med. P. R. 2010, 102, 13–17. [Google Scholar]
- Sepulveda-Torres, L.d.C.; Rishishwar, L.; Rogers, M.L.; Rios-Olivares, E.; Boukli, N.; Jordan, I.K.; Cubano, L.A. A decade of viral mutations and associated drug resistance in a population of HIV-1+ Puerto Ricans: 2002–2011. PLoS ONE 2017, 12, e0177452. [Google Scholar] [CrossRef]
- Sepulveda-Torres, L.d.C.; De La Rosa, A.; Cumba, L.; Boukli, N.; Rios-Olivares, E.; Cubano, L.A. Prevalence of Drug Resistance and Associated Mutations in a Population of HIV-1(+) Puerto Ricans: 2006–2010. AIDS Res. Treat. 2012, 2012, 934041. [Google Scholar] [CrossRef] [PubMed]
- Jimmy, B.; Jose, J. Patient medication adherence: Measures in daily practice. Oman Med. J. 2011, 26, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Nachega, J.B.; Marconi, V.C.; van Zyl, G.U.; Gardner, E.M.; Preiser, W.; Hong, S.Y.; Mills, E.J.; Gross, R. HIV treatment adherence, drug resistance, virologic failure: Evolving concepts. Infect. Disord. Drug Targets 2011, 11, 167–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iacob, S.A.; Iacob, D.G.; Jugulete, G. Improving the Adherence to Antiretroviral Therapy, a Difficult but Essential Task for a Successful HIV Treatment-Clinical Points of View and Practical Considerations. Front. Pharmacol. 2017, 8, 831. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Patterson, A.; Taylor, T.; Rank, C.; Halverson, J.; Capina, R.; Brooks, J.; Sandstrom, P. Prevalence of Primary Drug Resistance Against HIV-1 Integrase Inhibitors in Canada. J. Acquir. Immune Defic. Syndr. 2018, 78, e1–e3. [Google Scholar] [CrossRef] [Green Version]
- Goethals, O.; Vos, A.; Van Ginderen, M.; Geluykens, P.; Smits, V.; Schols, D.; Hertogs, K.; Clayton, R. Primary mutations selected in vitro with raltegravir confer large fold changes in susceptibility to first-generation integrase inhibitors, but minor fold changes to inhibitors with second-generation resistance profiles. Virology 2010, 402, 338–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, S.; Song, I.; Borland, J.; Chen, S.; Lou, Y.; Fujiwara, T.; Piscitelli, S.C. Pharmacokinetics and safety of S/GSK1349572, a next-generation HIV integrase inhibitor, in healthy volunteers. Antimicrob. Agents Chemother. 2010, 54, 254–258. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, R.; Hluhanich, R.; McColl, D.M.; Miller, M.D.; White, K.L. The combined anti-HIV-1 activities of emtricitabine and tenofovir plus the integrase inhibitor elvitegravir or raltegravir show high levels of synergy in vitro. Antimicrob. Agents Chemother. 2014, 58, 6145–6150. [Google Scholar] [CrossRef] [Green Version]
- Mouscadet, J.F.; Tchertanov, L. Raltegravir: Molecular basis of its mechanism of action. Eur. J. Med. Res. 2009, 14, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Shimura, K.; Kodama, E.N. Elvitegravir: A new HIV integrase inhibitor. Antivir. Chem. Chemother. 2009, 20, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Rhee, S.Y.; Gonzales, M.J.; Kantor, R.; Betts, B.J.; Ravela, J.; Shafer, R.W. Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Res. 2003, 31, 298–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fantauzzi, A.; Mezzaroma, I. Dolutegravir: Clinical efficacy and role in HIV therapy. Ther. Adv. Chronic Dis. 2014, 5, 164–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cihlar, T.; Fordyce, M. Current status and prospects of HIV treatment. Curr. Opin. Virol. 2016, 18, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Hill, K.J.; Rogers, L.C.; Njenda, D.T.; Burke, D.H.; Sarafianos, S.G.; Sonnerborg, A.; Neogi, U.; Singh, K. Strain-specific effect on biphasic DNA binding by HIV-1 integrase. AIDS 2019, 33, 588–592. [Google Scholar] [CrossRef] [PubMed]
- D’Abbraccio, M.; Busto, A.; De Marco, M.; Figoni, M.; Maddaloni, A.; Abrescia, N. Efficacy and Tolerability of Integrase Inhibitors in Antiretroviral-Naive Patients. AIDS Rev. 2015, 17, 171–185. [Google Scholar] [PubMed]
- Beale, K.K.; Robinson, W.E.J. Combinations of reverse transcriptase, protease, and integrase inhibitors can be synergistic in vitro against drug-sensitive and RT inhibitor-resistant molecular clones of HIV-1. Antivir. Res. 2000, 46, 223–232. [Google Scholar] [CrossRef]
- Singh, K.; Sarafianos, S.G.; Sonnerborg, A. Long-Acting Anti-HIV Drugs Targeting HIV-1 Reverse Transcriptase and Integrase. Pharmaceuticals 2019, 12, 62. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Pineda-Pena, A.C.; Faria, N.R.; Imbrechts, S.; Libin, P.; Abecasis, A.B.; Deforche, K.; Gómez-López, A.; Camacho, R.J.; Oliveira, T.; Vandamme, A.M. Automated subtyping of HIV-1 genetic sequences for clinical and surveillance purposes: Performance evaluation of the new REGA version 3 and seven other tools. Infect. Genet. Evol. 2013, 19, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Struck, D.; Lawyer, G.; Ternes, A.M.; Schmit, J.C.; Bercoff, D.P. COMET: Adaptive context-based modeling for ultrafast HIV-1 subtype identification. Nucleic Acids Res. 2014, 42, e144. [Google Scholar] [CrossRef] [PubMed]
- Lopez, P.; De Jesus, O.; Yamamura, Y.; Rodriguez, N.; Arias, A.; Sanchez, R.; Rodríguez, Y.; Tamayo-Agrait, V.; Cuevas, W.; Rivera-Amill, V. Molecular Epidemiology of HIV-1 Virus in Puerto Rico: Novel Cases of HIV-1 Subtype C, D, and CRF-24BG. AIDS Res. Hum. Retrovir. 2018, 34, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Lopez, P.; Rivera-Amill, V.; Rodriguez, N.; Vargas, F.; Yamamura, Y. The Genetic Diversity and Evolution of HIV-1 Subtype B Epidemic in Puerto Rico. Int. J. Environ. Res. Public Health 2015, 13, 55. [Google Scholar] [CrossRef] [Green Version]
- Hurt, C.B.; Sebastian, J.; Hicks, C.B.; Eron, J.J. Resistance to HIV integrase strand transfer inhibitors among clinical specimens in the United States, 2009–2012. Clin. Infect. Dis. 2014, 58, 423–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McColl, D.J.; Chen, X. Strand transfer inhibitors of HIV-1 integrase: Bringing IN a new era of antiretroviral therapy. Antivir. Res. 2010, 85, 101–118. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Yoshinaga, T.; Seki, T.; Wakasa-Morimoto, C.; Brown, K.W.; Ferris, R.; Foster, S.A.; Hazen, R.J.; Mike, S.; Suyama-Kagitani, A.; et al. In Vitro antiretroviral properties of S/GSK1349572, a next-generation HIV integrase inhibitor. Antimicrob. Agents Chemother. 2011, 55, 813–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eron, J.J.; Clotet, B.; Durant, J.; Katlama, C.; Kumar, P.; Lazzarin, A.; Poizot-Martin, I.; Richmond, G.; Soriano, V.; Ait-Khaled, M.; et al. Safety and efficacy of dolutegravir in treatment-experienced subjects with raltegravir-resistant HIV type 1 infection: 24-week results of the VIKING Study. J. Infect. Dis. 2013, 207, 740–748. [Google Scholar] [CrossRef]
- Underwood, M.R.; Johns, B.A.; Sato, A.; Martin, J.N.; Deeks, S.G.; Fujiwara, T. The activity of the integrase inhibitor dolutegravir against HIV-1 variants isolated from raltegravir-treated adults. J. Acquir. Immune Defic. Syndr. 2012, 61, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Fransen, S.; Gupta, S.; Danovich, R.; Hazuda, D.; Miller, M.; Witmer, M.; Petropolous, C.J.; Huang, W. Loss of raltegravir susceptibility by human immunodeficiency virus type 1 is conferred via multiple nonoverlapping genetic pathways. J. Virol. 2009, 83, 11440–11446. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.J.; Zhao, X.Z.; Burke, T.R., Jr.; Hughes, S.H. Efficacies of Cabotegravir and Bictegravir against drug-resistant HIV-1 integrase mutants. Retrovirology 2018, 15, 37. [Google Scholar] [CrossRef]
- Margot, N.A.; Hluhanich, R.M.; Jones, G.S.; Andreatta, K.N.; Tsiang, M.; McColl, D.J.; White, K.L.; Miller, M.D. In vitro resistance selections using elvitegravir, raltegravir, and two metabolites of elvitegravir M1 and M4. Antivir. Res. 2012, 93, 288–296. [Google Scholar] [CrossRef]
- Van Wesenbeeck, L.; Rondelez, E.; Feyaerts, M.; Verheyen, A.; Van der Borght, K.; Smits, V.; Cleybergh, C.; De Wolf, H.; Van Baelen, K.; Stuyver, L.J. Cross-resistance profile determination of two second-generation HIV-1 integrase inhibitors using a panel of recombinant viruses derived from raltegravir-treated clinical isolates. Antimicrob. Agents Chemother. 2011, 55, 321–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrido, C.; Villacian, J.; Zahonero, N.; Pattery, T.; Garcia, F.; Gutierrez, F.; Caballero, E. Van Houtte, M.; Soriano, V.; de Mendoza, C. Broad phenotypic cross-resistance to elvitegravir in HIV-infected patients failing on raltegravir-containing regimens. Antimicrob. Agents Chemother. 2012, 56, 2873–2878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceccherini-Silberstein, F.; Malet, I.; D’Arrigo, R.; Antinori, A.; Marcelin, A.G.; Perno, C.F. Characterization and structural analysis of HIV-1 integrase conservation. AIDS Rev. 2009, 11, 17–29. [Google Scholar]
- Abram, M.E.; Hluhanich, R.M.; Goodman, D.D.; Andreatta, K.N.; Margot, N.A.; Ye, L.; Niedziela-Majka, A.; Barnes, T.L.; Novikov, N.; Chen, X.; et al. Impact of primary elvitegravir resistance-associated mutations in HIV-1 integrase on drug susceptibility and viral replication fitness. Antimicrob. Agents Chemother. 2013, 57, 2654–2663. [Google Scholar] [CrossRef] [Green Version]
- United States Department of Health and Human Services. FDA-Approved HIV Medicines. 2019. Available online: https://aidsinfo.nih.gov/understanding-hiv-aids/fact-sheets/19/58/fda-approved-hiv-medicines (accessed on 1 June 2020).
- Pennings, P.S. HIV Drug Resistance: Problems and Perspectives. Infect. Dis. Rep. 2013, 5, e5. [Google Scholar] [CrossRef] [Green Version]
- Margot, N.; Cox, S.; Das, M.; McCallister, S.; Miller, M.D.; Callebaut, C. Rare emergence of drug resistance in HIV-1 treatment-naive patients receiving elvitegravir/cobicistat/emtricitabine/tenofovir alafenamide for 144 weeks. J. Clin. Virol. 2018, 103, 37–42. [Google Scholar] [CrossRef]
- Frentz, D.; Boucher, C.A.; van de Vijver, D.A. Temporal changes in the epidemiology of transmission of drug-resistant HIV-1 across the world. AIDS Rev. 2012, 14, 17–27. [Google Scholar] [PubMed]
- Calva, J.J.; Larrea, S.; Tapia-Maltos, M.A.; Ostrosky-Frid, M.; Lara, C.; Aguilar-Salinas, P.; Rivera, H.; Ramírez, J.P. The Decline in HIV-1 Drug Resistance in Heavily Antiretroviral-Experienced Patients Is Associated with Optimized Prescriptions in a Treatment Roll-Out Program in Mexico. AIDS Res. Hum. Retrovir. 2017, 33, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Anstett, K.; Brenner, B.; Mesplede, T.; Wainberg, M.A. HIV drug resistance against strand transfer integrase inhibitors. Retrovirology 2017, 14, 36. [Google Scholar] [CrossRef]
- Quashie, P.K.; Mesplede, T.; Wainberg, M.A. Evolution of HIV integrase resistance mutations. Curr. Opin. Infect. Dis. 2013, 26, 43–49. [Google Scholar] [CrossRef]
- Karmon, S.L.; Markowitz, M. Next-generation integrase inhibitors: Where to after raltegravir? Drugs 2013, 73, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Geretti, A.M.; Armenia, D.; Ceccherini-Silberstein, F. Emerging patterns and implications of HIV-1 integrase inhibitor resistance. Curr. Opin. Infect. Dis. 2012, 25, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Seki, T.; Suyama-Kagitani, A.; Kawauchi-Miki, S.; Miki, S.; Wakasa-Morimoto, C.; Akihisa, E.; Nakahara, K.; Kobayashi, M.; Underwood, M.R.; Sato, A.; et al. Effects of raltegravir or elvitegravir resistance signature mutations on the barrier to dolutegravir resistance in vitro. Antimicrob. Agents Chemother. 2015, 59, 2596–2606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhee, S.Y.; Gonzales, M.J.; Kantor, R.; Betts, B.J.; Ravela, J.; Shafer, R.W. A systematic review of the genetic mechanisms of dolutegravir resistance. J. Antimicrob. Chemother. 2019, 74, 3135–3149. [Google Scholar] [CrossRef] [PubMed]
- Siedner, J.M.; Moorhouse, A.M.; Simmons, B.; de Oliveira, T.; Lessells, R.; Giandhari, J.; Kemp, S.A.; Chimukangara, B.; Akpomiemie, G.; Serenata, C.M.; et al. Reduced efficacy of HIV-1 integrase inhibitors in patients with drug resistance mutations in reverse transcriptase. Nat. Commun. 2020, 11, 5922. [Google Scholar] [CrossRef] [PubMed]
- Canadian Agency for Drugs and Technologies in Health. Clinical Review Report: Bictegravir/Emtricitabine/Tenofovir Alafenamide (B/FTC/TAF) (Biktarvy): (Gilead Sciences Canada, Inc.): Indication: A Complete Regimen for the Treatment of HIV-1 Infection in Adults with no Known Substitution Associated with Resistance to the Individual Components of Biktarvy. 2018. Available online: https://www.ncbi.nlm.nih.gov/books/NBK539530/ (accessed on 1 June 2020).
Parameter | |
---|---|
Sex | N (%) |
Male | 79 (60.3) |
Female | 27 (20.6) |
Not available | 25 (19.1) |
Age | Mean (range) |
Male | 44 (23–72) a |
Female | 49 (25–74) a |
Therapy status | N (%) |
ART-experienced | 66 (50.4) |
ART naive | 8 (6.1) |
Not available | 57 (43.5) |
Integrase Mutations | INSTIs Resistance Level | ||||||
---|---|---|---|---|---|---|---|
Year | ID | DRM | Accessory | BIC | DTG | EVG | RAL |
2013 | 235812 | N155H | - | PLLR | PLLR | HLR | HLR |
237348 | N155H | T97A, D232N | PLLR | PLLR | HLR | HLR | |
242798 | E138EA, G140S, Q148H | - | HLR | HLR | HLR | HLR | |
245847 | - | G163GART, D232N | WT | WT | LLR | LLR | |
2014 | 255051 | - | T97A, D232N | WT | WT | PLLR | PLLR |
255423 | G140S, Q148H | - | IR | IR | HLR | HLR | |
256143 | N155H | - | PLLR | PLLR | HLR | HLR | |
2015 | 258076 | S147G, Q148H | D232N | LLR | LLR | HLR | HLR |
261110 | Y143R | T97TA | WT | WT | LLR | HLR | |
262046 | G140S, Q148H | - | IR | IR | HLR | HLR | |
263288 | G140S, Q148H | - | IR | IR | HLR | HLR | |
263607 | G140S, Q148H | - | IR | IR | HLR | HLR | |
2016 | 265677 | G140S, Q148H | - | IR | IR | HLR | HLR |
266254 | G140S, Q148H, S147G | - | IR | IR | HLR | HLR | |
268177 | N155H | D232DN | PLLR | PLLR | HLR | HLR | |
265852 | N155H | - | PLLR | PLLR | HLR | HLR | |
266624 | E138EA, G140S, Q148H | - | HLR | HLR | HLR | HLR | |
2017 | 276082 | G140S, Q148H | - | IR | IR | HLR | HLR |
272806 | - | T97A | WT | WT | PLLR | PLLR | |
273365 | S147G, N155H | E157Q, D232N | PLLR | PLLR | HLR | HLR | |
273881 | Y143R | T97A | WT | WT | LLR | HLR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López, P.; Tirado, G.; Arias, A.; Sánchez, R.; Rodríguez-López, E.R.; Rivera-Amill, V. Short Communication: Integrase Strand Transfer Inhibitors Drug Resistance Mutations in Puerto Rico HIV-Positive Individuals. Int. J. Environ. Res. Public Health 2021, 18, 2719. https://doi.org/10.3390/ijerph18052719
López P, Tirado G, Arias A, Sánchez R, Rodríguez-López ER, Rivera-Amill V. Short Communication: Integrase Strand Transfer Inhibitors Drug Resistance Mutations in Puerto Rico HIV-Positive Individuals. International Journal of Environmental Research and Public Health. 2021; 18(5):2719. https://doi.org/10.3390/ijerph18052719
Chicago/Turabian StyleLópez, Pablo, Grissell Tirado, Andrea Arias, Raphael Sánchez, Elliott R. Rodríguez-López, and Vanessa Rivera-Amill. 2021. "Short Communication: Integrase Strand Transfer Inhibitors Drug Resistance Mutations in Puerto Rico HIV-Positive Individuals" International Journal of Environmental Research and Public Health 18, no. 5: 2719. https://doi.org/10.3390/ijerph18052719
APA StyleLópez, P., Tirado, G., Arias, A., Sánchez, R., Rodríguez-López, E. R., & Rivera-Amill, V. (2021). Short Communication: Integrase Strand Transfer Inhibitors Drug Resistance Mutations in Puerto Rico HIV-Positive Individuals. International Journal of Environmental Research and Public Health, 18(5), 2719. https://doi.org/10.3390/ijerph18052719