The Relative Contributions of Different Chemical Components to the Oxidative Potential of Ambient Fine Particles in Nanjing Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. PM2.5 Mass Concentration and Chemical Components
2.2. Sample Preparation
2.3. Chemical Analysis
2.4. Light Absorption and Fluorescence Analysis
2.5. OP of PM2.5
2.6. Statistical Analysis
3. Results and Discussion
3.1. PM2.5 Mass Concentration and Chemical Component
3.2. OP of PM2.5
3.3. Associations between PM2.5 Components and OP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Constituents | Unit | Spring Mean ± SD (n = 49) | Summer Mean ± SD (n = 30) | Autumn Mean ± SD (n = 22) | Winter Mean ± SD (n = 30) | Annual Mean ± SD (n = 131) |
---|---|---|---|---|---|---|
PM2.5 | μg m−3 | 107.0 ± 52.1 | 55.0 ± 21.8 | 46.2 ± 13.3 | 55.3 ± 18.2 | 73.0 ± 44.0 |
WSOC | μg m−3 | 4.7 ± 1.9 | 4.3 ± 1.6 | 3.5 ± 1.1 | 3.2 ± 1.1 | 4.1 ± 1.7 |
OC | μg m−3 | 19.6 ± 9.4 | 14.9 ± 5.5 | 11.4 ± 4.1 | 11.4 ± 4.6 | 15.3 ± 7.8 |
EC | μg m−3 | 4.0 ± 2.8 | 2.8 ± 1.6 | 2.3 ± 1.4 | 2.2 ± 0.9 | 3.0 ± 2.2 |
TC | mg L−1 | 5.8 ± 2.1 | 5.4 ± 1.8 | 4.4 ± 1.3 | 4.0 ± 1.1 | 5.1 ± 1.9 |
IC | mg L−1 | 0.6 ± 0.2 | 0.5 ± 0.1 | 0.5 ± 0.1 | 0.5 ± 0.1 | 0.6 ± 0.1 |
TN | mg L−1 | 12.2 ± 6.4 | 7.1 ± 4.6 | 5.3 ± 2.1 | 6.7 ± 2.4 | 8.6 ± 5.5 |
Al | μg m−3 | 5.3 ± 3.4 | 3.2 ± 1.5 | 2.0 ± 0.8 | 3.6 ± 4.0 | 3.9 ± 3.2 |
Zn | μg m−3 | 5.0 ± 2.2 | 3.4 ± 1.8 | 3.6 ± 2.0 | 3.5 ± 1.9 | 4.1 ± 2.2 |
V | ng m−3 | 33.8 ± 21.1 | 23.1 ± 17.4 | 20.9 ± 12.6 | 12.5 ± 8.5 | 24.3 ± 20.0 |
Cr | ng m−3 | 150.2 ± 68.0 | 119.2 ± 27.0 | 135.1 ± 60.5 | 199.2 ± 110.2 | 151.8 ± 78.1 |
Mn | ng m−3 | 292.8 ± 150.0 | 137.1 ± 53.4 | 157.0 ± 72.8 | 124.0 ± 43.7 | 195.7 ± 126.9 |
Co | ng m−3 | 4.2 ± 2.1 | 3.8 ± 5.2 | 3.3 ± 1.5 | 2.5 ± 0.6 | 3.6 ± 3.0 |
Ni | ng m−3 | 61.8 ± 32.6 | 58.7 ± 13.8 | 64.5 ± 20.5 | 66.2 ± 34.5 | 62.5 ± 28.1 |
Cu | ng m−3 | 216.2 ± 91.6 | 178.3 ± 77.0 | 187.8 ± 146.6 | 194.8 ± 158.0 | 197.9 ± 118.6 |
As | ng m−3 | 30.6 ± 26.5 | 18.3 ± 12.2 | 11.9 ± 5.4 | 17.5 ± 18.6 | 21.7 ± 20.8 |
Se | ng m−3 | 24.8 ± 12.0 | 17.0 ± 6.9 | 13.8 ± 6.4 | 12.7 ± 5.3 | 18.4 ± 10.2 |
Cd | ng m−3 | 8.9 ± 5.1 | 8.2 ± 6.1 | 5.5 ± 3.5 | 6.8 ± 5.2 | 7.7 ± 5.3 |
Ba | ng m−3 | 93.1 ± 36.5 | 112.9 ± 217.7 | 58.4 ± 20.0 | 57.0 ± 17.8 | 83.5 ± 110.0 |
Pb | μg m−3 | 0.9 ± 1.0 | 0.4 ± 0.7 | 0.3 ± 0.1 | 0.3 ± 0.2 | 0.5 ± 0.8 |
Abs365 | Mm−1 | 7.3 ± 2.5 | 5.6 ± 2.3 | 4.4 ± 1.4 | 5.8 ± 1.8 | 6.1 ± 2.4 |
MAE365 | m2 mg−1 | 1.6 ± 0.4 | 1.3 ± 0.3 | 1.3 ± 0.3 | 1.9 ± 0.3 | 1.6 ± 0.4 |
AAE (300–500 nm) | / | 5.1 | 4.9 | 5.5 | 5.2 | 5.2 |
DTTv | nmol min−1 m3 | 1.2 ± 0.3 | 1.1 ± 0.2 | 1.2 ± 0.2 | 1.2 ± 0.2 | 1.1 ± 0.3 |
DTTm | nmol min−1 ng−1 | 12.7 ± 5.0 | 23.1 ± 9.8 | 26.8 ± 6.9 | 23.4 ± 5.0 | 20.0 ± 8.8 |
References
- Wang, G.; Kawamura, K.; Lee, S.C.; Ho, K.F.; Cao, J.J. Molecular, Seasonal, and Spatial Distributions of Organic Aerosols from Fourteen Chinese Cities. Environ. Sci. Technol. 2006, 40, 4619–4625. [Google Scholar] [CrossRef]
- Abrams, J.Y.; Weber, R.J.; Klein, M.; Samat, S.E.; Chang, H.H.; Strickland, M.J.; Verma, V.; Fang, T.; Bates, J.T.; Mulholland, J.A.; et al. Associations between Ambient Fine Particulate Oxidative Potential and Cardiorespiratory Emergency Department Visits. Environ. Health Perspect. 2017, 125, 107008–107017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, J.T.; Weber, R.J.; Abrams, J.; Verma, V.; Fang, T.; Klein, M.; Strickland, M.J.; Sarnat, S.E.; Chang, H.H.; Mulholland, J.A.; et al. Reactive Oxygen Species Generation Linked to Sources of Atmospheric Particulate Matter and Cardiorespiratory Effects. Environ. Sci. Technol. 2015, 49, 13605–13612. [Google Scholar] [CrossRef]
- Yang, A.; Janssen, N.A.; Brunekreef, B.; Cassee, F.R.; Hoek, G.; Gehring, U. Children’s respiratory health and oxidative potential of PM2.5: The PIAMA birth cohort study. Occup. Environ. Med. 2016, 73, 154–160. [Google Scholar] [CrossRef]
- Raaschou-Nielsen, O.; Andersen, Z.J.; Beelen, R.; Samoli, E.; Stafoggia, M.; Weinmayr, G.; Hoffmann, B.; Fischer, P.; Nieuwenhuijsen, M.J.; Brunekreef, B.; et al. Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013, 14, 813–822. [Google Scholar] [CrossRef]
- Donaldson, K.; Beswick, P.H.; Gilmour, P.S. Free radical activity associated with the surface of particles: A unifying factor in determining biological activity? Toxicol. Lett. 1996, 88, 293–298. [Google Scholar] [CrossRef]
- Li, N.; Sioutas, C.; Cho, A.; Schmitz, D.; Misra, C.; Sempf, J.; Wang, M.; Oberley, T.; Froines, J.; Nel, A. Ultrafine Particulate Pollutants Induce Oxidative Stress and Mitochondrial Damage. Environ. Health Perspect. 2003, 111, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Bates, J.T.; Fang, T.; Verma, V.; Zeng, L.; Weber, R.J.; Tolbert, P.E.; Abrams, J.Y.; Sarnat, S.E.; Klein, M.; Mulholland, J.A.; et al. Review of Acellular Assays of Ambient Particulate Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health Effects. Environ. Sci. Technol. 2019, 53, 4003–4019. [Google Scholar] [CrossRef]
- Weichenthal, S.; Crouse, D.L.; Pinault, L.; Godri-Pollitt, K.; Lavigne, E.; Evans, G.; van Donkelaar, A.; Martin, R.V.; Burnett, R.T. Oxidative burden of fine particulate air pollution and risk of cause-specific mortality in the Canadian Census Health and Environment Cohort (CanCHEC). Environ. Res. 2016, 146, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Styszko, K.; Samek, L.; Szramowiat, K.; Korzeniewska, A.; Kubisty, K.; Rakoczy-Lelek, R.; Kistler, M.; Giebl, A.K. Oxidative potential of PM10 and PM2.5 collected at high air pollution site related to chemical composition: Krakow case study. Air Qual. Atmos. Health 2017, 10, 1123–1137. [Google Scholar] [CrossRef]
- Li, X.; Kuang, X.M.; Yan, C.; Ma, S.; Paulson, S.E.; Zhu, T.; Zhang, Y.; Zheng, M. Oxidative Potential by PM2.5 in the North China Plain: Generation of Hydroxyl Radical. Environ. Sci. Technol. 2019, 53, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Rattanavaraha, W.; Rosen, E.; Zhang, H.; Li, Q.; Pantong, K.; Kamens, R.M. The reactive oxidant potential of different types of aged atmospheric particles: An outdoor chamber study. Atmos. Environ. 2011, 45, 3848–3855. [Google Scholar] [CrossRef] [Green Version]
- Vreeland, H.; Weber, R.; Bergin, M.; Greenwald, R.; Golan, R.; Russell, A.G.; Verma, V.; Sarnat, J.A. Oxidative potential of PM2.5 during Atlanta rush hour: Measurements of in-vehicle dithiothreitol (DTT) activity. Atmos. Environ. 2017, 165, 169–178. [Google Scholar] [CrossRef]
- Cho, A.K.; Sioutas, C.; Miguel, A.H.; Kumagai, Y.; Schmitz, D.A.; Singh, M.; Eiguren-Fernandez, A.; Froines, J.R. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environ. Res. 2005, 99, 40–47. [Google Scholar] [CrossRef]
- Kumagai, Y.; Koide, S.; Taguchi, K.; Endo, A.; Nakai, Y.; Yoshikawa, T.; Shimojo, N. Oxidation of Proximal Protein Sulfhydryls by Phenanthraquinone, a Component of Diesel Exhaust Particles. Chem. Res. Toxicol. 2002, 15, 483–489. [Google Scholar] [CrossRef]
- Fang, T.; Verma, V.; Bates, J.T.; Abrams, J.; Klein, M.; Strickland, M.J.; Sarnat, S.E.; Chang, H.H.; Mulholland, J.A.; Tolbert, P.E.; et al. Oxidative potential of ambient water-soluble PM2.5 in the southeastern United States: Contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays. Atmos. Chem. Phys. 2016, 16, 3865–3879. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Lu, Z.; Xiong, Y.; Huang, F.; Zhou, J.; Schauer, J.J. Oxidative potential of ambient PM2.5 in Wuhan and its comparisons with eight areas of China. Sci. Total Environ. 2020, 701, 134844–134855. [Google Scholar] [CrossRef]
- Charrier, J.G.; Anastasio, C. On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: Evidence for the importance of soluble transition metals. Atmos. Chem. Phys. 2012, 12, 11317–11350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Amstel, M.; de Neve, W.; de Kraker, J.; Glasbergen, P. Assessment of the potential of ecolabels to promote agrobiodiversity. AMBIO 2007, 36, 551–558. [Google Scholar] [CrossRef]
- Ma, Y.; Cheng, Y.; Qiu, X.; Cao, G.; Fang, Y.; Wang, J.; Zhu, T.; Yu, J.; Hu, D. Sources and oxidative potential of water-soluble humic-like substances (HULISWS) in fine particulate matter (PM2.5) in Beijing. Atmos. Chem. Phys. 2018, 18, 5607–5617. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.; Yu, J.Z. Generation of reactive oxygen species mediated by humic-like substances in atmospheric aerosols. Environ. Sci. Technol. 2011, 45, 10362–10368. [Google Scholar] [CrossRef]
- Lyu, Y.; Guo, H.; Cheng, T.; Li, X. Particle Size Distributions of Oxidative Potential of Lung-Deposited Particles: Assessing Contributions from Quinones and Water-Soluble Metals. Environ. Sci. Technol. 2018, 52, 6592–6600. [Google Scholar] [CrossRef]
- Paraskevopoulou, D.; Bougiatioti, A.; Stavroulas, I.; Fang, T.; Lianou, M.; Liakakou, E.; Gerasopoulos, E.; Weber, R.; Nenes, A.; Mihalopoulos, N. Yearlong variability of oxidative potential of particulate matter in an urban Mediterranean environment. Atmos. Environ. 2019, 206, 183–196. [Google Scholar] [CrossRef]
- Daellenbach, K.R.; Uzu, G.; Jiang, J.; Cassagnes, L.E.; Leni, Z.; Vlachou, A.; Stefenelli, G.; Canonaco, F.; Weber, S.; Segers, A.; et al. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature 2020, 587, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Hecobian, A.; Zhang, X.; Zheng, M.; Frank, N.; Edgerton, E.S.; Weber, R.J. Water-Soluble Organic Aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States. Atmos. Chem. Phys. 2010, 10, 5965–5977. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.R.; Stedmon, C.A.; Graeber, D.; Bro, R. Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal. Methods 2013, 5, 6557–6566. [Google Scholar] [CrossRef] [Green Version]
- Fang, T.; Zeng, L.; Gao, D.; Verma, V.; Stefaniak, A.B.; Weber, R.J. Ambient Size Distributions and Lung Deposition of Aerosol Dithiothreitol-Measured Oxidative Potential: Contrast between Soluble and Insoluble Particles. Environ. Sci. Technol. 2017, 51, 6802–6811. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lin, X.; Lu, L.; Wu, Y.; Zhang, H.; Lv, Q.; Liu, W.; Zhang, Y.; Zhuang, S. Temporal variation of oxidative potential of water soluble components of ambient PM2.5 measured by dithiothreitol (DTT) assay. Sci. Total Environ. 2019, 649, 969–978. [Google Scholar] [CrossRef]
- Xie, X.; Chen, Y.; Nie, D.; Liu, Y.; Liu, Y.; Lei, R.; Zhao, X.; Li, H.; Ge, X. Light-absorbing and fluorescent properties of atmospheric brown carbon: A case study in Nanjing, China. Chemosphere 2020, 251, 126350–126359. [Google Scholar] [CrossRef]
- Yan, J.; Wang, X.; Gong, P.; Wang, C.; Cong, Z. Review of brown carbon aerosols: Recent progress and perspectives. Sci. Total Environ. 2018, 634, 1475–1485. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, X.; Shi, Z.; Li, Y.; Gai, X.; Wang, J.; Li, H.; Wu, Y.; Zhao, X.; Chen, M.; et al. Brown carbon in atmospheric fine particles in Yangzhou, China: Light absorption properties and source apportionment. Atmos. Res. 2020, 244, 105028–105037. [Google Scholar] [CrossRef]
- Huang, R.J.; Yang, L.; Cao, J.; Chen, Y.; Chen, Q.; Li, Y.; Duan, J.; Zhu, C.; Dai, W.; Wang, K.; et al. Brown Carbon Aerosol in Urban Xi’an, Northwest China: The Composition and Light Absorption Properties. Environ. Sci. Technol. 2018, 52, 6825–6833. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; He, K.-B.; Du, Z.-Y.; Engling, G.; Liu, J.-m.; Ma, Y.-l.; Zheng, M.; Weber, R.J. The characteristics of brown carbon aerosol during winter in Beijing. Atmos. Environ. 2016, 127, 355–364. [Google Scholar] [CrossRef]
- Park, S.; Yu, G.-H.; Lee, S. Optical absorption characteristics of brown carbon aerosols during the KORUS-AQ campaign at an urban site. Atmos. Res. 2018, 203, 16–27. [Google Scholar] [CrossRef]
- Chen, Q.; Miyazaki, Y.; Kawamura, K.; Matsumoto, K.; Coburn, S.; Volkamer, R.; Iwamoto, Y.; Kagami, S.; Deng, Y.; Ogawa, S.; et al. Characterization of Chromophoric Water-Soluble Organic Matter in Urban, Forest, and Marine Aerosols by HR-ToF-AMS Analysis and Excitation-Emission Matrix Spectroscopy. Environ. Sci. Technol. 2016, 50, 10351–10360. [Google Scholar] [CrossRef]
- Matos, J.T.V.; Freire, S.M.S.C.; Duarte, R.M.B.O.; Duarte, A.C. Natural organic matter in urban aerosols: Comparison between water and alkaline soluble components using excitation–emission matrix fluorescence spectroscopy and multiway data analysis. Atmos. Environ. 2015, 102, 1–10. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Markager, S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol. Oceanogr. 2005, 50, 686–697. [Google Scholar] [CrossRef]
- Mladenov, N.; Alados-Arboledas, L.; Olmo, F.J.; Lyamani, H.; Delgado, A.; Molina, A.; Reche, I. Applications of optical spectroscopy and stable isotope analyses to organic aerosol source discrimination in an urban area. Atmos. Environ. 2011, 45, 1960–1969. [Google Scholar] [CrossRef]
- Chen, Q.; Ikemori, F.; Mochida, M. Light Absorption and Excitation–Emission Fluorescence of Urban Organic Aerosol Components and Their Relationship to Chemical Structure. Environ. Sci. Technol. 2016, 50, 10859–10868. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Liang, H.; Qu, F.; Han, Z.-s.; Shao, S.; Chang, H.; Li, G. Impact of dataset diversity on accuracy and sensitivity of parallel factor analysis model of dissolved organic matter fluorescence excitation-emission matrix. Sci. Rep. 2015, 5, 10207–10218. [Google Scholar] [CrossRef] [Green Version]
- Salve, P.R.; Lohkare, H.; Gobre, T.; Bodhe, G.; Krupadam, R.J.; Ramteke, D.S.; Wate, S.R. Characterization of Chromophoric Dissolved Organic Matter (CDOM) in Rainwater Using Fluorescence Spectrophotometry. Bull. Environ. Contam. Toxicol. 2011, 88, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, L.; Tan, J.; Zhang, K.; Mao, J.; Duan, J.; Hu, J. Characterization of humic-like substances in PM2.5 during biomass burning episodes on Weizhou Island, China. Atmos. Environ. 2018, 191, 258–266. [Google Scholar] [CrossRef]
- Tan, J.; Xiang, P.; Zhou, X.; Duan, J.; Ma, Y.; He, K.; Cheng, Y.; Yu, J.; Querol, X. Chemical characterization of humic-like substances (HULIS) in PM2.5 in Lanzhou, China. Sci. Total Environ. 2016, 573, 1481–1490. [Google Scholar] [CrossRef]
- Yan, G.; Kim, G. Speciation and Sources of Brown Carbon in Precipitation at Seoul, Korea: Insights from Excitation–Emission Matrix Spectroscopy and Carbon Isotopic Analysis. Environ. Sci. Technol. 2017, 51, 11580–11587. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Fang, T.; Guo, H.; King, L.; Bates, J.T.; Peltier, R.E.; Edgerton, E.; Russell, A.G.; Weber, R.J. Reactive oxygen species associated with water-soluble PM2.5 in the southeastern United States: Spatiotemporal trends and source apportionment. Atmos. Chem. Phys. 2014, 14, 12915–12930. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Polidori, A.; Arhami, M.; Shafer, M.M.; Schauer, J.J.; Cho, A.; Sioutas, C. Redox activity and chemical speciation of size fractioned PM in the communities of the Los Angeles-Long Beach harbor. Atmos. Chem. Phys. 2008, 8, 6439–6451. [Google Scholar] [CrossRef] [Green Version]
- Chirizzi, D.; Cesari, D.; Guascito, M.R.; Dinoi, A.; Giotta, L.; Donateo, A.; Contini, D. Influence of Saharan dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10. Atmos. Environ. 2017, 163, 1–8. [Google Scholar] [CrossRef]
- Jedynska, A.; Hoek, G.; Wang, M.; Yang, A.; Eeftens, M.; Cyrys, J.; Keuken, M.; Ampe, C.; Beelen, R.; Cesaroni, G.; et al. Spatial variations and development of land use regression models of oxidative potential in ten European study areas. Atmos. Environ. 2017, 150, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.; Rastogi, N. Oxidative potential of ambient fine aerosol over a semi-urban site in the Indo-Gangetic Plain. Atmos. Environ. 2018, 175, 127–134. [Google Scholar] [CrossRef]
- Liu, W.; Xu, Y.; Liu, W.; Liu, Q.; Yu, S.; Liu, Y.; Wang, X.; Tao, S. Oxidative potential of ambient PM2.5 in the coastal cities of the Bohai Sea, northern China: Seasonal variation and source apportionment. Environ. Pollut. 2018, 236, 514–528. [Google Scholar] [CrossRef]
- Yu, S.; Liu, W.; Xu, Y.; Yi, K.; Zhou, M.; Tao, S.; Liu, W. Characteristics and oxidative potential of atmospheric PM2.5 in Beijing: Source apportionment and seasonal variation. Sci. Total Environ. 2019, 650, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Baumgartner, J.; Zhang, Y.; Liu, Y.; Sun, Y.; Zhang, M. Oxidative potential and inflammatory impacts of source apportioned ambient air pollution in Beijing. Environ. Sci. Technol. 2014, 48, 12920–12929. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, M.; Li, S.; Sun, H.; Mu, Z.; Zhang, L.; Li, Y.; Chen, Q. Study on the oxidation potential of the water-soluble components of ambient PM2.5 over Xi’an, China: Pollution levels, source apportionment and transport pathways. Environ. Int. 2020, 136, 105515–105526. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiang, H.; Jiang, H.; Mo, Y.; Geng, X.; Li, J.; Mao, S.; Bualert, S.; Ma, S.; Li, J.; et al. Source apportionment of water-soluble oxidative potential in ambient total suspended particulate from Bangkok: Biomass burning versus fossil fuel combustion. Atmos. Environ. 2020, 235, 117624–117632. [Google Scholar] [CrossRef]
- Yan, C.; Ma, S.; He, Q.; Ding, X.; Cheng, Y.; Cui, M.; Wang, X.; Zheng, M. Identification of PM2.5 sources contributing to both Brown carbon and reactive oxygen species generation in winter in Beijing, China. Atmos. Environ. 2021, 246, 118069–118075. [Google Scholar] [CrossRef]
- Lin, M.; Yu, J.Z. Effect of metal-organic interactions on the oxidative potential of mixtures of atmospheric humic-like substances and copper/manganese as investigated by the dithiothreitol assay. Sci. Total Environ. 2019, 697, 134012–134022. [Google Scholar] [CrossRef]
- Lü, S.; Zhang, R.; Yao, Z.; Yi, F.; Ren, J.; Wu, M.; Feng, M.; Wang, Q. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere. J. Environ. Sci. 2012, 24, 882–890. [Google Scholar] [CrossRef]
- Lu, X.; Johnson, W.D.; Hook, J. Reaction of Vanadate with Aquatic Humic Substances: An ESR and 51V NMR Study. Environ. Sci. Technol. 1998, 32, 2257–2263. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, Y.; Ma, W.; Fu, Q.; Yang, X.; Li, C.; Zhou, B.; Yu, Q.; Chen, L. Characteristics and ship traffic source identification of air pollutants in China’s largest port. Atmos. Environ. 2013, 64, 277–286. [Google Scholar] [CrossRef]
- Yue, W.; Li, X.; Liu, J.; Li, Y.; Zhang, G.; Li, Y. Source tracing of chromium-, manganese-, nickel- and zinc-containing particles (PM10) by micro-PIXE spectrum. J. Radioanal. Nucl. Chem. 2008, 274, 115–121. [Google Scholar] [CrossRef]
Season | Component | Standardized Coefficients | p-Value | R2 |
---|---|---|---|---|
Spring | C2 | 0.812 | 0.000 | 0.695 |
Cr | −0.170 | 0.042 | ||
Summer | Abs365 | 0.617 | 0.000 | 0.596 |
Cu | 0.419 | 0.002 | ||
Autumn | C3 | 0.555 | 0.003 | 0.916 |
Abs365 | 0.286 | 0.047 | ||
Mn | 0.387 | 0.001 | ||
V | −0.356 | 0.001 | ||
Winter | C3 | 0.399 | 0.007 | 0.628 |
Cu | 0.291 | 0.024 | ||
Mn | 0.404 | 0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Nie, D.; Chen, M.; Ge, P.; Liu, Z.; Ge, X.; Li, Z.; Gu, R. The Relative Contributions of Different Chemical Components to the Oxidative Potential of Ambient Fine Particles in Nanjing Area. Int. J. Environ. Res. Public Health 2021, 18, 2789. https://doi.org/10.3390/ijerph18062789
Ma X, Nie D, Chen M, Ge P, Liu Z, Ge X, Li Z, Gu R. The Relative Contributions of Different Chemical Components to the Oxidative Potential of Ambient Fine Particles in Nanjing Area. International Journal of Environmental Research and Public Health. 2021; 18(6):2789. https://doi.org/10.3390/ijerph18062789
Chicago/Turabian StyleMa, Xiaoyun, Dongyang Nie, Mindong Chen, Pengxiang Ge, Zhengjiang Liu, Xinlei Ge, Zhirao Li, and Rui Gu. 2021. "The Relative Contributions of Different Chemical Components to the Oxidative Potential of Ambient Fine Particles in Nanjing Area" International Journal of Environmental Research and Public Health 18, no. 6: 2789. https://doi.org/10.3390/ijerph18062789
APA StyleMa, X., Nie, D., Chen, M., Ge, P., Liu, Z., Ge, X., Li, Z., & Gu, R. (2021). The Relative Contributions of Different Chemical Components to the Oxidative Potential of Ambient Fine Particles in Nanjing Area. International Journal of Environmental Research and Public Health, 18(6), 2789. https://doi.org/10.3390/ijerph18062789