Distance Motor Learning during the COVID-19 Induced Confinement: Video Feedback with a Pedagogical Activity Improves the Snatch Technique in Young Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.2.1. Test Procedures
Technical Performance
Execution Time
2.2.2. Training Session
2.3. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Changes in Kinematics Parameters
3.3. Execution Time
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ammar, A.; Mueller, P.; Trabelsi, K.; Chtourou, H.; Boukhris, O.; Masmoudi, L.; Bouaziz, B.; Brach, M.; Schmicker, M.; Bentlage, E.; et al. Psychological consequences of COVID-19 home confinement: The ECLB-COVID19 multicenter study. PLoS ONE 2020, 15, e0240204. [Google Scholar] [CrossRef]
- Dietrich, N.; Kentheswaran, K.; Ahmadi, A.; Teychené, J.; Bessière, Y.; Alfenore, S.; Laborie, S.; Bastoul, D.; Loubière, K.; Guigui, C.; et al. Attempts, Successes, and Failures of Distance Learning in the Time of COVID-19. J. Chem. Educ. 2020, 97, 2448–2457. [Google Scholar] [CrossRef]
- Hunter, E.; Mac Namee, B.; Kelleher, J.D. A Model for the Spread of Infectious Diseases in a Region. Int. J. Environ. Res. Public Health 2020, 17, 3119. [Google Scholar] [CrossRef] [PubMed]
- Chandrasinghe, P.C.; Siriwardana, R.C.; Kumarage, S.K.; Munasinghe, B.; Weerasuriya, A.; Tillakaratne, S.; Pinto, D.; Gunathilake, B.; Fernando, F.R. A novel structure for online surgical undergraduate teaching during the COVID-19 pandemic. BMC Med. Educ. 2020, 20, 1–7. [Google Scholar] [CrossRef]
- García-Alberti, M.; Suárez, F.; Chiyón, I.; Feijoo, J.C.M. Challenges and Experiences of Online Evaluation in Courses of Civil Engineering during the Lockdown Motivated by the COVID-19 Crisis. Educ. Sci. 2021, 11, 59. [Google Scholar] [CrossRef]
- Bandura, A. The Explanatory and Predictive Scope of Self-Efficacy Theory. J. Soc. Clin. Psychol. 1986, 4, 359–373. [Google Scholar] [CrossRef]
- Mccullagh, P.; Weiss, M.R.; Ross, D. Modeling considerations in motor skill acquisition and performance: An integrated approach. Exerc. Sport Sci. Rev. 1989, 17, 475–513. [Google Scholar]
- Souissi, M.A.; ElGhoul, Y.; Souissi, H.; Masmoudi, L.; Ammar, A.; Chtourou, H.; Souissi, N. The Effects of Three Correction Strategies of Errors on the Snatch Technique in 10–12-Year-Old Children. J. Strength Cond. Res. 2020. Publish Ahead of Print. [Google Scholar] [CrossRef]
- Lhuisset, L.; Margnes, É. The influence of live- vs. video-model presentation on the early acquisition of a new complex coordination. Phys. Educ. Sport Pedagog. 2014, 20, 490–502. [Google Scholar] [CrossRef]
- H’Mida, C.; Degrenne, O.; Souissi, N.; Rekik, G.; Trabelsi, K.; Jarraya, M.; Bragazzi, N.L.; Khacharem, A. Learning a Motor Skill from Video and Static Pictures in Physical Education Students—Effects on Technical Performances, Motivation and Cognitive Load. Int. J. Environ. Res. Public Health 2020, 17, 9067. [Google Scholar] [CrossRef]
- Hazen, A.; Johnstone, C.; Martin, G.L.; Srikameswaran, S. A Videotaping Feedback Package for Improving Skills of Youth Competitive Swimmers. Sport Psychol. 1990, 4, 213–227. [Google Scholar] [CrossRef]
- Guadagnoli, M.; Holcomb, W.; Davis, M. The efficacy of video feedback for learning the golf swing. J. Sports Sci. 2002, 20, 615–622. [Google Scholar] [CrossRef]
- Neilson, V.; Ward, S.; Hume, P.; Lewis, G.; McDaid, A. Effects of augmented feedback on training jump landing tasks for ACL injury prevention: A systematic review and meta-analysis. Phys. Ther. Sport 2019, 39, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Rothstein, A.L. Bridging the Gap: Application of Research on Video-Tape Feedback and Bowling. Mot. Ski. Theory Pract. 1976, I, 35–62. [Google Scholar]
- Barros, J.A.; Yantha, Z.D.; Carter, M.J.; Hussien, J.; Ste-Marie, D.M. Examining the impact of error estimation on the effects of self-controlled feedback. Hum. Mov. Sci. 2019, 63, 182–198. [Google Scholar] [CrossRef] [PubMed]
- Kok, M.; Komen, A.; Van Capelleveen, L.; Van Der Kamp, J. The effects of self-controlled video feedback on motor learning and self-efficacy in a Physical Education setting: An exploratory study on the shot-put. Phys. Educ. Sport Pedagog. 2020, 25, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Ste-Marie, D.M.; Vertes, K.A.; Law, B.; Rymal, A.M. Learner-Controlled Self-Observation is Advantageous for Motor Skill Acquisition. Front. Psychol. 2013, 3, 556. [Google Scholar] [CrossRef] [Green Version]
- Marques, P.G.; Corrêa, U.C. The effect of learner’s control of self-observation strategies on learning of front crawl. Acta Psychol. 2016, 164, 151–156. [Google Scholar] [CrossRef]
- Aiken, C.A.; Fairbrother, J.T.; Post, P.G. The Effects of Self-Controlled Video Feedback on the Learning of the Basketball Set Shot. Front. Psychol. 2012, 3, 338. [Google Scholar] [CrossRef] [Green Version]
- Post, P.G.; Aiken, C.A.; Laughlin, D.D.; Fairbrother, J.T. Self-control over combined video feedback and modeling facilitates motor learning. Hum. Mov. Sci. 2016, 47, 49–59. [Google Scholar] [CrossRef]
- Goudini, R.; Ashrafpoornavaee, S.; Farsi, A. The effects of self-controlled and instructor-controlled feedback on motor learning and intrinsic motivation among novice adolescent taekwondo players. Acta Gymnica 2019, 49, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.-J.; Jwo, H. Controlling Absolute Frequency of Feedback in a Self-Controlled Situation Enhances Motor Learning. Percept. Mot. Ski. 2015, 121, 746–758. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Antonenko, P.D.; Greenwood, C.M.; Wheeler, D. Effects of segmenting, signalling, and weeding on learning from educational video. Learn. Media Technol. 2012, 37, 220–235. [Google Scholar] [CrossRef]
- Schwan, S.; Riempp, R. The cognitive benefits of interactive videos: Learning to tie nautical knots. Learn. Instr. 2004, 14, 293–305. [Google Scholar] [CrossRef]
- Cheon, J.; Crooks, S.; Chung, S. Does segmenting principle counteract modality principle in instructional animation? Br. J. Educ. Technol. 2014, 45, 56–64. [Google Scholar] [CrossRef]
- Leahy, W.; Sweller, J. Cognitive load theory, modality of presentation and the transient information effect. Appl. Cogn. Psychol. 2011, 25, 943–951. [Google Scholar] [CrossRef]
- Mayer, R.E.; Moreno, R. Nine Ways to Reduce Cognitive Load in Multimedia Learning. Educ. Psychol. 2003, 38, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Ammar, A.; Bouaziz, B.; Trabelsi, K.; Glenn, J.; Zmijewski, P.; Müller, P.; Chtourou, H.; Jmaiel, M.; Chamari, K.; Driss, T.; et al. Applying digital technology to promote active and healthy confinement lifestyle during pandemics in the elderly. Biol. Sport 2021, 38, 391–396. [Google Scholar] [CrossRef]
- Goodwin, J.E.; Goggin, N.L. An Older Adult Study of Concurrent Visual Feedback in Learning Continuous Balance. Percept. Mot. Ski. 2018, 125, 1160–1172. [Google Scholar] [CrossRef]
- Jimenez-Diaz, J.; Chaves-Castro, K.; Morera-Castro, M. Effect of Self-Controlled and Regulated Feedback on Motor Skill Performance and Learning: A Meta-Analytic Study. J. Mot. Behav. 2020, 1–14. [Google Scholar] [CrossRef]
- Ammar, A.; Chtourou, H.; Trabelsi, K.; Padulo, J.; Turki, M.; El Abed, K.; Hoekelmann, A.; Hakim, A. Temporal specificity of training: Intra-day effects on biochemical responses and Olympic-Weightlifting performances. J. Sports Sci. 2015, 33, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Ammar, A.; Chtourou, H.; Souissi, N. Effect of Time-of-Day on Biochemical Markers in Response to Physical Exercise. J. Strength Cond. Res. 2017, 31, 272–282. [Google Scholar] [CrossRef]
- Trabelsi, K.; Ammar, A.; Masmoudi, L.; Boukhris, O.; Chtourou, H.; Bouaziz, B.; Brach, M.; Bentlage, E.; How, D.; Ahmed, M.; et al. Globally altered sleep patterns and physical activity levels by confinement in 5056 individuals: ECLB COVID-19 international online survey. Biol. Sport 2021, 38, 495–506. [Google Scholar] [CrossRef]
- Ammar, A.; Chtourou, H.; Hammouda, O.; Turki, M.; Ayedi, F.; Kallel, C.; Abdelkarim, O.; Hoekelmann, A.; Souissi, N. Relationship between biomarkers of muscle damage and redox status in response to a weightlifting training session: Effect of time-of-day. Physiol. Int. 2016, 103, 243–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ammar, A.; Chtourou, H.; Hammouda, O.; Trabelsi, K.; Chiboub, J.; Turki, M.; Abdelkarim, O.; El Abed, K.; Ben Ali, M.; Hoekelmann, A.; et al. Acute and delayed responses of C-reactive protein, malondialdehyde and antioxidant markers after resistance training session in elite weightlifters: Effect of time of day. Chronobiol. Int. 2015, 32, 1211–1222. [Google Scholar] [CrossRef]
- Chtourou, H.; Trabelsi, K.; Ammar, A.; Shephard, R.J.; Bragazzi, N.L. Acute Effects of an “Energy Drink” on Short-Term Maximal Performance, Reaction Times, Psychological and Physiological Parameters: Insights from a Randomized Double-Blind, Placebo-Controlled, Counterbalanced Crossover Trial. Nutrients 2019, 11, 992. [Google Scholar] [CrossRef] [Green Version]
- Hoover, D.L.; Carlson, K.M.; Christensen, B.K.; Zebas, C.J. Biomechanical Analysis of Women Weightlifters during the Snatch. J. Strength Cond. Res. 2006, 20, 627. [Google Scholar]
- Gourgoulis, V.; Aggelousis, N.; Mavromatis, G.; Garas, A. Three-dimensional kinematic analysis of the snatch of elite Greek weightlifters. J. Sports Sci. 2000, 18, 643–652. [Google Scholar] [CrossRef]
- Milanese, C.; Cavedon, V.; Corte, S.; Agostini, T. The effects of two different correction strategies on the snatch technique in weightlifting. J. Sports Sci. 2016, 35, 476–483. [Google Scholar] [CrossRef]
- Harbili, E.; Alptekin, A. Comparative Kinematic Analysis of the Snatch Lifts in Elite Male Adolescent Weightlifters. J. Sports Sci. Med. 2014, 13, 417–422. [Google Scholar] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Janelle, C.M.; Champenoy, J.D.; Coombes, S.A.; Mousseau, M.B. Mechanisms of attentional cueing during observational learning to facilitate motor skill acquisition. J. Sports Sci. 2003, 21, 825–838. [Google Scholar] [CrossRef] [PubMed]
- Rucci, J.A.; Tomporowski, P.D. Three Types of Kinematic Feedback and the Execution of the Hang Power Clean. J. Strength Cond. Res. 2010, 24, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Potdevin, F.; Vors, O.; Huchez, A.; Lamour, M.; Davids, K.; Schnitzler, C. How can video feedback be used in physical education to support novice learning in gymnastics? Effects on motor learning, self-assessment and motivation. Phys. Educ. Sport Pedagog. 2018, 23, 559–574. [Google Scholar] [CrossRef]
- Ceccarini, F.; Castiello, U. The grasping side of post-error slowing. Cognition 2018, 179, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delong, M.R.; Strick, P.L. Relation of basal ganglia, cerebellum, and motor cortex units to ramp and ballistic limb movements. Brain Res. 1974, 71, 327–335. [Google Scholar] [CrossRef]
- Jueptner, M. A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain 1998, 121, 1437–1449. [Google Scholar] [CrossRef] [PubMed]
Groups | VF-PA (n = 12) | VF (n = 12) | CONT (n = 11) |
---|---|---|---|
Age (years) | 11.06 ± 0.74 | 11.10 ± 0.71 | 11.03 ± 0.65 |
Height(cm) | 146.71 ± 6.33 | 146.92 ± 5.95 | 146.45 ± 6.85 |
Body mass (kg) | 40.29 ± 5.86 | 41.73 ± 5.54 | 40.41 ± 6.52 |
Body mass index (kg/m2) | 19.08 ± 1.36 | 19.24 ± 1.26 | 19.17 ± 1.43 |
Parameter | VF-PA | VF | CONT | ANOVA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T0 | T1 | T2 | T0 | T1 | T2 | Time × Group | Time | Group | |
Dx2 (cm) | 11.40 ± 3.3 | 8.65 ± 3.15 | 7.72 ± 2.8 ** | 12.11 ± 3.07 | 10.19 ± 3.61 | 10.4 ± 3.07 | 11.82 ± 3.3 | 11.09 ± 3.02 | 11.19 ± 3.44 | p = 0.22 | F = 8.47; p < 0.001; ηp2 = 0.21 | p = 0.14 |
DxV (cm) | 14.63 ± 3.53 | 10.87 ± 3.38 * | 11.77 ± 3.16 | 14.33 ± 3.21 | 10.94 ± 3.99 * | 12.4 ± 3.69 | 14.54 ± 3.06 | 14.17 ± 3.3 | 14.19 ± 3.27 | p = 0.15 | F=9.61; p < 0.001; ηp2 = 0.23 | p = 0.21 |
DxT (cm) | 19.5 ± 5.35 | 15.26 ± 5.02 | 13.18 ± 4.28 ** # | 21.21 ± 6.25 | 18.95 ± 4.74 | 17.84 ± 2.4 | 20.14 ± 5.49 | 20.35 ± 4.11 | 20.9 ± 5.74 | p = 0.052 | F = 5.48; p = 0.006; ηp2 = 0.14 | F = 4.42; p = 0.002; ηp2 = 0.22 |
DxL (cm) | 22.74 ± 5.17 | 17.47 ± 5.05 * | 17.23 ± 4.18*# | 23.43 ± 5.0 | 19.69 ± 4.86 | 19.84 ± 4.18 | 22.86 ± 4.61 | 23.44 ± 4.46 | 23.91 ± 4.77 | F = 2.62; p = 0.04; ηp2 = 0.14 | F = 5.9; p = 0.004; ηp2 = 0.16 | F = 4.25; p = 0.002; ηp2 = 0.21 |
VTR (cm) | 17.03 ± 3.42 | 14.47 ± 4.71 | 14.49 ± 4.16 | 16.63 ± 4.17 | 13.12 ± 3.18 | 14.12 ± 3.82 | 18.19 ± 4.79 | 16.88 ± 4.75 | 17.09 ± 4.25 | p = 0.78 | F = 6.41; p = 0.003; ηp2 = 0.17 | p = 0.13 |
HMV (cm) | 130.54 ± 18.08 | 140.46 ± 16.1 * | 138.37 ± 13.28 | 129.38 ± 16.72 | 132.92 ± 18.13 | 132.79 ± 16.53 | 129.62 ± 15.44 | 128.09 ± 18.08 | 130.65 ± 18.82 | p = 0.11 | F = 3.89; p < 0.05; ηp2 = 0.11 | p = 0.56 |
Diff-Tr (cm) | 14.1 ± 7.04 | 9.04 ± 5.06 * | 9.78 ± 6.2 | 14.82 ± 5.99 | 9.62 ± 4.63 * | 11.2 ± 4.84 | 14.65 ± 6.07 | 13.51 ± 5.35 | 13.74 ± 6.54 | p = 0.24 | F = 11.51; p < 0.001; ηp2 = 0.26 | p = 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souissi, M.A.; Ammar, A.; Trabelsi, O.; Glenn, J.M.; Boukhris, O.; Trabelsi, K.; Bouaziz, B.; Zmijewski, P.; Souissi, H.; Chikha, A.B.; et al. Distance Motor Learning during the COVID-19 Induced Confinement: Video Feedback with a Pedagogical Activity Improves the Snatch Technique in Young Athletes. Int. J. Environ. Res. Public Health 2021, 18, 3069. https://doi.org/10.3390/ijerph18063069
Souissi MA, Ammar A, Trabelsi O, Glenn JM, Boukhris O, Trabelsi K, Bouaziz B, Zmijewski P, Souissi H, Chikha AB, et al. Distance Motor Learning during the COVID-19 Induced Confinement: Video Feedback with a Pedagogical Activity Improves the Snatch Technique in Young Athletes. International Journal of Environmental Research and Public Health. 2021; 18(6):3069. https://doi.org/10.3390/ijerph18063069
Chicago/Turabian StyleSouissi, Mohamed Abdelkader, Achraf Ammar, Omar Trabelsi, Jordan M. Glenn, Omar Boukhris, Khaled Trabelsi, Bassem Bouaziz, Piotr Zmijewski, Hichem Souissi, Anis Ben Chikha, and et al. 2021. "Distance Motor Learning during the COVID-19 Induced Confinement: Video Feedback with a Pedagogical Activity Improves the Snatch Technique in Young Athletes" International Journal of Environmental Research and Public Health 18, no. 6: 3069. https://doi.org/10.3390/ijerph18063069
APA StyleSouissi, M. A., Ammar, A., Trabelsi, O., Glenn, J. M., Boukhris, O., Trabelsi, K., Bouaziz, B., Zmijewski, P., Souissi, H., Chikha, A. B., Driss, T., Chtourou, H., Hoekelmann, A., & Souissi, N. (2021). Distance Motor Learning during the COVID-19 Induced Confinement: Video Feedback with a Pedagogical Activity Improves the Snatch Technique in Young Athletes. International Journal of Environmental Research and Public Health, 18(6), 3069. https://doi.org/10.3390/ijerph18063069