Muscle Activation Sequence in Flywheel Squats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Approach to the Problem
2.3. Testing Procedures
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sagelv, E.H.; Pedersen, S.; Nilsen, L.P.R.; Casolo, A.; Welde, B.; Randers, M.B.; Pettersen, S.A. Flywheel squats versus free weight high load squats for improving high velocity movements in football. A randomized controlled trial. BMC Sports Sci. Med. Rehabil. 2020, 12, 61. [Google Scholar] [CrossRef] [PubMed]
- Raya-González, J.; Castillo, D.; Beato, M. The Flywheel Paradigm in Team Sports. Strength Cond. J. 2020, 1, 12–22. [Google Scholar] [CrossRef]
- Beato, M.; Iacono, A. Dello Implementing flywheel (isoinertial) exercise in strength training: Current evidence, practical recommendations and future directions. Front. Physiol. 2020, 11, 569. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas, R.; Serna, J.; Muñoz-Arroyave, V.; Ramos, J.A.E. Effect of eccentric overload through isoinertial technology in basketball players. Rev. Bras. Cineantropometria Desempenho Hum. 2020, 22. [Google Scholar] [CrossRef]
- Fisher, J.P.; Ravalli, S.; Carlson, L.; Bridgeman, L.A.; Roggio, F.; Scuderi, S.; Maniaci, M.; Cortis, C.; Fusco, A.; Musumeci, G. The “Journal of Functional Morphology and Kinesiology” Journal Club Series: Utility and advantages of the eccentric training through the isoinertial system. J. Funct. Morphol. Kinesiol. 2020, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Hoyo, M.; Sañudo, B.; Carrasco, L.; Domínguez-Cobo, S.; Mateo-Cortes, J.; Cadenas-Sánchez, M.M.; Nimphius, S. Effects of Traditional Versus Horizontal Inertial Flywheel Power Training on Common Sport-Related Tasks. J. Hum. Kinet. 2015, 47, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Raya-González, J.; Castillo, D.; de Keijzer, K.L.; Beato, M. The effect of a weekly flywheel resistance training session on elite U-16 soccer players’ physical performance during the competitive season. A randomized controlled trial. Res. Sports Med. 2021. [Google Scholar] [CrossRef]
- Tesch, P.A.; Fernandez-Gonzalo, R.; Lundberg, T.R. Clinical applications of iso-inertial, eccentric-overload (YoYoTM) resistance exercise. Front. Physiol. 2017, 8, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Hoyo, M.; Pozzo, M.; Sañudo, B.; Carrasco, L.; Gonzalo-Skok, O.; Domínguez-Cobo, S.; Morán-Camacho, E. Effects of a 10-Week In-Season Eccentric-Overload Training Program on Muscle-Injury Prevention and Performance in Junior Elite Soccer Players. Int. J. Sports Physiol. Perform. 2015, 10, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Raya-González, J.; Castillo, D.; Domínguez-Díez, M.; Hernández-Davó, J.L. Eccentric-overload production during the flywheel squat exercise in young soccer players: Implications for injury prevention. Int. J. Environ. Res. Public Health 2020, 17, 3671. [Google Scholar] [CrossRef]
- Norrbrand, L.; Tous-Fajardo, J.; Vargas, R.; Tesch, P. Quadriceps muscle use in the flywheel and barbell squat. Aviat. Spsce Environ. Med. 2011, 82, 13–19. [Google Scholar] [CrossRef]
- Pozzo, M.; Alkner, B.; Norrbrand, L.; Farina, D.; Tesch, P.A. Muscle-fiber conduction velocity during concentric and eccentric actions on a flywheel exercise device. Muscle Nerve 2006, 34, 169–177. [Google Scholar] [CrossRef]
- Alkner, B.A.; Bring, D.K.I. Muscle Activation During Gravity-Independent Resistance Exercise Compared to Common Exercises. Aerosp. Med. Hum. Perform. 2019, 90, 506–512. [Google Scholar] [CrossRef]
- Norrbrand, L.; Pozzo, M.; Tesch, P.A. Flywheel resistance training calls for greater eccentric muscle activation than weight training. Eur. J. Appl. Physiol. 2010, 110, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Norrbrand, L.; Fluckey, J.D.; Pozzo, M.; Tesch, P.A. Resistance training using eccentric overload induces early adaptations in skeletal muscle size. Eur. J. Appl. Physiol. 2008, 102, 271–281. [Google Scholar] [CrossRef]
- Maroto-Izquierdo, S.; García-lópez, D.; Paz, J.A. De Functional and Muscle-Size Effects of Flywheel Resistance Training with Eccentric-Overload in Professional Handball Players by. J. Hum. Kinet. 2017, 60, 133–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maroto-Izquierdo, S.; García-López, D.; Fernandez-Gonzalo, R.; Moreira, O.C.; González-Gallego, J.; Paz, J.A. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: A systematic review and meta-analysis. J. Sci. Med. Sport 2017, 20, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Nuñez Sanchez, F.J.; Villarreal, E.S. Does flywheel paradigm training improve muscle volume and force? A meta-analysis. J. Strength Cond. Res. 2017, 31, 3177–3186. [Google Scholar] [CrossRef]
- Seynnes, O.R.; de Boer, M.; Narici, M.V. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J. Appl. Physiol. 2006, 102, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Škarabot, J.; Brownstein, C.G.; Casolo, A.; Del Vecchio, A.; Ansdell, P. The knowns and unknowns of neural adaptations to resistance training. Eur. J. Appl. Physiol. 2021, 121, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Sale, D.G. Neural adaptation to resistance training. Med. Sci. Sports Exerc. 1988, 20, 135–145. [Google Scholar] [CrossRef]
- Folland, J.P.; Williams, A.G. The adaptations to strength training: Morphological and neurological contributions to increased strength. Sports Med. 2007, 37, 145–168. [Google Scholar] [CrossRef]
- Gabriel, D.A.; Kamen, G.; Frost, G. Neural Adaptations to Resistive Exercise. Sports Med. 2006, 36, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.L.; Caldwell, G.E. Mono- and biarticular muscle activity during jumping in different directions. J. Appl. Biomech. 2003, 19, 205–222. [Google Scholar] [CrossRef] [Green Version]
- Eum, J.Y.; Kim, Y.K.; Park, E.J.; Lee, J.H.; Lee, J.E.; Lim, J.J.; Choi, M.H.; Kim, H.H. The effects of strengthening exercise, stretching and meditation on electromyography onset timing of the rectus femoris and gastrocnemius during vertical jump performance in healthy adults. Phys. Ther. Rehabil. Sci. 2015, 4, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Giroux, C.; Guilhem, G.; Couturier, A.; Chollet, D.; Rabita, G. Is muscle coordination affected by loading condition in ballistic movements? J. Electromyogr. Kinesiol. 2015, 25, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Zajac, F.E. Muscle Coordination of Movement: A perspective. J. Biomech. 1993, 26, 109–124. [Google Scholar] [CrossRef]
- Prokopow, P.; Szyniszewski, S.; Pomorski, K. Effects of Changes in the Timing of Muscle Activation on Jump Height: A Simulation Study. Hum. Mov. 2005, 6, 116–123. [Google Scholar]
- Pequera, G.; Fabrica, G.; Perez, N.B.A. Frequency Domain Methodology to Analyze Muscle Activation Sequences during Explosive Movements. In Proceedings of the International Student Conference Chile/7th Biomedical Engineering Conference Universidad de Concepcion, Concepción, Chile, 3–4 November 2014. [Google Scholar]
- Hug, F. Can muscle coordination be precisely studied by surface electromyography? J. Electromyogr. Kinesiol. 2011, 21, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bobbert, M.F.; van Zandwijk, J.P. Dynamics of force and muscle stimulation in human vertical jumping. Med. Sci. Sports Exerc. 1999, 31, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Prokopow, P.; Hay, D.; Fukashiro, S.; Himeno, R. Quantitative evaluation of the importance of coordination on jump achievements and kinematics in human vertical squat jump. Jpn. J. Biomech. Sports Exerc. 2005, 9, 69–82. [Google Scholar]
- Pandy, M.G.; Zajac, F.E.; Sim, E.; Levine, W.S. An optimal control model for maximum-height human jumping. J. Biomech. 1990, 23, 1185–1198. [Google Scholar] [CrossRef]
- Pandy, M.G.; Zajac, F.E. Optimal muscular coordination strategies for jumping. J. Biomech. 1991, 24, 1–10. [Google Scholar] [CrossRef]
- Bobbert, M.F.; Van Soest, A.J. Effects of muscle strengthening on vertical jump height: A simulation study. Med. Sci. Sports Exerc. 1994, 26, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.; Machado, M.; Miragaya, M.; Pereira, L.N.; Sampaio-jorge, F. Muscle Activation Sequence Compromises Vertical Jump Performance. Serb. J. Sports Sci. 2008, 2, 85–90. [Google Scholar]
- Spudić, D.; Smajla, D.; Šarabon, N. Validity and reliability of force–velocity outcome parameters in flywheel squats. J. Biomech. 2020, 107, 109824. [Google Scholar] [CrossRef] [PubMed]
- Spudić, D.; Smajla, D.; Šarabon, N. Intra-session reliability of electromyographic measurements in flywheel squats. PLoS ONE 2020, 15, e0243090. [Google Scholar] [CrossRef]
- Bouillard, K.; Nordez, A.; Hodges, P.W.; Cornu, C.; Hug, F. Evidence of changes in load sharing during isometric elbow flexion with ramped torque. J. Biomech. 2012, 45, 1424–1429. [Google Scholar] [CrossRef]
- Hagströmer, M.; Oja, P.; Sjöström, M. The International Physical Activity Questionnaire (IPAQ): A study of concurrent and construct validity. Public Health Nutr. 2006, 9, 755–762. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Sabido, R.; Hernández-davó, J.L.; Capdepon, L.; Tous-fajardo, J. How Are Mechanical, Physiological, and Perceptual Variables Affected by the Rest Interval Between Sets During a Flywheel Resistance Session? Front. Physiol. 2020, 11, 663. [Google Scholar] [CrossRef]
- Bruce, E.N.; Goldman, M.D.; Mead, J. A digital computer technique for analyzing respiratory muscle EMG’s. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1977, 43, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Ekstrøm, C.T.; Gerds, T.A.; Jensen, A.K. Sequential rank agreement methods for comparison of ranked lists. Biostatistics 2019, 20, 582–598. [Google Scholar] [CrossRef] [PubMed]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 10 February 2021).
- Ekstrøm, C.T.; Gerds, T.A. SuperRanker: Sequential Rank Agreement. R Packag. Version 1.1.1. 2018. Available online: https://rdrr.io/cran/SuperRanker/ (accessed on 10 February 2021).
- Prilutsky, B.I. Coordination of two- and one-joint muscles: Functional consequences and implications for motor control. Motor Control 2000, 4, 1–44. [Google Scholar] [CrossRef] [PubMed]
- van den Tillaar, R.; Andersen, V.; Saeterbakken, A.H. Comparison of muscle activation and kinematics during free-weight back squats with different loads. PLoS ONE 2019, 14, e0217044. [Google Scholar] [CrossRef]
- Sabido, R.; Hernández-Davó, J.L.; Pereyra-Gerber, G. Influence of Different Inertial Loads on Basic Training Variables During the Flywheel Squat Exercise. Int. J. Sports Physiol. Perform. 2018, 13, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Carroll, K.M.; Wagle, J.P.; Sato, K.; Christopher, B.; Taber, N.Y.; Bingham, G.E.; Stone, M.H. Characterising overload in inertial flywheel devices for use in exercise training. Sports Biomech. 2019, 18, 390–401. [Google Scholar] [CrossRef]
- Latash, M.L. Muscle coactivation: Definitions, mechanisms, and functions. J. Neurophysiol. 2018, 120, 88–104. [Google Scholar] [CrossRef]
- Markovic, G.; Jaric, S. Positive and negative loading and mechanical output in maximum vertical jumping. Med. Sci. Sports Exerc. 2007, 39, 1757–1764. [Google Scholar] [CrossRef]
- Zehr, E.P.; Sale, D.G. Ballistic movement: Muscle activation and neuromuscular adaptation. Can. J. Appl. Physiol. 1994, 19, 363–378. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Aranda, L.M.; Fernandez-Gonzalo, R. Effects of inertial setting on power, force, work, and eccentric overload during flywheel resistance exercise in women and men. J. Strength Cond. Res. 2017, 31, 1653–1661. [Google Scholar] [CrossRef] [PubMed]
- Van Hooren, B.; Zolotarjova, J. The Difference between Countermovement and Squat Jump Performances: A Review of Underlying Mechanisms with Practical Applications. J. Strength Cond. Res. 2017, 31, 2011–2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerrah, A.O.; Onarici Gungor, E.; Soylu, A.R.; Ertan, H. Muscular activation differences between professional and amateur soccer players during countermovement jump. Turk. J. Sport Exerc. 2014, 16, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Bobbert, M.F.; van Ingen Schenau, G.J. Coordination in vertical jumping. J. Biomech. 1988, 21, 249–262. [Google Scholar] [CrossRef]
Sex | N | Age (Years) | Body Mass (kg) | Height (cm) | Body Mass Index (kg/m2) | Training History (Years) | IPAQ Score (MET/min/Week) |
---|---|---|---|---|---|---|---|
Male | 25 | 23.8 (2.8) | 79.3 (12.2) | 181.3 (6.3) | 24.3 (3.0) | 12.1 (3.6) | 3366.8 (1743.3) |
Female | 27 | 22.2 (2.9) | 63.0 (9.1) | 168.4 (5.6) | 22.4 (2.6) | 10.5 (3.5) | 3352.8 (2093.0) |
All | 52 | 23.0 (2.9) | 71.1 (13.4) | 174.8 (8.8) | 23.4 (3.0) | 11.3 (3.6) | 3359.8 (1907.7) |
Condition | Load (kg·m2) | 0.025 | 0.05 | 0.075 | 0.01 |
---|---|---|---|---|---|
Muscle | gluteus maximus | 394.3 (371.7) | 366.6 (227.3) | 504.2 (159.7) | 581.8 (166.9) |
biceps femoris | 475.4 (407.1) | 274.0 (159.4) | 427.9 (141.2) | 495.9 (158.1) | |
semimembranosus | 418.1 (337.5) | 336.1 (215.5) | 515.7 (171.4) | 588.9 (177.8) | |
rectus femoris | 704.4 (256.8) | 326.9 (382.9) | 248.7 (199.3) | 257.0 (115.2) | |
vastus lateralis | 646.7 (353.2) | 279.2 (322.1) | 290.3 (132.7) | 338.6 (132.6) | |
vastus medialis | 727.7 (285.2) | 249.6 (293.6) | 297.6 (139.7) | 439.5 (200.3) | |
lateral gastrocnemius | 691.7 (268.1) | 333.9 (313.8) | 363.4 (255.9) | 360.4 (233.7) | |
soleus | 686.9 (277.8) | 316.9 (311.0) | 350.4 (225.8) | 393.6 (236.1) |
Condition | Load (kg·m2) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.025 | 0.05 | 0.075 | 0.1 | ||||||||||
Muscle Sequence Set | 8 | 4 | 3 | 8 | 4 | 3 | 8 | 4 | 3 | 8 | 4 | 3 | |
Muscle | gluteus maximus | 4.9 (3.1) | 2.3 (1.1) | 1.8 (0.9) | 7.0 (2.4) | 3.2 (0.9) | 2.5 (0.7) | 7.9 (1.9) | 3.4 (0.7) | 2.8 (0.5) | 7.9 (2.1) | 3.4 (0.9) | 2.7 (0.6) |
biceps femoris | 5.2 (3.1) | 2.4 (1.2) | - | 6.1 (2.3) | 2.8 (0.9) | - | 6.6 (2.0) | 2.9 (0.9) | - | 6.5 (1.9) | 2.9 (0.8) | - | |
semimembranosus | 4.4 (2.9) | - | - | 6.2 (2.4) | - | - | 7.7 (1.8) | - | - | 7.1 (1.9) | - | ||
rectus femoris | 5.8 (2.5) | - | - | 4.2 (3.4) | - | - | 2.8 (2.2) | - | - | 2.9 (1.4) | - | - | |
vastus lateralis | 6.2 (2.8) | 2.6 (1.2) | 2.1 (0.8) | 4.5 (2.8) | 1.9 (1.1) | 1.7 (0.8) | 4.0 (1.9) | 1.7 (0.8) | 1.5 (0.6) | 3.6 (1.7) | 1.7 (0.7) | 1.5 (0.5) | |
vastus medialis | 6.8 (2.6) | - | - | 4.3 (2.7) | - | - | 4.1 (1.8) | - | - | 5.2 (2.5) | - | - | |
lateral gastrocnemius | 5.8 (2.5) | - | - | 4.9 (2.8) | - | - | 4.6 (3.1) | - | - | 4.6 (3.2) | - | - | |
soleus | 6.1 (2.7) | 2.6 (1.1) | 2.1 (0.7) | 4.7 (2.6) | 2.2 (1.1) | 1.8 (0.7) | 4.8 (2.8) | 2.0 (1.1) | 1.7 (0.7) | 4.8 (3.2) | 2.1 (1.2) | 1.8 (0.8) |
Load (kg·m2) | 8 Muscles | 4 Muscles | 3 Muscles |
---|---|---|---|
0.025 | 0.567 | 0.317 | 0.403 |
0.05 | 0.000 *** | 0.016 * | 0.307 |
0.075 | 0.206 | 0.002 ** | 0.006 ** |
0.1 | 0.016 * | 0.002 ** | 0.004 ** |
Load (kg·m2) | 8 Muscles | 4 Muscles | 3 Muscles |
---|---|---|---|
0.025 | 0.571 | 0.913 | 0.333 |
0.05 | −0.357 | −0.667 | −1 |
0.075 | −0.214 | −0.667 | −1 |
0.1 | −0.357 | −0.667 | −1 |
Muscle-Set | Load (kg·m2) | 0.025 | 0.050 | 0.075 | 0.1 |
---|---|---|---|---|---|
3 | 0.025 | 1 | - | - | - |
0.05 | −0.333 | 1 | - | - | |
0.075 | −0.333 | 1 | 1 | - | |
0.1 | −0.333 | 1 | 1 | 1 | |
4 | 0.025 | 1 | - | - | - |
0.05 | −0.913 | 1 | - | - | |
0.075 | −0.913 | 1 | 1 | - | |
0.1 | −0.913 | 1 | 1 | 1 | |
8 | 0.025 | 1 | - | - | - |
0.05 | −0.643 | 1 | - | - | |
0.075 | −0.500 | 0.857 | 1 | - | |
0.1 | −0.357 | 0.714 | 0.857 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spudić, D.; Smajla, D.; David Burnard, M.; Šarabon, N. Muscle Activation Sequence in Flywheel Squats. Int. J. Environ. Res. Public Health 2021, 18, 3168. https://doi.org/10.3390/ijerph18063168
Spudić D, Smajla D, David Burnard M, Šarabon N. Muscle Activation Sequence in Flywheel Squats. International Journal of Environmental Research and Public Health. 2021; 18(6):3168. https://doi.org/10.3390/ijerph18063168
Chicago/Turabian StyleSpudić, Darjan, Darjan Smajla, Michael David Burnard, and Nejc Šarabon. 2021. "Muscle Activation Sequence in Flywheel Squats" International Journal of Environmental Research and Public Health 18, no. 6: 3168. https://doi.org/10.3390/ijerph18063168
APA StyleSpudić, D., Smajla, D., David Burnard, M., & Šarabon, N. (2021). Muscle Activation Sequence in Flywheel Squats. International Journal of Environmental Research and Public Health, 18(6), 3168. https://doi.org/10.3390/ijerph18063168