Effect of Tai Chi on Markers of Oxidative Stress: Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection and Data Extraction
2.3. Risk of Bias Assessment
2.4. Statistical Analysis
3. Results
3.1. Study Selection and Study Characteristics
3.2. Tai Chi Effect on Markers of Oxidative Stress
3.3. Quality Assessment
4. Discussion
4.1. Effect of Tai Chi on Antioxidant Enzyme SOD
4.2. Effect of Tai Chi on GPx and Gluthatione
4.3. Effect of Tai Chi vs. Walking on GPx Activity
4.4. Effect of Tai Chi on Enzyme Catalase
4.5. Effect of Tai Chi on LPO and for 8-OH Guanosine
4.6. Effect of Tai Chi vs. Walking on LPO
4.7. Effect of Tai Chi on TAS
4.8. Effect of Tai Chi vs. Yoga
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Checa, J.; Aran, J.M. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. Inflamm. Res. 2020, 2, 1057–1073. [Google Scholar] [CrossRef] [PubMed]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian. J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Rosado-Pérez, J.; Aguiñiga-Sánchez, I.; Arista-Ugalde, T.L.; Santiago-Osorio, E.; Mendoza-Núñez, V.M. The Biological Significance of Oxidative Stress, Effects of Fruits as Natural Edible Antioxidants. Curr. Pharm. Des. 2018, 24, 4807–4824. [Google Scholar] [CrossRef] [PubMed]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 26, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Reiter, R.J.; Mayo, J.C.; Tan, D.; Sainz, R.M.; Alatorre-Jimenez, M.; Qin, L. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res. 2016, 61, 53–78. [Google Scholar] [CrossRef] [PubMed]
- Serafini, M.; Peluso, I. Functional Foods for Health: The Interrelated Antioxidant and Anti-Inflammatory Role of Fruits, Vegetables, Herbs, Spices and Cocoa in Humans. Curr. Pharm. Des. 2016, 22, 6701–6715. [Google Scholar] [CrossRef] [Green Version]
- Simioni, C.; Zauli, G.; Martelli, A.M.; Vitale, M.; Sacchetti, G.; Gonelli, A.; Neri, L.M. Oxidative stress: Role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 2018, 30, 17181–17198. [Google Scholar] [CrossRef] [Green Version]
- Solloway, M.R.; Taylor, S.L.; Shekelle, P.G.; Miake-Lye, I.M.; Beroes, J.M.; Shanman, R.M.; Hempe, S. An evidence map of the effect of Tai Chi on health outcomes. Syst. Rev. 2016, 27, 126–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.Y.; Wang, L.Q.; Ren, J.; Zhang, Y.; Li, M.-L.; Zhu, Y.T.; Luo, J.; Cheng, Y.G.; Li, W.Y.; Wayne, P.M.; et al. Evidence base of clinical studies on Tai Chi: A bibliometric analysis. PLoS ONE 2015, 16, e0120655. [Google Scholar] [CrossRef]
- Miller, S.M.; Hui-Lio, C.; Taylor-Piliae, R.E. Health Benefits of Tai Chi Exercise: A Guide for Nurses. Nurs. Clin. N. Am. 2020, 55, 581–600. [Google Scholar] [CrossRef]
- Klein, P.J.; Baumgarden, J.; Schneider, R. Qigong and Tai Chi as Therapeutic Exercise: Survey of Systematic Reviews and Meta-Analyses Addressing Physical Health Conditions. Altern. Ther. Health Med. 2019, 25, 48–53. [Google Scholar]
- Wang, F.; Lee, E.K.O.; Wu, T.; Benson, H.; Fricchione, G.; Wang, W.; Yeung, A.S. The effects of tai chi on depression, anxiety, and psychological well-being: A systematic review and meta-analysis. Int. J. Behav. Med. 2014, 21, 605–617. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [Green Version]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [Green Version]
- The Nordic Cochrane Centre Review Manager (RevMan). Available online: http://tech.cochrane.org/revman/download (accessed on 31 December 2014).
- Juan, J.; YingJie, G.; AiJun, N. Extraction, characterization of Angelica sinensis polysaccharides and modulatory effect of the polysaccharides and Tai Chi exercise on oxidative injury in middle-aged women subjects. Carbohydr. Polym. 2009, 77, 384–388. [Google Scholar] [CrossRef]
- Qian, G.; Xue, K.; Tang, L.; Wang, F.; Song, X.; Chyu, M.C.; Pence, B.C.; Shen, C.L.; Wang, J.S. Mitigation of Oxidative Damage by Green Tea Polyphenols and Tai Chi Exercise in Postmenopausal Women with Osteopenia. PLoS ONE 2012, 7, e48090. [Google Scholar] [CrossRef]
- Chang, T.C. The effect of short term yoga and Tai-Chi education exercise on antioxidant capacity and oxidative stress measures. Stud. Ethno Med. 2014, 8, 7–14. [Google Scholar] [CrossRef]
- Niu, A. Effect of “Tai Chi” exercise on antioxidant enzymes activities and immunity function in middle-aged participants. African. J. Tradit. Complement. Altern. Med. 2016, 13, 87–90. [Google Scholar] [CrossRef]
- Rosado-Pérez, J.; Santiago-Osorio, E.; Ortiz, R.; Mendoza-Núñez, V.M. Tai chi diminishes oxidative stress in mexican older adults. J. Nutr. Heath Aging 2012, 16, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Goon, J.A.; Noor Aini, A.H.; Musalmah, M.; Yasmin Anum, M.Y.; Wan Nazaimoon, W.M.; Wan Ngah, W.Z. Effect of Tai Chi exercise on DNA damage, antioxidant enzymes, and oxidative stress in middle-age adults. J. Phys. Act. Health 2009, 6, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Montalvo-Olvera, J. Efecto del Tai Chi vs. Suplementos Antioxidantes Para el Control del Estrés Oxidativo; Universidad Nacional Autónoma de México: México City, México, 2011. [Google Scholar]
- Rosado-Pérez, J.; Ortiz, R.; Santiago-Osorio, E.; Mendoza-Núñez, V.M. Effect of Tai Chi versus walking on oxidative stress in Mexican older adults. Oxid. Med. Cell. Longev. 2013, 2013, 298590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendoza-Núñez, V.M.; Hernández-Monjaraz, B.; Santiago-Osorio, E.; Betancourt-Rule, J.M.; Ruiz-Ramos, M. Tai chi exercise increases SOD activity and total antioxidant status in saliva and is linked to an improvement of periodontal disease in the elderly. Oxid. Med. Cell. Longev. 2014, 2014, 603853. [Google Scholar] [CrossRef]
- Mendoza-Núñez, V.M.; Arista-Ugalde, T.L.; Rosado-Pérez, J.; Ruiz-Ramos, M.; Santiago-Osorio, E. Hypoglycemic and antioxidant effect of Tai Chi exercise training in older adults with metabolic syndrome. Clin. Interv. Aging 2018, 13, 523–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palasuwan, A.; Margaritis, I.; Soogarun, S.; Rousseau, A.S. Dietary intakes and antioxidant status in mind-body exercising pre- and postmenopausal women. J. Nutr. Health Aging 2011, 15, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Palasuwan, A.; Suksom, D.; Margaritis, I.; Soogarun, S.; Rousseau, A.S. Effects of tai chi training on antioxidant capacity in pre- and postmenopausal women. J. Aging Res. 2011, 2011, 234696. [Google Scholar] [CrossRef] [Green Version]
- Di Nardo, M.; Gibson, J.M.; Siminerio, L.; Morell, A.R.; Lee, E.S. Complementary and alternative medicine in diabetes care. Curr. Diab. Rep. 2012, 12, 749–761. [Google Scholar] [CrossRef]
- Huang, X.; Eungpinichpong, W.; Silsirivanit, A.; Nakmareong, S.; Wu, X.H. Tai chi improves oxidative stress response and DNA damage/repair in young sedentary females. J. Phys. Ther. Sci. 2014, 26, 825–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasim, N.F.; Aldred, S.; Veldhuijzenvan, J.; Zanten, Y. Acute effect of Thai Chi on marker of oxidative stress and flow-mediated dilation among healthy young and elderly volunteers. Free Radic. Biol. Med. 2017, 108, S64. [Google Scholar] [CrossRef]
- Yu, Y.; Ga, Q.; Xia, W.; Zhang, L.; Hu, Z.; Wu, X.; Jia, X. Association between Physical Exercise and Biomarkers of Oxidative Stress among Middle-Aged and Elderly Community Residents with Essential Hypertension in China. Biomed. Res. Int. 2018, 3, 4135104. [Google Scholar] [CrossRef]
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell. Physiol. Biochem. 2017, 44, 532–553. [Google Scholar] [CrossRef]
- Imlay, J.A. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 2008, 77, 755–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouzid, M.A.; Filaire, E.; Matran, R.; Robin, S.; Fabre, C. Lifelong Voluntary Exercise Modulates Age-Related Changes in Oxidative Stress. Int. J. Sports Med. 2018, 39, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Bouzid, M.A.; Hammouda, O.; Matran, R.; Robin, S.; Fabre, C. Influence of physical fitness on antioxidant activity and malondialdehyde level in healthy older adults. Appl. Physiol. Nutr. Metab. 2015, 40, 582–589. [Google Scholar] [CrossRef]
- Kostka, T.; Drai, J.; Berthouze, S.E.; Lacour, J.R.; Bonnefoy, M. Physical activity, fitness and integrated antioxidant system in healthy active elderly women. Int. J. Sports Med. 1998, 19, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, D.D.; Dorman, S.; Ritchie, S.; Mutt, S.J.; Stenbäck, V.; Walkowiak, J.W.; Herzig, K. Multi-Day Prolonged Low- to Moderate-Intensity Endurance Exercise Mimics Training Improvements in Metabolic and Oxidative Profiles Without Concurrent Chromosomal Changes in Healthy Adults. Front. Physiol. 2019, 10, 1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deponte, M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta 2013, 1830, 3217–3266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.C. Glutathione synthesis. Biochim. Biophys. Acta 2013, 1830, 3143–3153. [Google Scholar] [CrossRef] [Green Version]
- Teskey, G.; Abrahem, R.; Cao, R.; Gyurjian, K.; Islamoglu, H.; Lucero, M.; Martinez, A.; Paredes, E.; Salaiz, O.; Robinson, B.; et al. Glutathione as a Marker for Human Disease. Adv. Clin. Chem. 2018, 87, 141–159. [Google Scholar] [CrossRef]
- Karolkiewicz, J.; Michalak, E.; Pospieszna, B.; Deskur-Smielecka, E.; Nowak, A.; Łucja Pilaczyńska-Szcześniak, L. Response of oxidative stress markers and antioxidant parameters to an 8-week aerobic physical activity program in healthy, postmenopausal women. Arch. Gerontol. Geriatr. 2009, 49, e67–e71. [Google Scholar] [CrossRef]
- Karolkiewicz, J.; Szczêsniak, L.; Deskur-Smielecka, E.; Nowak, A.; Stemplewski, R.; Szeklicki, R. Oxidative stress and antioxidant defense system in healthy, elderly men: Relationship to physical activity. Aging Male 2003, 62, 100–105. [Google Scholar] [CrossRef]
- Sachdev, S.; Davies, K.J.A. Production, detection, and adaptive responses to free radicals in exercise. Free Radic. Biol. Med. 2008, 44, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Galle, F.A.; Martella, D.; Bresciani, G. Antioxidant and anti-inflammatory modulation of exercise during aging. Rev. Esp. Geriatr. Gerontol. 2018, 53, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Jia, Z.; Trush, M.A. Defining ROS in Biology and Medicine. React. Oxyg. Species 2016, 1, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valavanidis, A.; Vlachogianni, T.; Fiotakis, C. 8-hydroxy-2’-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health. C 2009, 27, 120–139. [Google Scholar] [CrossRef] [Green Version]
- Goto, C.; Higashi, Y.; Kimura, M.; Noma, K.; Hara, K.; Nakagawa, K.; Kawamura, M.; Chayama, K.; Yoshizumi, M.; Nara, I. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: Role of endothelium-dependent nitric oxide and oxidative stress. Circulation 2003, 108, 530–535. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Cabrera, M.C.; Salvador-Pascual, A.; Cabo, H.; Ferrando, B.; Viña, J. Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free Radic. Biol. Med. 2015, 86, 37–46. [Google Scholar] [CrossRef]
- Busquets-Cortés, C.; Capó, X.; Bibiloni, M.M.; Martorell, M.; Ferrer, M.D.; Argelich, E.; Bouzas, C.; Carreres, S.; Tur, J.A.; Pons, A.; et al. Peripheral Blood Mononuclear Cells Antioxidant Adaptations to Regular Physical Activity in Elderly People. Nutrients 2018, 20, 1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Yadav, R.; Yadav, R.K.; Khadgawat, R.; Pandey, R.M. Comparative efficacy of a 12 week yoga-based lifestyle intervention and dietary intervention on adipokines, inflammation, and oxidative stress in adults with metabolic syndrome: A randomized controlled trial. Transl. Behav. Med. 2019, 9, 594–604. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, M.A.; Mendoza-Núñez, V.M. Oxidative Stress Indexes for Diagnosis of Health or Disease in Humans. Oxid. Med. Cell. Longev. 2019, 2019, 4128152. [Google Scholar] [CrossRef]
- Ji, L.L.; Kang, C.; Zhang, Y. Exercise-induced hormesis and skeletal muscle health. Free Radic. Biol. Med. 2016, 98, 113–122. [Google Scholar] [CrossRef]
- Powers, S.K.; Radak, Z.; Ji, L.L. Exercise-induced oxidative stress: Past, present and future. J. Physiol. 2016, 594, 5081–5092. [Google Scholar] [CrossRef] [Green Version]
- Bouzid, M.A.; Filaire, E.; McCall, A.; Fabre, C. Radical Oxygen Species, Exercise and Aging: An Update. Sports Med. 2015, 45, 1245–1261. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Jackson, M.J. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol. Rev. 2008, 88, 1243–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Meo, S.; Napolitano, G.; Venditti, P. Mediators of Physical Activity Protection against ROS-Linked Skeletal Muscle Damage. Int. J. Mol. Sci. 2019, 20, 3024. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.L. Redox signaling in skeletal muscle: Role of aging and exercise. Adv. Physiol. Educ. 2015, 39, 352–359. [Google Scholar] [CrossRef]
- Scandalios, J.G. Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 2005, 38, 995–1014. [Google Scholar] [CrossRef]
- Done, A.J.; Traustadóttir, T. Nrf2 mediates redox adaptations to exercise. Redox. Biol. 2016, 10, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.H.; Downing, J.H. Tai Chi: An alternative exercise form for seniors. J. Aging Phys. Act. 1998, 6, 350–362. [Google Scholar] [CrossRef]
- Kim, D.; Moon, Y.; Kim, H.; Jung, J.; Park, H.; Suh, H.; Kim, Y.; Song, D. Effect of Zen Meditation on serum nitric oxide activity and lipid peroxidation. Prog. Neuropsychopharmacol. Biol. Psychiatry 2005, 9, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Muxin, G.; Nishida, H.; Shirakawa, C.; Sato, S.; Konishi, T. Psychological stress-induced oxidative stress as a model of sub-healthy condition and the effect of TCM. Evid. Based Complement. Alternat. Med. 2007, 4, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Amarasekera, A.T.; Chang, D. Buddhist meditation for vascular function: A narrative review. Integr. Med. Res. 2019, 8, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, J.; Sies, H. Disturbed Redox Homeostasis in Oxidative Distress: A Molecular Link From Chronic Psychosocial Work Stress to Coronary Heart Disease? Circ. Res. 2017, 121, 103–105. [Google Scholar] [CrossRef] [PubMed]
- Cohen, B.E.; Edmondson, D.; Kronish, I.M. State of the Art Review: Depression, Stress, Anxiety, and Cardiovascular Disease. Am. J. Hypertens. 2015, 28, 1295–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, T.; Li, H.; Wang, M.; Shi, Y.; Shi, K.; Cheng, Y.; Cui, D. Mindfulness meditation improves metabolic profiles in healthy and depressive participants. CNS Neurosci. Ther. 2018, 24, 572–574. [Google Scholar] [CrossRef] [Green Version]
- Hui, S.; Meijuan, C.; Donghong, C. Biological mechanism study of meditation and its application in mental disorders. Gen. Psychiatr. 2020, 13, e100214. [Google Scholar] [CrossRef]
- Martarelli, D.; Cocchioni, M.; Scuri, S.; Pompei, P. Diaphragmatic breathing reduces exercise-induced oxidative stress. Evid. Based Complement. Altern. Med. 2011, 2011, 932430. [Google Scholar] [CrossRef] [Green Version]
Autor, Year | Study Design | Participants | Tai Chi | N | Comparator | N | Follow-up, m | Oxidative Stress Markers | Included in Quantitative Synthesis |
---|---|---|---|---|---|---|---|---|---|
Juan, 2009 [16] | RCT | Women younger than 55 years old. | Daily, two times a day in 30 min sessions. | 30 | Sedentary behavior. | 30 | 3 | SOD, GPx, CAT, MDA, GSH | Yes |
Goon, 2009 [21] | NRCT | Adults over 45 years. | Twice a week in 1 h sessions. | 15 | Sedentary behavior. | 17 | 6, 12 | SOD, GPx, CAT, MDA | No |
Montalvo-Olvera, 2011 [22] | NRTC | Older adults, average age of 65 years. | Five times a week in 50 min sessions. | 18 | Sedentary behavior. | 18 | 12 | SOD, GPx, LPO, TAS | Yes |
Qian, 2012 [17] | RCT | Postmenopausal women with at least two years after menopause with a diagnosis of osteopenia. | Three times a week in 1 h sessions. In addition, they consumed 250 mg of medicinal starch twice a day daily. | 37 | Sedentary behavior. In addition, they consumed 250 mg of medicinal starch twice a day daily. | 37 | 1, 3, 6 | Urinary 8-OHdG | Yes |
Rosado-Pérez, 2012 [20] | RCT | Older adults in an urban community. | Three times a week in 1 h sessions. | 32 | Sedentary behavior. | 23 | 6 | SOD, GPx, LPO, TAS | Yes |
Rosado-Pérez, 2013 [23] | NRCT | Older adults with an age between 60 and 74 years. | Daily in 1 h sessions. | 32 | Sedentary behavior. Daily 1 h walking sessions. | 40 43 | 6 | SOD, GPx, LPO, TAS | Yes |
Chang, 2014 [18] | RCT | Young female undergraduate volunteers, with an average age of 18 years. | Three times a week in 40 min sessions | 12 | Sedentary behavior. Yoga three times a week in 40 min sessions. | 12 12 | 2 ½ | SOD, GPx, MDA | No |
Mendoza-Núñez, 2014 [24] | NRCT | Sedentary older adults aged between 60 and 74 years. | Five times a week in 1 h sessions | 24 | Sedentary behavior. | 25 | 6 | Salival: SOD, LPO, TAS | Yes |
Niu, 2016 [19] | RCT | Adults aged 40–45 years. | Daily in 1 h sessions. | 25 | Sedentary behavior. | 25 | 2, 4, 6 | SOD, GPx, CAT, MDA, GSH | Yes |
Mendoza-Núñez, 2018 [25] | NRCT | Mexican mestizo older adults aged 60–74 years. | Five times a week for 50 min sessions. | 48 | Sedentary behavior. | 37 | 6 | SOD, GPx, LPO, TAS | Yes |
Oxidative Marker | No. of Studies | MD [95%CI], Participants, DerSimonian and Laird MODEL | Heterogeneity | |
---|---|---|---|---|
I2 (%) | p Value | |||
Tai Chi vs. Sedentary behavior | ||||
Glutathione peroxidase, U/Ml | 6 | 2.40 [−0.48 to 5.27], 344 | 92 | <0.00001 |
Total antioxidant status, mmol/L | 4 | 0.12 [−0.03 to 0.27], 222 | 88 | <0.0001 |
Catalase, U/Ml | 2 | 15.63 [4.05 to 27.22], 110 | 79 | 0.03 |
Glutathione, mg/L | 2 | 77.79 [−11.03 to 166.61],110 | 97 | <0.00001 |
Lipoperoxides, µmol/L | 4 | −0.02 [−0.04 to −0.00], 234 | 0 | 0.53 |
Malondialdehyde, nmol/Ml | 2 | −2.71 [−5.45 to 0.04], 110 | 96 | <0.00001 |
Saliva superoxide dismutase, IU/mL | 1 | 0.46 [−3.35 to 4.27], 49 | NA | NA |
Saliva total antioxidant status, mmol/L | 1 | 0.08 [−0.81 to 0.97], 49 | NA | NA |
Saliva lipoperoxides, µmol/L | 1 | 0.06 [−0.19 to 0.31], 49 | NA | NA |
Urinary 8-OHdG, ng/mg creatinine | 1 | −35.70 [−53.09 to −18.31], 74 | NA | NA |
Tai Chi vs. Walking | ||||
Superoxide dismutase, U/Ml | 1 | 1.0 [−3.16 to 5.16], 74 | NA | NA |
Glutathione peroxidase, U/Ml | 1 | −3.19 [−0.10 to −0.04], 74 | NA | NA |
Lipoperoxides, µmol/L | 1 | −0.07 [−0.10 to −0.04], 74 | NA | NA |
Total antioxidant capacity, mmol/L | 1 | 0.03 [−0.04 to 0.10], 74 | NA | NA |
Pre-Intervention | At Intervention | Post-Intervention | ||||||
---|---|---|---|---|---|---|---|---|
Author | Bias Due to Confounding | Bias in Selection of Participants into the Study | Bias in Classification of Interventions | Bias Due to Deviations from Intended Intervention | Bias Due to Missing Data | Bias in Measurement of Outcomes | Bias in Selection of the Reported Result | Overall Risk of Bias |
Goon, 2009 | L | M | L | S | S | M | S | S |
Montalvo-Olvera, 2011 | M | S | L | L | L | M | S | S |
Rosado-Pérez, 2013 | M | S | L | S | S | M | S | S |
Mendoza-Núñez, 2014 | M | S | L | S | S | M | S | S |
Mendoza-Núñez, 2018 | M | S | L | S | L | M | S | S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosado-Pérez, J.; Castelán-Martínez, O.D.; Mújica-Calderón, A.J.; Sánchez-Rodríguez, M.A.; Mendoza-Núñez, V.M. Effect of Tai Chi on Markers of Oxidative Stress: Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 3458. https://doi.org/10.3390/ijerph18073458
Rosado-Pérez J, Castelán-Martínez OD, Mújica-Calderón AJ, Sánchez-Rodríguez MA, Mendoza-Núñez VM. Effect of Tai Chi on Markers of Oxidative Stress: Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2021; 18(7):3458. https://doi.org/10.3390/ijerph18073458
Chicago/Turabian StyleRosado-Pérez, Juana, Osvaldo D. Castelán-Martínez, Abril J. Mújica-Calderón, Martha A. Sánchez-Rodríguez, and Víctor Manuel Mendoza-Núñez. 2021. "Effect of Tai Chi on Markers of Oxidative Stress: Systematic Review and Meta-Analysis" International Journal of Environmental Research and Public Health 18, no. 7: 3458. https://doi.org/10.3390/ijerph18073458
APA StyleRosado-Pérez, J., Castelán-Martínez, O. D., Mújica-Calderón, A. J., Sánchez-Rodríguez, M. A., & Mendoza-Núñez, V. M. (2021). Effect of Tai Chi on Markers of Oxidative Stress: Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 18(7), 3458. https://doi.org/10.3390/ijerph18073458