Sex Difference in the Association between Physical Activity and All-Cause Mortality in Ambulatory Patients with Chronic Kidney Disease
Abstract
:1. Introduction
2. Material and Methods
2.1. Main Exposure: Physical Activity
- (1)
- High intensity sports several times during a week
- (2)
- Minimum four hours of exercise training weekly
- (3)
- Minimum four hours of moderate activity as walking or cycling weekly
- (4)
- Read, watch television or other sedentary activities
2.2. Co-Variates
2.3. Outcome
2.4. Ethics
2.5. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pedersen, B.K.; Saltin, B. Exercise as Medicine—Evidence for Prescribing Exercise as Therapy in 26 Different Chronic Diseases. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. 3), 1–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyu, H.H.; Bachman, V.F.; Alexander, L.T.; Mumford, J.E.; Afshin, A.; Estep, K.; Veerman, J.L.; Delwiche, K.; Iannarone, M.L.; Moyer, M.L.; et al. Physical Activity and Risk of Breast Cancer, Colon Cancer, Diabetes, Ischemic Heart Disease, and Ischemic Stroke Events: Systematic Review and Dose-Response Meta-Analysis for the Global Burden of Disease Study 2013. BMJ 2016, 354, i3857. [Google Scholar] [CrossRef] [Green Version]
- WHO. Available online: Https://Www.Who.Int/Teams/Health-Promotion/Physical-Activity/Physical-Activity-and-Adults (accessed on 2 August 2020).
- Arem, H.; Moore, S.C.; Patel, A.; Hartge, P.; Berrington de Gonzalez, A.; Visvanathan, K.; Campbell, P.T.; Freedman, M.; Weiderpass, E.; Adami, H.O.; et al. Leisure Time Physical Activity and Mortality: A Detailed Pooled Analysis of the Dose-Response Relationship. JAMA Intern. Med. 2015, 175, 959–967. [Google Scholar] [CrossRef] [PubMed]
- O’Hare, A.M.; Tawney, K.; Bacchetti, P.; Johansen, K.L. Decreased Survival among Sedentary Patients Undergoing Dialysis: Results from the Dialysis Morbidity and Mortality Study Wave 2. Am. J. Kidney Dis. 2003, 41, 447–454. [Google Scholar] [CrossRef]
- Johansen, K.L.; Kaysen, G.A.; Dalrymple, L.S.; Grimes, B.A.; Glidden, D.V.; Anand, S.; Chertow, G.M. Association of Physical Activity with Survival among Ambulatory Patients on Dialysis: The Comprehensive Dialysis Study. Clin. J. Am. Soc. Nephrol. 2013, 8, 248–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuzawa, R.; Matsunaga, A.; Wang, G.; Kutsuna, T.; Ishii, A.; Abe, Y.; Takagi, Y.; Yoshida, A.; Takahira, N. Habitual Physical Activity Measured by Accelerometer and Survival in Maintenance Hemodialysis Patients. Clin. J. Am. Soc. Nephrol. 2012, 7, 2010–2016. [Google Scholar] [CrossRef] [Green Version]
- Bennett, P.N.; Breugelmans, L.; Barnard, R.; Agius, M.; Chan, D.; Fraser, D.; McNeill, L.; Potter, L. Sustaining a Hemodialysis Exercise Program: A Review. Semin. Dial. 2010, 23, 62–73. [Google Scholar] [CrossRef]
- Molsted, S.; Eidemak, I. Musculoskeletal Pain Reported by Mobile Patients with Chronic Kidney Disease. Clin. Kidney J. 2020, sfz196. [Google Scholar] [CrossRef]
- Kakiya, R.; Shoji, T.; Tsujimoto, Y.; Tatsumi, N.; Hatsuda, S.; Shinohara, K.; Kimoto, E.; Tahara, H.; Koyama, H.; Emoto, M.; et al. Body Fat Mass and Lean Mass as Predictors of Survival in Hemodialysis Patients. Kidney Int. 2006, 70, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Kalantar-Zadeh, K.; Abbott, K.C.; Salahudeen, A.K.; Kilpatrick, R.D.; Horwich, T.B. Survival Advantages of Obesity in Dialysis Patients. Am. J. Clin. Nutr. 2005, 81, 543–554. [Google Scholar] [CrossRef]
- Abbott, K.C.; Glanton, C.W.; Trespalacios, F.C.; Oliver, D.K.; Ortiz, M.I.; Agodoa, L.Y.; Cruess, D.F.; Kimmel, P.L. Body Mass Index, Dialysis Modality, and Survival: Analysis of the United States Renal Data System Dialysis Morbidity and Mortality Wave II Study. Kidney Int. 2004, 65, 597–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saltin, B.; Grimby, G. Physiological Analysis of Middle-Aged and Old Former Athletes. Comparison with Still Active Athletes of the Same Ages. Circulation 1968, 38, 1104–1115. [Google Scholar] [CrossRef] [Green Version]
- Grimby, G.; Börjesson, M.; Jonsdottir, I.H.; Schnohr, P.; Thelle, D.S.; Saltin, B. The “Saltin-Grimby Physical Activity Level Scale” and its Application to Health Research. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. 4), 119–125. [Google Scholar] [CrossRef]
- Jensen, H.A.R.; Ekholm, O.; Davidsen, M.; Christensen, A.I. The Danish Health and Morbidity Surveys: Study Design and Participant Characteristics. BMC Med. Res. Methodol. 2019, 19, 1–8. [Google Scholar] [CrossRef]
- Combe, C.; Chauveau, P.; Laville, M.; Fouque, D.; Azar, R.; Cano, N.; Canaud, B.; Roth, H.; Leverve, X.; Aparicio, M.; et al. Influence of Nutritional Factors and Hemodialysis Adequacy on the Survival of 1610 French Patients. Am. J. Kidney Dis. 2001, 37, S81–S88. [Google Scholar] [CrossRef] [PubMed]
- Watkinson, C.; van Sluijs, E.M.; Sutton, S.; Hardeman, W.; Corder, K.; Griffin, S.J. Overestimation of Physical Activity Level is Associated with Lower BMI: A Cross-Sectional Analysis. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scapini, K.B.; Bohlke, M.; Moraes, O.A.; Rodrigues, C.G.; Inácio, J.F.; Sbruzzi, G.; Leguisamo, C.P.; Sanches, I.C.; Tourinho Filho, H.; Irigoyen, M.C. Combined Training is the most Effective Training Modality to Improve Aerobic Capacity and Blood Pressure Control in People Requiring Haemodialysis for End-Stage Renal Disease: Systematic Review and Network Meta-Analysis. J. Physiother. 2019, 65, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Molsted, S.; Harrison, A.P.; Eidemak, I.; Dela, F.; Andersen, J.L. Improved Glucose Tolerance After High-Load Strength Training in Patients Undergoing Dialysis. Nephron Clin. Pract. 2013, 123, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, F.; Helal, L.; Dipp, T.; Soares, D.; Soldatelli, Â.; Mills, A.L.; Paz, C.; Tenório, M.C.C.; Motta, M.T.; Barcellos, F.C.; et al. Intradialytic Training in Patients with End-Stage Renal Disease: A Systematic Review and Meta-Analysis of Randomized Clinical Trials Assessing the Effects of Five Different Training Interventions. J. Nephrol. 2020, 33, 251–266. [Google Scholar] [CrossRef] [PubMed]
- Barcellos, F.C.; Santos, I.S.; Umpierre, D.; Bohlke, M.; Hallal, P.C. Effects of Exercise in the Whole Spectrum of Chronic Kidney Disease: A Systematic Review. Clin. Kidney J. 2015, 8, 753–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baria, F.; Kamimura, M.A.; Aoike, D.T.; Ammirati, A.; Rocha, M.L.; de Mello, M.T.; Cuppari, L. Randomized Controlled Trial to Evaluate the Impact of Aerobic Exercise on Visceral Fat in Overweight Chronic Kidney Disease Patients. Nephrol. Dial. Transplant. 2014, 29, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Johansen, K.L.; Chertow, G.M.; Kutner, N.G.; Dalrymple, L.S.; Grimes, B.A.; Kaysen, G.A. Low Level of Self-Reported Physical Activity in Ambulatory Patients New to Dialysis. Kidney Int. 2010, 78, 1164–1170. [Google Scholar] [CrossRef] [Green Version]
- Tentori, F.; Elder, S.J.; Thumma, J.; Pisoni, R.L.; Bommer, J.; Fissell, R.B.; Fukuhara, S.; Jadoul, M.; Keen, M.L.; Saran, R.; et al. Physical Exercise among Participants in the Dialysis Outcomes and Practice Patterns Study (DOPPS): Correlates and Associated Outcomes. Nephrol. Dial. Transplant. 2010, 25, 3050–3062. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, S.A.; Castle, E.; Lindup, H.; Mayes, J.; Waite, I.; Grant, D.; Mangahis, E.; Crabb, O.; Shevket, K.; Macdougall, I.C.; et al. Mortality and Morbidity Following Exercise-Based Renal Rehabilitation in Patients with Chronic Kidney Disease: The Effect of Programme Completion and Change in Exercise Capacity. Nephrol. Dial. Transplant. 2019, 34, 618–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stack, A.G.; Molony, D.A.; Rives, T.; Tyson, J.; Murthy, B.V. Association of Physical Activity with Mortality in the US Dialysis Population. Am. J. Kidney Dis. 2005, 45, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, M.J.; Bennett, P.N.; Fraser, S.F.; Warmington, S.A. Exercise Interventions for Improving Objective Physical Function in Patients with End-Stage Kidney Disease on Dialysis: A Systematic Review and Meta-Analysis. Am. J. Physiol. Renal Physiol. 2019, 316, F856–F872. [Google Scholar] [CrossRef]
- Shimoda, T.; Matsuzawa, R.; Yoneki, K.; Harada, M.; Watanabe, T.; Yoshida, A.; Takeuchi, Y.; Matsunaga, A. Combined Contribution of Reduced Functional Mobility, Muscle Weakness, and Low Serum Albumin in Prediction of all-Cause Mortality in Hemodialysis Patients: A Retrospective Cohort Study. J. Ren. Nutr. 2018, 28, 302–308. [Google Scholar] [CrossRef]
- Jørgensen, M.E.; Sørensen, M.R.; Ekholm, O.; Rasmussen, N.K. Importance of Questionnaire Context for a Physical Activity Question. Scand. J. Med. Sci. Sports 2013, 23, 651–656. [Google Scholar] [CrossRef]
Number at Risk | |||||||
---|---|---|---|---|---|---|---|
Months | 0 | 10 | 20 | 30 | 40 | 50 | 60 |
Highly/vigorously active | |||||||
9 | 9 | 9 | 9 | 7 | 3 | ||
Moderately active | |||||||
78 | 78 | 76 | 68 | 47 | 20 | 4 | |
Inactive | |||||||
63 | 57 | 47 | 35 | 19 | 9 | 3 |
Number at Risk | |||||||
---|---|---|---|---|---|---|---|
Months | 0 | 10 | 20 | 30 | 40 | 50 | 60 |
Highly/vigorously active | |||||||
25 | 25 | 22 | 19 | 14 | 8 | 2 | |
Moderately active | |||||||
134 | 126 | 115 | 100 | 68 | 29 | 4 | |
Inactive | |||||||
65 | 60 | 54 | 43 | 28 | 12 | 1 |
Variable | Physical Inactive (n = 128) | Moderate Active (n = 212) | High/Vigorous Active (n = 34) | p |
---|---|---|---|---|
Age (years) | 66 ± 13 | 64 ± 13 | 62 ± 16 | 0.351 |
Sex | 0.018 | |||
Women | 63 (49%) | 78 (37%) | 9 (27%) | |
Men | 65 (51%) | 134 (63%) | 25 (74%) | |
Marital status | 0.219 | |||
Married/had a partner | 68 (53%) | 132 (63%) | 21 (62%) | |
No partner | 60 (47%) | 79 (37%) | 13 (38%) | |
Socioeconomic status | 0.028 | |||
Low | 31 (24%) | 32 (15%) | 11 (32%) | |
Medium | 62 (48%) | 98 (46%) | 11 (32%) | |
High | 35 (27%) | 82 (39%) | 12 (35%) | |
Treatment | 0.035 | |||
Hemodialysis | 96 (75%) | 124 (59%) | 20 (59%) | |
Peritoneal dialysis | 8 (6%) | 25 (12%) | 3 (9%) | |
Conservative | 24 (19%) | 63 (30%) | 11 (32%) | |
Dialysis vintage (months) a | 58 ± 51 | 45 ± 49 | 53 ± 40 | 0.258 |
Body mass index (kg/m2) | 26.8 ± 6.4 | 26.2 ± 5.4 | 24.9 ± 3.8 | 0.195 |
Hemoglobin (mmol/L) | 7.1 ± 0.9 | 7.4 ± 0.9 | 7.4 ± 0.8 | 0.063 |
Plasma albumin (g/L) | 36 ± 5 | 36 ± 5 | 37 ± 4 | 0.721 |
Plasma phosphate (mmol/L) | 1.6 ± 0.5 | 1.6 ± 0.5 | 1.5 ± 0.4 | 0.580 |
Bikarbonat (mmol/L) | 23.8 ± 3.5 | 24.6 ± 3.0 | 24.5 ± 3.5 | 0.119 |
C-reactive protein (mg/L) | 9 ± 20 | 9 ± 23 | 6 ± 7 | 0.761 |
eGFR (mL/min/1.73 m2) b | 19 ± 7 | 22 ± 8 | 22 ± 9 | 0.693 |
Renal disease | 0.209 | |||
Diabetes | 20 (16%) | 26 (12%) | 4 (12%) | |
Hypertension | 4 (3%) | 28 (13%) | 5 (15%) | |
Polycystic | 3 (2%) | 17 (8%) | 3 (9%) | |
Glomerulonephritis | 17 (13%) | 26 (12%) | 7 (21%) | |
Pyelonephritis | 0 (0%) | 1 (1%) | 0 (0%) | |
Interstitial nephritis | 3 (2%) | 3 (1%) | 0 (0%) | |
Obstructive uropathy | 4 (3%) | 9 (4%) | 1 (3%) | |
Nephrosclerosis | 17 (13%) | 21 (10%) | 2 (6%) | |
Unknown | 15 (12%) | 32 (15%) | 6 (18%) | |
Not reported c | 45 (35%) | 49 (23%) | 6 (18%) | |
Smoking | 0.068 | |||
Yes, daily | 24 (19%) | 21 (10%) | 3 (9%) | |
Yes, not daily | 6 (5%) | 8 (4%) | 0 (0%) | |
No | 74 (58%) | 149 (70%) | 23 (68%) | |
Not reported c | 24 (19%) | 34 (16%) | 8 (24%) | |
Died during follow up | 69 (54%) | 72 (34%) | 15 (44%) | 0.001 |
Hemodialysis | 54 (49%) | 48 (43%) | 9 (8%) | 0.035 |
Peritoneal dialysis | 5 (31%) | 10 (63%) | 1 (6%) | 0.495 |
Conservative treatment | 10 (35%) | 14 (48%) | 5 (17%) | 0.098 |
Physical Activity | HR (95% CI) | p |
---|---|---|
Women | ||
Inactive | 1 | |
Moderate active | 0.27 (0.15; 0.51) | <0.001 |
High/vigorous active | 0.19 (0.03; 1.46) | 0.111 |
Men | ||
Inactive | 1 | |
Moderate active | 0.78 (0.49; 1.23) | 0.284 |
High/vigorous active | 1.13 (0.59; 2.18) | 0.716 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molsted, S.; Eidemak, I.; Aadahl, M. Sex Difference in the Association between Physical Activity and All-Cause Mortality in Ambulatory Patients with Chronic Kidney Disease. Int. J. Environ. Res. Public Health 2021, 18, 3698. https://doi.org/10.3390/ijerph18073698
Molsted S, Eidemak I, Aadahl M. Sex Difference in the Association between Physical Activity and All-Cause Mortality in Ambulatory Patients with Chronic Kidney Disease. International Journal of Environmental Research and Public Health. 2021; 18(7):3698. https://doi.org/10.3390/ijerph18073698
Chicago/Turabian StyleMolsted, Stig, Inge Eidemak, and Mette Aadahl. 2021. "Sex Difference in the Association between Physical Activity and All-Cause Mortality in Ambulatory Patients with Chronic Kidney Disease" International Journal of Environmental Research and Public Health 18, no. 7: 3698. https://doi.org/10.3390/ijerph18073698
APA StyleMolsted, S., Eidemak, I., & Aadahl, M. (2021). Sex Difference in the Association between Physical Activity and All-Cause Mortality in Ambulatory Patients with Chronic Kidney Disease. International Journal of Environmental Research and Public Health, 18(7), 3698. https://doi.org/10.3390/ijerph18073698