Gender Differences of Health Behaviors in the Risk of Metabolic Syndrome for Middle-Aged Adults: A National Cross-Sectional Study in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measures
2.1.1. Health Behaviors
- Amount of Sleep: Sleeping 7 to 8 h/day;
- Eating breakfast: Eating breakfast 5 to 7 times/week;
- Mental stress: Not feeling much stress in everyday life;
- Smoking: Non-smoker (currently non-smoking and less than 5 packs for a lifetime);
- Alcohol use: Not being a high-risk drinker (i.e., men who drink seven or more alcoholic drinks on average per occasion and women who drink five or more alcoholic drinks on average per occasion, at least twice a week);
- Physical activity: Engaging in aerobic physical activity (i.e., >2 h and 30 min of moderate-intensity physical activity per week; >1 h and 15 min of high-intensity physical activity per week; or mixed participation in moderate- and high-intensity physical activities for an equivalent time for each activity);
- Nutritionally balanced diet: Practicing two or more of the following dietary behaviors: (1) Having a fat intake of 15–25%; (2) Having a daily sodium intake of 2000 mg or less; (3) Having a daily vegetable and fruit intake of 500 g or more; (4) Reading nutrition labels;
- Working hours: Working ≤52 h/week.
2.1.2. MetS
2.1.3. Covariates
2.2. Ethical Considerations
2.3. Statistical Analyses
3. Results
3.1. Demographic Characteristics and Total HPI Score Associated with MetS by Gender
3.2. General Characteristics and Each Indicator of HPI Associated with the Risk of MetS by Gender
4. Discussion
4.1. Limitations
4.2. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic syndrome: Definitions and controversies. BMC Med. 2011, 9, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The metabolic syndrome and cardiovascular risk: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, S.; O’Driscoll, L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes. Rev. 2015, 16, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada, T.; Fukumoto, T.; Ito, K.; Hasegawa, Y.; Osaki, T.; Ban, H. Of the three classifications of healthy lifestyle habits, which one is the most closely associated with the prevention of metabolic syndrome in Japanese? Intern. Med. 2009, 48, 647–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saklayen, M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Han, K.; Kang, Y.M.; Kim, S.O.; Cho, Y.K.; Ko, K.S.; Park, J.Y.; Lee, K.U.; Koh, E.H. Trends in the prevalence of metabolic syndrome and its components in South Korea: Findings from the Korean National Health Insurance Service Database (2009–2013). PLoS ONE 2018, 13, e0194490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, D.; Kongpakpaisarn, K.; Bohra, C. Trends in the prevalence of metabolic syndrome and its components in the United States 2007–2014. Int. J. Cardiol. 2018, 259, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Xu, X.; Zhang, K.; Wang, H. Gender difference of metabolic syndrome and its association with dietary diversity at different ages. Oncotarget 2017, 8, 73568–73578. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C.; Wu, H.P.; Hwang, S.J.; Li, I.C. Exploring the components of metabolic syndrome with respect to gender difference and its relationship to health-promoting lifestyle behaviour: A study in Taiwanese urban communities. J. Clin. Nurs. 2010, 19, 3031–3041. [Google Scholar] [CrossRef]
- Wong, E.M.L.; Leung, D.Y.P.; Wang, Q.; Leung, A.Y.M. A nurse-led lifestyle intervention using mobile application versus booklet for adults with metabolic syndrome–Protocol for a randomized controlled trial. J. Adv. Nurs. 2020, 76, 364–372. [Google Scholar] [CrossRef]
- Wu, H.; Pan, A.; Yu, Z.; Qi, B.; Lu, L.; Zhang, G.; Yu, D.; Zong, G.; Zhou, Y.; Chen, X.; et al. Lifestyle counseling and supplementation with flaxseed or walnuts influence the management of metabolic syndrome. J. Nutr. 2010, 140, 1937–1942. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Huelgas, R.; Jansen-Chaparro, S.; Baca-Osorio, A.J.; Mancera-Romero, J.; Tinahones, F.J.; Bernal-López, M.R. Effects of a long-term lifestyle intervention program with Mediterranean diet and exercise for the management of patients with metabolic syndrome in a primary care setting. Eur. J. Intern. Med. 2015, 26, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Jahangiry, L.; Shojaeizadeh, D.; Abbasalizad Farhangi, M.; Yaseri, M.; Mohammad, K.; Najafi, M.; Montazeri, A. Interactive web-based lifestyle intervention and metabolic syndrome: Findings from the Red Ruby (a randomized controlled trial). Trials 2015, 16, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, G.; Choi, H.Y.; Yang, S.J. Effects of dietary and physical activity interventions on metabolic syndrome: A meta-analysis. J. Korean Acad. Nurs. 2015, 45, 483–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakane, N.; Kotani, K.; Suganuma, A.; Takahashi, K.; Sato, J.; Suzuki, S.; Izumi, K.; Kato, M.; Noda, M.; Nirengi, S.; et al. Prevention of metabolic syndrome by telephone-delivered lifestyle intervention in a real-world setting: Sub-analysis of a cluster-randomized trial. Metab. Syndr. Relat. Disord. 2019, 17, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Yoon, N.H.; Yoo, S.; Kim, H. Composition of metabolic syndrome among Korean adults in a lifestyle modification intervention. Osong Public Health Res. Perspect. 2014, 5, 370–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Lorgeril, M. Commentary on the clinical management of metabolic syndrome: Why a healthy lifestyle is important. BMC Med. 2012, 10, 139. [Google Scholar] [CrossRef]
- Fabiani, R.; Naldini, G.; Chiavarini, M. Dietary patterns and metabolic syndrome in adult subjects: A systematic review and meta-analysis. Nutrients 2019, 11, 2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buscemi, S.; Sprini, D.; Grosso, G.; Galvano, F.; Nicolucci, A.; Lucisano, G.; Massenti, F.M.; Amodio, E.; Rini, G.B. Impact of lifestyle on metabolic syndrome in apparently healthy people. Eat. Weight Disord. 2014, 19, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.M.; Chiou, J.Y.; Kuo, H.W.; Tan, J.Y.; Ko, S.H.; Lee, M.C. Associations between unhealthy lifestyle behaviors and metabolic syndrome by gender in young adults. Biol. Res. Nurs. 2019, 21, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Ju, S.Y.; Choi, W.S. Sleep duration and metabolic syndrome in adult populations: A meta-analysis of observational studies. Nutr. Diabetes 2013, 3, e65. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Okazaki, A.; Ohmori, S. The relationship between psychosocial stress, age, BMI, CRP, lifestyle, and the metabolic syndrome in apparently healthy subjects. J. Physiol. Anthropol. 2011, 30, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Hattori, T.; Konno, S.; Munakata, M. Gender differences in lifestyle factors associated with metabolic syndrome and preliminary metabolic syndrome in the general population: The Watari Study. Intern. Med. 2017, 56, 2253–2259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.H.; Qiao, N.; Huang, J.J.; Sun, C.M.; Cui, Y.; Tian, S.S.; Wang, C.; Liu, X.M.; Zhang, H.X.; Wang, H.; et al. Gender differences in dietary patterns and their association with the prevalence of metabolic syndrome among Chinese: A cross-sectional study. Nutrients 2016, 8, 180. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.Y.; Li, C.H.; Wu, Y.S.; Chien, W.C.; Wang, K.Y.; Tzeng, W.C. Gender differences in the prevalence of metabolic syndrome among Taiwanese air force personnel: A population-based study. J. Cardiovasc. Nurs. 2020, 35, 502–511. [Google Scholar] [CrossRef]
- Kang, Y.; Kim, J. Gender difference on the association between dietary patterns and metabolic syndrome in Korean population. Eur. J. Nutr. 2016, 55, 2321–2330. [Google Scholar] [CrossRef]
- Kusaka, Y.; Kondou, H.; Morimoto, K. Healthy lifestyles are associated with higher natural killer cell activity. Prev. Med. 1992, 21, 602–615. [Google Scholar] [CrossRef]
- Dronina, Y.; Yoon, Y.M.; Sakamaki, H.; Nam, E.W. Health system development and performance in Korea and Japan: A comparative Study of 2000–2013. JLM 2016, 6, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Huang, B.; Weng, H.; Nakayama, K.; Morimoto, K. Effects of lifestyle on micronuclei frequency in human lymphocytes in Japanese hard-metal workers. Prev. Med. 2009, 48, 383–388. [Google Scholar] [CrossRef]
- Ministry of Health and Welfare. 2019 Trend Report of the 4th National Health Plan 2. Sejong City, Korea. 2020. Available online: https://www.khealth.or.kr/board/view?pageNum=1&rowCnt=8&no1=31&linkId=1000883&menuId=MENU00829&schType=0&schText=&boardStyle=Gallery&categoryId=&continent=&country=&contents1= (accessed on 11 March 2021).
- Labor Standards Act; Law No. 17326 C.F.R.; Enforced on 5 January 2021, Statues of the Republic of Korea. Sejong City, Korea. Available online: https://www.law.go.kr/lsSc.do?section=&menuId=1&subMenuId=15&tabMenuId=81&eventGubun=060101&query=%EB%85%B8%EB%8F%99%EB%B2%95#undefined (accessed on 15 September 2020).
- Lee, S.Y.; Park, H.S.; Kim, D.J.; Han, J.H.; Kim, S.M.; Cho, G.J.; Kim, D.Y.; Kwon, H.S.; Kim, S.R.; Lee, C.B.; et al. Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res. Clin. Pract. 2007, 75, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Ajlouni, K.; Khader, Y.; Alyousfi, M.; Al Nsour, M.; Batieha, A.; Jaddou, H. Metabolic syndrome amongst adults in Jordan: Prevalence, trend, and its association with socio-demographic characteristics. Diabetol. Metab. Syndr. 2020, 12, 100. [Google Scholar] [CrossRef]
- Henning-Smith, C.; Gonzales, G. The relationship between living alone and self-rated health varies by age: Evidence from the National Health Interview Survey. J. Appl. Gerontol. 2020, 39, 971–980. [Google Scholar] [CrossRef]
- Meher, T.; Sahoo, H. The epidemiological profile of metabolic syndrome in Indian population: A comparative study between men and women. Clin. Epidemiol. Glob. Health 2020, 8, 1047–1052. [Google Scholar] [CrossRef] [Green Version]
- Ryu, H.; Chin, D.L. Factors associated with metabolic syndrome among Korean office workers. Arch. Environ. Occup. Health 2017, 72, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Chung, J. Associations of the eating alone behavior with nutrient intake, obesity and metabolic syndrome in middle-aged adults based on the 2013–2017 Korean National Health and Nutrition Examination Survey. J. Nutr. Health 2019, 52, 435–448. [Google Scholar] [CrossRef]
- Smith, K.W.; Krieger, N.; Kosheleva, A.; Urato, M.; Waterman, P.D.; Williams, D.R.; Carney, D.R.; Chen, J.T.; Bennett, G.G.; Freeman, E. A structural model of social determinants of the metabolic syndrome. Ethn. Dis. 2020, 30, 331–338. [Google Scholar] [CrossRef]
- Bohr, A.D.; Laurson, K.; McQueen, M.B. A novel cutoff for the waist-to-height ratio predicting metabolic syndrome in young American adults. BMC Public Health 2016, 16, 295. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.K.; Shim, K.W.; Suk, H.W.; Lee, H.S.; Lee, S.W.; Byun, A.R.; Lee, H.N. Differences between one-person and multi-person households on socioeconomic status, health behavior, and metabolic syndrome across gender and age groups. Korean J. Fam. Pract. 2019, 9, 373–382. [Google Scholar] [CrossRef]
- Guidelines for the Use of the Seventh Korea National Health and Nutrition Examination Survey Raw Data; No 117002; Korea Disease Control and Prevention Agency: Cheongju, Korea, 2016; Available online: https://knhanes.cdc.go.kr/knhanes/sub04/sub04_02_02.do?classType=4 (accessed on 11 March 2021).
- Sun, K.; Ren, M.; Liu, D.; Wang, C.; Yang, C.; Yan, L. Alcohol consumption and risk of metabolic syndrome: A meta-analysis of prospective studies. Clin. Nutr. 2014, 33, 596–602. [Google Scholar] [CrossRef]
- Amirfaiz, S.; Shahril, M.R. Objectively measured physical activity, sedentary behavior, and metabolic syndrome in adults: Systematic review of observational evidence. Metab. Syndr. Relat. Disord. 2019, 17, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Djousse, L.; Padilla, H.; Nelson, T.; Gaziano, J.; Mukamal, K. Diet and metabolic syndrome. Endocr. Metab. Immune Disord. Drug Targets 2010, 10, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Julibert, A.; del Mar Bibiloni, M.; Tur, J.A. Dietary fat intake and metabolic syndrome in adults: A systematic review. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 887–905. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Lim, M.; Kim, J. Fruit and vegetable consumption and the metabolic syndrome: A systematic review and dose–response meta-analysis. Br. J. Nutr. 2019, 122, 723–733. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Liu, Y.; Sun, X.; Wang, B.; Ren, Y.; Zhao, Y.; Zhou, J.; Han, C.; Yin, L.; et al. Leisure-time physical activity and incident metabolic syndrome: A systematic review and dose-response meta-analysis of cohort studies. Metabolism 2017, 75, 36–44. [Google Scholar] [CrossRef]
- Beigh, S.H.; Jain, S. Prevalence of metabolic syndrome and gender differences. Bioinformation 2012, 8, 613–616. [Google Scholar] [CrossRef]
- Major Result: Health Behavior; Korea Disease Control and Prevention Agency: Cheongju, Korea. 2019. Available online: https://knhanes.cdc.go.kr/knhanes/sub01/sub01_05.do (accessed on 11 March 2021).
- Choi, S.; Kim, K.; Lee, J.K.; Choi, J.Y.; Shin, A.; Park, S.K.; Kang, D.; Park, S.M. Association between change in alcohol consumption and metabolic syndrome: Analysis from the Health Examinees Study. Diabetes Metab. J. 2019, 43, 615–626. [Google Scholar] [CrossRef]
- Fujita, N.; Takei, Y. Alcohol consumption and metabolic syndrome. Hepatol. Res. 2011, 41, 287–295. [Google Scholar] [CrossRef]
- Hamaguchi, M.; Kojima, T.; Ohbora, A.; Takeda, N.; Fukui, M.; Kato, T. Protective effect of alcohol consumption for fatty liver but not metabolic syndrome. World J. Gastroenterol. 2012, 18, 156–167. [Google Scholar] [CrossRef]
- Lee, K. Gender-specific relationships between alcohol drinking patterns and metabolic syndrome: The Korea National Health and Nutrition Examination Survey 2008. Public Health Nutr. 2012, 15, 1917–1924. [Google Scholar] [CrossRef] [Green Version]
- Pucci, G.; Alcidi, R.; Tap, L.; Battista, F.; Mattace-Raso, F.; Schillaci, G. Sex-and gender-related prevalence, cardiovascular risk and therapeutic approach in metabolic syndrome: A review of the literature. Pharmacol. Res. 2017, 120, 34–42. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All | Men | Women | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MetS | MetS | MetS | ||||||||||
No (n = 6466) | Yes (n = 2211) | χ2 | p | No (n = 2575) | Yes (n = 1238) | χ2 | p | No (n = 3891) | Yes (n = 973) | χ2 | p | |
n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | |||||||
Age | 51.13 (6.89) | 53.01 (6.78) | 8.91 | <0.001 | 51.21 (6.94) | 52.2 (6.87) | 3.61 | <0.001 | 51.07 (6.86) | 54.03 (6.53) | 10.89 | <0.001 |
Gender | ||||||||||||
Men | 2575 (39.8) | 1238 (56.0) | 202.67 | <0.001 | ||||||||
Women | 3891 (60.2) | 973 (44.0) | ||||||||||
Living arrangement | ||||||||||||
Not living alone | 5973 (92.4) | 2007 (90.8) | 1.30 | 0.297 | 2333 (90.6) | 1139 (92.0) | 3.22 | .103 | 3640 (93.5) | 868 (89.2) | 14.18 | <0.001 |
Living alone | 493 (7.6) | 204 (9.2) | 242 (9.4) | 99 (8.0) | 251 (6.5) | 105 (10.8) | ||||||
Menopause | ||||||||||||
Yes | 1813 (51.5) | 639 (70.5) | 119.51 | <0.001 | ||||||||
No | 1708 (48.5) | 267 (29.5) | ||||||||||
Household income | ||||||||||||
Low | 1532 (23.7) | 639 (28.9) | 53.81 | <0.001 | 633 (24.6) | 323 (26.1) | 13.30 | 0.004 | 899 (23.1) | 316 (32.5) | 55.45 | <0.001 |
Middle | 3227 (49.9) | 1112 (50.3) | 1288 (50.0) | 624 (50.4) | 1939 (49.8) | 488 (50.2) | ||||||
High | 1707 (26.4) | 460 (20.8) | 654 (25.4) | 291 (23.5) | 1053 (27.1) | 169 (17.4) | ||||||
Education level | ||||||||||||
Below middle school | 1889 (29.2) | 737 (33.3) | 45.68 | <0.001 | 788 (30.6) | 303 (24.5) | 3.43 | 0.250 | 1101 (28.3) | 434 (44.6) | 150.04 | <0.001 |
High school | 2188 (33.8) | 799 (36.1) | 736 (28.6) | 433 (35.0) | 1452 (37.3) | 366 (37.6) | ||||||
Greater than university | 2389 (36.9) | 675 (30.5) | 1051 (40.8) | 502 (40.5) | 1338 (34.4) | 173 (17.8) | ||||||
Health Practice Index | ||||||||||||
Smoking | ||||||||||||
5 packs or more | 1058 (17.5) | 627 (28.7) | 97.51 | <0.001 | 882 (37.8) | 554 (45.3) | 12.80 | 0.001 | 176 (4.8) | 73 (7.6) | 3.33 | 0.107 |
Not * | 4977 (82.5) | 1559 (71.3) | 1449 (62.2) | 669 (54.7) | 3528 (95.2) | 890 (92.4) | ||||||
Alcohol use | ||||||||||||
High-risk drinking | 667 (11.0) | 479 (21.9) | 184.67 | <0.001 | 487 (20.9) | 412 (33.7) | 79.1 | <0.001 | 180 (4.9) | 67 (7.0) | 6.76 | 0.026 |
Not * | 5373 (89.0) | 1707 (78.1) | 1847 (79.1) | 811 (66.3) | 3526 (95.1) | 896 (93.0) | ||||||
Eating breakfast | ||||||||||||
Irregularly or never | 3841 (68.4) | 1280 (69.2) | 0.01 | 0.923 | 1448 (68.5) | 685 (68.6) | 0.68 | 0.507 | 2393(68.3) | 595(69.9) | 0.52 | 0.551 |
Almost daily * | 1776 (31.6) | 570 (30.8) | 666 (31.5) | 314 (31.4) | 1110(31.7) | 256(30.1) | ||||||
Amount of sleep | ||||||||||||
<7 h/day or >8 h/day | 3970 (66.1) | 1494 (68.5) | 1.81 | 0.242 | 1527 (65.9) | 808 (66.3) | 0.09 | 0.784 | 2443 (66.2) | 686 (71.2) | 4.77 | 0.056 |
7–8 h/day * | 2036 (33.9) | 687 (31.5) | 791 (34.1) | 410 (33.7) | 1245 (33.8) | 277 (28.8) | ||||||
Working hours | ||||||||||||
Over 52 h/week | 2514 (41.2) | 954 (43.1) | 1.88 | 0.230 | 874 (36.9) | 466 (37.6) | 0.80 | 0.423 | 1640 (43.9) | 488 (50.2) | 10.18 | 0.005 |
Less than 52 h/week * | 3594 (58.8) | 1257 (56.9) | 1494 (63.1) | 772 (62.4) | 2100 (56.1) | 485 (49.8) | ||||||
Physical activity | ||||||||||||
Not | 3143 (54.5) | 1319 (62.7) | 30.21 | <0.001 | 1157 (52.8) | 716 (61.0) | 18.51 | <0.001 | 1986 (55.5) | 603 (64.8) | 15.25 | <0.001 |
Aerobic physical activity * | 2626 (45.5) | 786 (37.3) | 1035 (47.2) | 458 (39.0) | 1591 (44.5) | 328 (35.2) | ||||||
Mental Stress | ||||||||||||
High | 1486 (24.3) | 607 (27.5) | 6.22 | 0.027 | 562 (23.7) | 338 (27.3) | 4.31 | 0.059 | 924 (24.7) | 269 (27.6) | 2.35 | 0.175 |
Moderate or low * | 4622 (75.7) | 1604 (72.5) | 1806 (76.3) | 900 (72.7) | 2816 (75.3) | 704 (72.4) | ||||||
Having a nutritionally balanced Diet | ||||||||||||
No | 2684 (41.5) | 1102 (49.8) | 33.91 | <0.001 | 1351 (52.5) | 656 (53.0) | 0.00 | 0.979 | 1333 (34.3) | 446 (45.8) | 35.63 | <0.001 |
Yes * | 3782 (58.5) | 1109 (50.2) | 1224 (47.5) | 582 (47.0) | 2558 (65.7) | 527 (54.2) | ||||||
Health Practice Index Score ** | ||||||||||||
Poor | 505 (10.1) | 322 (18.3) | 128.02 | <0.001 | 312 (17.4) | 213 (22.5) | 31.28 | <0.001 | 193 (6.0) | 109 (13.4) | 58.94 | <0.001 |
Moderate | 815 (16.3) | 365 (20.7) | 337 (18.8) | 211 (22.3) | 478 (14.9) | 154 (18.9) | ||||||
Good | 3684 (73.6) | 1075 (61.0) | 1140 (63.7) | 522 (55.2) | 2544 (79.1) | 553 (67.8) |
Health Practice Index | MetS | |||
---|---|---|---|---|
Men (n = 1238) | Women (n = 973) | χ2 | p-Value | |
n (%) or M (SD) | n (%) or M (SD) | |||
Smoking | ||||
5 packs or more | 554 (25.3) | 73 (3.3) | 337.28 | <0.001 |
Not * | 669 (30.6) | 890 (40.7) | ||
Alcohol use | ||||
High-risk alcohol use | 412 (18.8) | 67 (3.1) | 202.47 | <0.001 |
Not * | 811 (37.1) | 896 (41.0) | ||
Eating breakfast | ||||
Irregularly or never | 685 (37.0) | 595 (32.2) | 0.50 | 0.561 |
Almost daily * | 314 (17.0) | 256 (13.8) | ||
Amount of sleep | ||||
<7 h/day or >8 h/day | 808 (37.0) | 686 (31.5) | 3.77 | 0.081 |
7–8 h/day * | 410 (18.8) | 277 (12.7) | ||
Working hours | ||||
Over 52 h/week | 466 (21.1) | 488 (22.1) | 32.17 | <0.001 |
Less than 52 h/week * | 772 (34.9) | 485 (21.9) | ||
Physical activity | ||||
Not | 716 (34.0) | 603 (28.6) | 1.80 | 0.236 |
Aerobic physical activity * | 458 (21.8) | 328 (15.6) | ||
Mental stress | ||||
High | 338 (15.3) | 269 (12.2) | 0.06 | 0.820 |
Moderate or low * | 900 (40.7) | 704 (31.8) | ||
Having a nutritionally balanced diet | ||||
No | 656 (29.7) | 446 (20.2) | 13.37 | <0.001 |
Yes * | 582 (26.3) | 527 (23.8) |
Characteristics | All | Men | Women | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B | SE | Adjusted Odds Ratio (95% CI) | p | B | SE | Adjusted Odds Ratio (95% CI) | p | B | SE | Adjusted Odds Ratio (95% CI) | p | ||||
Age | 0.033 | 0.005 | 1.033 (1.023,1.044) | <0.001 | 0.026 | 0.007 | 1.027 (1.013, 1.040) | <0.001 | 0.028 | 0.014 | 1.028 (1.001, 1.056) * | 0.044 | |||
Gender | |||||||||||||||
Men | 0.714 | 0.066 | 2.041 (1.793, 2.324) | <0.001 | |||||||||||
Women | Ref | ||||||||||||||
Living Arrangement | |||||||||||||||
Not living alone | 0.127 | 0.118 | 1.136 (0.900, 1.433) | 0.283 | 0.285 | 0.170 | 1.330 (0.951,1.858) | 0.095 | −0.133 | 0.159 | 0.876 (0.641, 1.196) | 0.403 | |||
Living alone | Ref | Ref | Ref | ||||||||||||
Menopause | |||||||||||||||
Yes | 0.319 | 0.174 | 1.388 (0.986, 1.952) | 0.060 | |||||||||||
No | Ref | ||||||||||||||
Household income | |||||||||||||||
Low | 0.380 | 0.095 | 1.462 (1.213, 1.762) | <0.001 | 0.274 | 0.130 | 1.315 (1.018, 1.698) | 0.036 | 0.427 | 0.145 | 1.532 (1.152, 2.037) | 0.003 | |||
Middle | 0.199 | 0.085 | 1.22 (1.033, 1.441) | 0.019 | 0.165 | 0.117 | 1.179 (0.937, 1.484) | 0.159 | 0.210 | 0.128 | 1.234 (0.959, 1.586) | 0.101 | |||
High | Ref | Ref | Ref | ||||||||||||
Education Level | |||||||||||||||
Below Middle school | 0.266 | 0.098 | 1.305 (1.076, 1.582) | 0.007 | −0.051 | 0.140 | 0.95 (0.722, 1.250) | 0.715 | 0.709 | 0.153 | 2.033 (1.504, 2.747) | <0.001 | |||
High school | 0.171 | 0.081 | 1.187 (1.013, 1.391) | 0.034 | 0.042 | 0.108 | 1.043 (0.844, 1.290) | 0.696 | 0.461 | 0.129 | 1.585 (1.232, 2.041) | <0.001 | |||
Greater than University | Ref | Ref | Ref | ||||||||||||
HPI score | |||||||||||||||
Poor | 0.309 | 0.104 | 1.363 (1.111, 1.671) | 0.003 | 0.396 | 0.123 | 1.486 (1.166, 1.894) | 0.001 | 0.674 | 0.156 | 1.962 (1.443, 2.667) | <0.001 | |||
Moderate | −0.180 | 0.080 | 0.835 (0.714, 0.977) | 0.024 | 0.434 | 0.111 | 1.544 (1.241, 1.920) | <0.001 | 0.304 | 0.117 | 1.356 (1.076, 1.708) | 0.010 | |||
Good | Ref | Ref | Ref | ||||||||||||
Likelihood Ratio F = 40.13 (8.81, 4597.49) p < 0.001, Max-rescaled R2 = 0.077 | Likelihood Ratio F = 6.31 (7.81, 4074.69) p < 0.001, Max-rescaled R2 = 0.025 | Likelihood Ratio F = 24.42 (8.83, 4607.05) p < 0.001, Max-rescaled R2 = 0.085 |
Characteristics | All | Men | Women | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | SE | Adjusted Odds Ratio (95% CI) | p | B | SE | Adjusted Odds Ratio (95% CI) | p | B | SE | Adjusted Odds Ratio (95% CI) | p | |
Demographics | ||||||||||||
Age | 0.039 | 0.006 | 1.040 (1.028, 1.051) | <0.001 | 0.029 | 0.007 | 1.029 (1.015, 1.044) | <0.001 | 0.026 | 0.014 | 1.027 (0.999, 1.055) | 0.060 |
Gender | ||||||||||||
Men | 0.621 | 0.075 | 1.861 (1.605, 2.158) | <0.001 | ||||||||
Women | Ref | |||||||||||
Living arrangement | ||||||||||||
Not living alone | 0.177 | 0.118 | 1.193 (0.947, 1.504) | 0.135 | 0.347 | 0.173 | 1.415 (1.008, 1.986) | 0.045 | −0.11 | 0.157 | 0.895 (0.657, 1.218) | 0.479 |
Living alone | Ref | Ref | Ref | |||||||||
Menopause | ||||||||||||
Yes | 0.333 | 0.175 | 1.395 (0.989, 1.968) | 0.058 | ||||||||
No | Ref | |||||||||||
Household income | ||||||||||||
Low | 0.386 | 0.096 | 1.472 (1.218, 1.778) | <0.001 | 0.332 | 0.131 | 1.394 (1.078, 1.801) | 0.011 | 0.424 | 0.146 | 1.529 (1.147, 2.038) | 0.004 |
Middle | 0.205 | 0.085 | 1.227 (1.038, 1.451) | 0.017 | 0.195 | 0.117 | 1.215 (0.965, 1.53) | 0.098 | 0.211 | 0.128 | 1.235 (0.960, 1.590) | 0.101 |
High | Ref | Ref | Ref | |||||||||
Education level | ||||||||||||
Below middle school | 0.244 | 0.098 | 1.277 (1.053, 1.548) | 0.013 | −0.07 | 0.141 | 0.934 (0.709, 1.232) | 0.630 | 0.682 | 0.154 | 1.979 (1.462, 2.678) | <0.001 |
High school | 0.141 | 0.081 | 1.151 (0.982, 1.349) | 0.082 | 0.003 | 0.11 | 1.003 (0.807, 1.246) | 0.981 | 0.459 | 0.128 | 1.582 (1.230, 2.036) | <0.001 |
Greater than university | Ref | Ref | Ref | |||||||||
Health Practice Index | ||||||||||||
Smoking | ||||||||||||
5 packs or more | 0.127 | 0.091 | 1.135 (0.950, 1.357) | 0.164 | 0.134 | 0.098 | 1.143 (0.943, 1.385) | 0.172 | 0.123 | 0.223 | 1.131 (0.730, 1.753) | 0.580 |
Not * | Ref | Ref | Ref | |||||||||
Alcohol use | ||||||||||||
High risk drinking | 0.643 | 0.094 | 1.902 (1.581, 2.288) | <0.001 | 0.721 | 0.102 | 2.056 (1.681, 2.514) | <0.001 | 0.346 | 0.234 | 1.414 (0.893, 2.238) | 0.139 |
Not * | Ref | Ref | ||||||||||
Eating breakfast | ||||||||||||
Irregularly or never | −0.1 | 0.076 | 0.909 (0.783, 1.055) | 0.208 | −0.1 | 0.108 | 0.903 (0.730, 1.117) | 0.347 | −0.09 | 0.107 | 0.917 (0.742, 1.132) | 0.418 |
Almost daily * | Ref | Ref | Ref | |||||||||
Amount of sleep | ||||||||||||
<7 h/day or >8 h/day | 0.079 | 0.072 | 1.082 (0.940, 1.246) | 0.272 | 0.038 | 0.091 | 1.039 (0.869, 1.241) | 0.676 | 0.125 | 0.104 | 1.133 (0.923, 1.390) | 0.233 |
7–8 h/day * | Ref | Ref | Ref | |||||||||
Working hours | ||||||||||||
Over 52 h/week | 0.079 | 0.069 | 1.082 (0.946, 1.238) | 0.249 | 0.061 | 0.101 | 1.063 (0.872, 1.295) | 0.547 | 0.119 | 0.094 | 1.127 (0.937, 1.355) | 0.204 |
Less than 52 h/week * | Ref | Ref | Ref | |||||||||
Physical activity | ||||||||||||
Not | 0.178 | 0.067 | 1.195(1.047, 1.364) | 0.008 | 0.223 | 0.1 | 1.250 (1.027, 1.521) | 0.026 | 0.185 | 0.093 | 1.203 (1.002, 1.443) | 0.047 |
Aerobic physical activity * | Ref | Ref | Ref | |||||||||
Mental stress | ||||||||||||
High | 0.104 | 0.076 | 1.109 (0.955, 1.289) | 0.175 | 0.132 | 0.105 | 1.141 (0.928, 1.403) | 0.212 | 0.093 | 0.103 | 1.098 (0.897, 1.343) | 0.364 |
Moderate or low * | Ref | Ref | Ref | |||||||||
Having a nutritionally balanced diet | ||||||||||||
No | 0.035 | 0.068 | 1.036 (0.906, 1.184) | 0.606 | −0.13 | 0.093 | 0.876 (0.730, 1.051) | 0.154 | 0.267 | 0.099 | 1.306 (1.075, 1.587) | 0.007 |
Yes * | Ref | Ref | Ref | |||||||||
Likelihood Ratio F = 28.19 (14.45, 7542.94) p < 0.001, Max-rescaled R2 = 0.090 | Likelihood Ratio F = 7.72 (13.58, 7087) p < 0.001, Max-rescaled R2 = 0.054 | Likelihood Ratio F = 14.55 (14.54, 7590.79) p < 0.001, Max-rescaled R2 = 0.086 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, J.; Kim, J.; Son, H. Gender Differences of Health Behaviors in the Risk of Metabolic Syndrome for Middle-Aged Adults: A National Cross-Sectional Study in South Korea. Int. J. Environ. Res. Public Health 2021, 18, 3699. https://doi.org/10.3390/ijerph18073699
Yoon J, Kim J, Son H. Gender Differences of Health Behaviors in the Risk of Metabolic Syndrome for Middle-Aged Adults: A National Cross-Sectional Study in South Korea. International Journal of Environmental Research and Public Health. 2021; 18(7):3699. https://doi.org/10.3390/ijerph18073699
Chicago/Turabian StyleYoon, Jaehee, Jeewuan Kim, and Heesook Son. 2021. "Gender Differences of Health Behaviors in the Risk of Metabolic Syndrome for Middle-Aged Adults: A National Cross-Sectional Study in South Korea" International Journal of Environmental Research and Public Health 18, no. 7: 3699. https://doi.org/10.3390/ijerph18073699
APA StyleYoon, J., Kim, J., & Son, H. (2021). Gender Differences of Health Behaviors in the Risk of Metabolic Syndrome for Middle-Aged Adults: A National Cross-Sectional Study in South Korea. International Journal of Environmental Research and Public Health, 18(7), 3699. https://doi.org/10.3390/ijerph18073699