Community Risk Factors in the COVID-19 Incidence and Mortality in Catalonia (Spain). A Population-Based Study
Abstract
:1. Introduction
- Analyse the associations between both COVID-19 incidence and mortality and long-term exposure to pollutant concentration (NO2 and PM10), while adjusting for demographic information, socioeconomic status and general health status (cardiovascular diseases, psychological disorders and all-cause cancer);
- Explore the potential links between agri-food industry and COVID-19 incidence and mortality as observed from the outbreaks in these particular industries;
- Screen, for the very first time, the potential use of the overall Land Use and Cover data on describing the geographical COVID-19 incidence and mortality.
2. Materials and Methods
2.1. COVID-19 Cases and Deaths
2.2. Comorbidities
2.3. Demographic and Socioeconomic Data
2.4. Air Pollution
2.5. Agri-Food Industry
2.6. Land Use and Land Cover Data
2.7. Statistical Analysis
3. Results
Main Model Adjustment
4. Discussion
4.1. Demographics
4.2. Socioeconomics
4.3. Comorbidities
4.4. Air Pollution
4.5. Forest, Meat, and Leather and Fur Industry
4.6. Land Use and Cover
4.7. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO Coronavirus Disease (COVID-19) Situation Report-131. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (accessed on 31 May 2020).
- Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 94, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Vivanco-Hidalgo, R.M.; Vela, E.; Clèries, M.; Monterde, D. Informe Sobre les Característiques Sociodemogràfiques, Clíniques i els Factors Pronòstics dels Pacients amb el Diagnòstic de COVID-19 a Catalunya; Generalitat de Catallunya. Agència de Qualitat i Avaluació Sanitàries de Catalunya: Barcelona, Spain, 2020. (In Catalan)
- Bialek, S.; Bowen, V.; Chow, N.; Curns, A.; Gierke, R.; Hall, A.; Hughes, M.; Pilishvili, T.; Ritchey, M.; Roguski, K.; et al. Geographic Differences in COVID-19 Cases, Deaths, and Incidence—United States, February 12–April 7, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Brandt, E.B.; Beck, A.F.; Mersha, T.B. Air pollution, racial disparities and COVID-19 mortality. J. Allergy Clin. Immunol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Paez, A.; Lopez, F.A.; Menezes, T.; Cavalcanti, R.; da Rocha Pitta, M.G. A Spatio-Temporal Analysis of the Environmental Correlates of COVID-19 Incidence in Spain. Geogr. Anal. 2020, gean.12241. [Google Scholar] [CrossRef]
- Pequeno, P.; Mendel, B.; Rosa, C.; Bosholn, M.; Souza, J.L.; Baccaro, F.; Barbosa, R.; Magnusson, W. Air transportation, population density and temperature predict the spread of COVID-19 in Brazil. PeerJ 2020, 8, e9322. [Google Scholar] [CrossRef]
- Gerli, A.G.; Centanni, S.; Miozzo, M.R.; Virchow, J.C.; Sotgiu, G.; Canonica, G.W.; Soriano, J.B. COVID-19 mortality rates in the European Union, Switzerland, and the UK: Effect of timeliness, lockdown rigidity, and population density. Minerva Med. 2020. [Google Scholar] [CrossRef]
- Adiga, A.; Wang, L.; Sadilek, A.; Tendulkar, A.; Venkatramanan, S.; Vullikanti, A.; Aggarwal, G.; Talekar, A.; Ben, X.; Chen, J.; et al. Interplay of global multi-scale human mobility, social distancing, government interventions, and COVID-19 dynamics. medRxiv 2020. [Google Scholar] [CrossRef]
- Badr, H.S.; Du, H.; Marshall, M.; Dong, E.; Squire, M.M.; Gardner, L.M. Association between mobility patterns and COVID-19 transmission in the USA: A mathematical modelling study. Lancet Infect. Dis. 2020, 19–21. [Google Scholar] [CrossRef]
- da Camara Ribeiro-Dantas, M.; Alves, G.; Gomes, R.B.; Bezerra, L.C.T.; Lima, L.; Silva, I. Dataset for country profile and mobility analysis in the assessment of COVID-19 pandemic. Data Br. 2020, 31. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, X.J.; Guan, Y.J. Effect of ambient air pollutants and meteorological variables on COVID-19 incidence. Infect. Control Hosp. Epidemiol. 2020, 41, 1011–1015. [Google Scholar] [CrossRef]
- Waltenburg, M.A.; Victoroff, T.; Rose, C.E.; Butterfield, M.; Jervis, R.H.; Fedak, K.M.; Gabel, J.A.; Feldpausch, A.; Dunne, E.M.; Austin, C.; et al. Update: COVID-19 Among Workers in Meat and Poultry Processing Facilities—United States, April–May 2020. MMWR. Morb. Mortal. Wkly. Rep. 2020, 69, 887–892. [Google Scholar] [CrossRef]
- European Federation of Food Agriculture and Tourism Trade Unions. EFFAT Report. Covid-19 Outbreaks in Slaughterhouses and Meat Processing Plants. State of Affairs and Proposals for Policy Action at EU Level; European Federation of Food Agriculture and Tourism Trade Unions: Brussels, Belgium, 2020. [Google Scholar]
- Walrand, S. Autumn COVID-19 surge dates in Europe correlated to latitudes, not to temperature-humidity, pointing to vitamin D as contributing factor. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Carleton, T.; Cornetet, J.; Huybers, P.; Meng, K.C.; Proctor, J. Global evidence for ultraviolet radiation decreasing COVID-19 growth rates. Proc. Natl. Acad. Sci. USA 2020, 118, 1–9. [Google Scholar] [CrossRef]
- Morawska, L.; Cao, J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int. 2020, 139, 105730. [Google Scholar] [CrossRef] [PubMed]
- Hadei, M.; Hopke, P.K.; Jonidi, A.; Shahsavani, A. A letter about the airborne transmission of sars-cov-2 based on the current evidence. Aerosol Air Qual. Res. 2020, 20, 911–914. [Google Scholar] [CrossRef] [Green Version]
- Frontera, A.; Martin, C.; Vlachos, K.; Sgubin, G. Regional air pollution persistence links to COVID-19 infection zoning. J. Infect. 2020, 81, 318–356. [Google Scholar] [CrossRef] [PubMed]
- WHO Mortality and Burden of Disease from Ambient Air Pollution. Available online: https://www.who.int/gho/phe/outdoor_air_pollution/burden/en/ (accessed on 31 May 2020).
- Sciomer, S.; Moscucci, F.; Magrì, D.; Badagliacca, R.; Piccirillo, G.; Agostoni, P. SARS-CoV-2 spread in Northern Italy: What about the pollution role? Environ. Monit. Assess. 2020, 192. [Google Scholar] [CrossRef] [PubMed]
- Frontera, A.; Cianfanelli, L.; Vlachos, K.; Landoni, G.; Cremona, G. Severe air pollution links to higher mortality in COVID-19 patients: The “double-hit” hypothesis. J. Infect. 2020. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Nethery, R.C.; Sabath, B.M.; Braun, D.; Dominici, F. Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Travaglio, M.; Popovic, R.; Yu, Y.; Leal, N.; Martins, L.M. Links between air pollution and COVID-19 in England. medRxiv 2020. [Google Scholar] [CrossRef]
- Ogen, Y. Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci. Total Environ. 2020, 726, 138605. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Liu, Y.; Song, H.; Wu, C.-H.; Li, B.; Kraemer, M.U.G.; Zheng, P.; Yan, X.; Jia, G.; Zheng, Y.; et al. Risk of COVID-19 is associated with long-term exposure to air pollution. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Heederik, D.J.J.; Smit, L.A.M.; Vermeulen, R.C.H. Go slow to go fast: A plea for sustained scientific rigor in air pollution research during the COVID-19 pandemic. Eur. Respir. J. 2020, 2001361. [Google Scholar] [CrossRef] [PubMed]
- Félix-Arellano, E.E.; Schilmann, A.; Hurtado-Díaz, M.; Texcalac-Sangrador, J.L.; Riojas-Rodríguez, H. Revisión rápida: Contaminación del aire y morbimortalidad por Covid-19. Salud Publica Mex. 2020, 62, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Saez, M.; Tobias, A.; Barceló, M.A. Effects of long-term exposure to air pollutants on the spatial spread of COVID-19 in Catalonia, Spain. Environ. Res. 2020, 191. [Google Scholar] [CrossRef]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Grazia Perrone, M.; Borelli, M.; Palmisani, J.; Di Gilio, A.; Torboli, V.; Pallavicini, A.; et al. SARS-Cov-2 RNA Found on Particulate Matter of Bergamo in Northern Italy: First Preliminary Evidence. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Comunian, S.; Dongo, D.; Milani, C.; Palestini, P. Air Pollution and Covid-19: The Role of Particulate Matter in the Spread and Increase of Covid-19’s Morbidity and Mortality. Int. J. Environ. Res. Public Health 2020, 17, 4487. [Google Scholar] [CrossRef]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Pallavicini, A.; Ruscio, M.; Piscitelli, P.; Colao, A.; Miani, A. Searching for SARS-COV-2 on Particulate Matter: A Possible Early Indicator of COVID-19 Epidemic Recurrence. Int. J. Environ. Res. Public Health 2020, 17, 2986. [Google Scholar] [CrossRef]
- Coccia, M. Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID. Sci. Total Environ. 2020, 729, 138474. [Google Scholar] [CrossRef]
- Liu, J.; Ding, J.; Li, L.; Li, X.; Zhang, Z.; Ran, S.; Ge, X.; Zhang, J.; Wang, J. Characteristics of aerosol optical depth over land types in central Asia. Sci. Total Environ. 2020, 727, 138676. [Google Scholar] [CrossRef]
- Guo, Y.; Hong, S.; Feng, N.; Zhuang, Y.; Zhang, L. Spatial distributions and temporal variations of atmospheric aerosols and the affecting factors: A case study for a region in central China. Int. J. Remote Sens. 2012, 33, 3672–3692. [Google Scholar] [CrossRef]
- Zhang, W.; He, Q.; Wang, H.; Cao, K.; He, S. Factor analysis for aerosol optical depth and its prediction from the perspective of land-use change. Ecol. Indic. 2018, 93, 458–469. [Google Scholar] [CrossRef]
- Feng, H.; Zou, B.; Tang, Y. Scale- and region-dependence in landscape-PM2.5 correlation: Implications for urban planning. Remote Sens. 2017, 9, 918. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yu, X.; Zhang, Z. PM2.5 Concentration Differences between Various Forest Types and Its Correlation with Forest Structure. Atmosphere 2015, 6, 1801–1815. [Google Scholar] [CrossRef] [Green Version]
- Zou, B.; Xu, S.; Sternberg, T.; Fang, X. Effect of land use and cover change on air quality in urban sprawl. Sustain. 2016, 8, 677. [Google Scholar] [CrossRef] [Green Version]
- Turner, B.L.; Meyer, W.B.; Skole, D.L. Global Land-Use/Land-Cover Change: Towards an Integrated Study. R. Swedish Acad. Sci. 1994, 23, 91–95. [Google Scholar]
- Zaldo-Aubanell, Q.; Serra, I.; Sardanyés, J.; Alsedà, L.; Maneja, R. Reviewing the reliability of Land Use and Land Cover data in studies relating human health to the environment. Environ. Res. 2021, 194. [Google Scholar] [CrossRef]
- Muñoz Ortiz, L.; Mompart Penina, A.; Mias, M. Anàlisi de les Defuncions Observades i Esperades Durant L’epidèmia de COVID-19 a Catalunya; Generalitat de Catallunya; Agència de Qualitat i Avaluació Sanitàries de Catalunya: Barcelona, Spain, 2020.
- Suñer, C.; Ouchi, D.; Àngel Mas, M.; Alarcon, R.L.; Mesquida, M.M.; Negredo, E.; Prat, N.; Bonet-Simó, J.M.; Miralles, R.; Teixidó Colet, M.; et al. Risk factors for mortality of residents in nursing homes with Covid-19: A retrospective cohort study. medRxiv 2020. [Google Scholar] [CrossRef]
- Peckham, H.; de Gruijter, N.M.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L.R.; Rosser, E.C.; Webb, K.; Deakin, C.T. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Colls, C.; Mias, M.; García-Altés, A. A deprivation index to reform the financing model of primary care in Catalonia (Spain). Gac. Sanit. 2020, 34, 44–50. [Google Scholar] [CrossRef]
- Wu, X.; Nethery, R.C.; Sabath, M.B.; Braun, D.; Dominici, F. Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Sci. Adv. 2020, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Benmarhnia, T. Linkages between air pollution and the health burden from covid-19: Methodological challenges and opportunities. Am. J. Epidemiol. 2020, 189, 1238–1243. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xie, J.; Huang, F.; Cao, L. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Sci. Total Environ. 2020, 727, 138704. [Google Scholar] [CrossRef] [PubMed]
- Johannes Andrée, B.P. Incidence of COVID-19 and Connections with Air Pollution Exposure: Evidence from the Netherlands. medRxiv 2020. [Google Scholar] [CrossRef]
- Leininger, T.J.; Gelfand, A.E.; Allen, J.M.; Silander, J.A. Spatial Regression Modeling for Compositional Data With Many Zeros. J. Agric. Biol. Environ. Stat. 2013, 18, 314–334. [Google Scholar] [CrossRef]
- Pearson, K. Mathematical contributions to the theory of evolution. Proeedings R. Soc. 1896, 60, 489–498. [Google Scholar]
- Aitchison, J.; Egozcue, J.J. Compositional data analysis: Where are we and where should we be heading? Math. Geol. 2005, 37, 829–850. [Google Scholar] [CrossRef] [Green Version]
- Hron, K.; Filzmoser, P.; Thompson, K. Linear regression with compositional explanatory variables. J. Appl. Stat. 2012, 39, 1115–1128. [Google Scholar] [CrossRef]
- Müller, I.; Hron, K.; Fišerová, E.; Šmahaj, J.; Cakirpaloglu, P.; Vančáková, J. Interpretation of compositional regression with application to time budget analysis. Austrian J. Stat. 2018, 47, 3–19. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 5 July 2020).
- Global Health 5050 COVID-19 Sex-Disaggregated Data Tracker. Available online: https://globalhealth5050.org/covid19/sex-disaggregated-data-tracker/ (accessed on 7 July 2020).
- Institut d’Estadística de Catalunya Anuari Estadístic de Catalunya. Població a 1 de Gener. Per Sexe i Grups d’edat. Available online: https://www.idescat.cat/pub/?id=aec&n=253 (accessed on 5 July 2020).
- Connor, J.; Madhavan, S.; Mokashi, M.; Amanuel, H.; Johnson, N.R.; Pace, L.E.; Bartz, D. Health risks and outcomes that disproportionately affect women during the Covid-19 pandemic: A review. Soc. Sci. Med. 2020, 266, 113364. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.; Shrestha, A.D.; Stojanac, D.; Miller, L.J. The impact of the COVID-19 pandemic on women’s mental health. Arch. Womens Ment. Health 2020, 23, 741–748. [Google Scholar] [CrossRef] [PubMed]
- PopulationPyramid.net Population of WORLD. 2019. Available online: https://www.populationpyramid.net/ (accessed on 5 July 2020).
- Sharma, G.; Volgman, A.S.; Michos, E.D. Sex Differences in Mortality from COVID-19 Pandemic: Are Men Vulnerable and Women Protected? JACC Case Rep. 2020. [Google Scholar] [CrossRef]
- Maleki Dana, P.; Sadoughi, F.; Hallajzadeh, J.; Asemi, Z.; Mansournia, M.A.; Yousefi, B.; Momen-Heravi, M. An Insight into the Sex Differences in COVID-19 Patients: What are the Possible Causes? Prehosp. Disaster Med. 2020, 1–15. [Google Scholar] [CrossRef] [PubMed]
- You, H.; Wu, X.; Guo, X. Distribution of covid-19 morbidity rate in association with social and economic factors in wuhan, china: Implications for urban development. Int. J. Environ. Res. Public Health 2020, 17, 341. [Google Scholar] [CrossRef] [PubMed]
- Niedzwiedz, C.L.; O’Donnell, C.A.; Jani, B.D.; Demou, E.; Ho, F.K.; Celis-Morales, C.; Nicholl, B.I.; Mair, F.S.; Welsh, P.; Sattar, N.; et al. Ethnic and socioeconomic differences in SARS-CoV-2 infection: Prospective cohort study using UK Biobank. BMC Med. 2020, 18, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zhen, J.; Chan, C.; Schoonees, A.; Apatu, E.; Thabane, L.; Young, T. Transmission of respiratory viruses when using public ground transport: A rapid review to inform public health recommendations during the COVID-19 pandemic. S. Afr. Med. J. 2020, 110, 478–483. [Google Scholar]
- Hunt, M. Covid-19 Transmission Rates on Rail; RSSB: London, UK, 2020. [Google Scholar]
- Shen, J.; Duan, H.; Zhang, B.; Wang, J.; Ji, J.S.; Wang, J.; Pan, L.; Wang, X.; Zhao, K.; Ying, B.; et al. Prevention and control of COVID-19 in public transportation: Experience from China. Environ. Pollut. 2020, 266, 115291. [Google Scholar] [CrossRef] [PubMed]
- Khunti, K.; Singh, A.K.; Pareek, M.; Hanif, W. Is ethnicity linked to incidence or outcomes of covid-19? BMJ 2020, 369, 14–15. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.; Pierson, E.; Koh, P.W.; Gerardin, J.; Redbird, B.; Grusky, D.; Leskovec, J. Mobility network models of COVID-19 explain inequities and inform reopening. Nature 2020. [Google Scholar] [CrossRef]
- Baena-Díez, J.M.; Barroso, M.; Cordeiro-Coelho, S.I.; Díaz, J.L.; Grau, M. Impact of COVID-19 outbreak by income: Hitting hardest the most deprived. J. Public Health (Bangkok) 2020, 1–6. [Google Scholar] [CrossRef]
- Hu, X.; Deng, Y.; Wang, J.; Li, H.; Li, M.; Lu, Z. Short term outcome and risk factors for mortality in adults with critical Severe Acute Respiratory Syndrome (SARS). J. Huazhong Univ. Sci. Technol. Med. Sci. 2004, 24, 514–517. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Yang, J.; Zhao, F.; Zhi, L.; Wang, X.; Liu, L.; Bi, Z.; Zhao, Y. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin. Res. Cardiol. 2020, 109, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.J.; Liang, W.H.; Zhao, Y.; Liang, H.R.; Chen, Z.S.; Li, Y.M.; Liu, X.Q.; Chen, R.C.; Tang, C.L.; Wang, T.; et al. Comorbidity and its impact on 1590 patients with Covid-19 in China: A Nationwide Analysis. Eur. Respir. J. 2020, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onder, G.; Rezza, G.; Brusaferro, S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA J. Am. Med. Assoc. 2020, 323, 1775–1776. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, L.; Yan, S.; Yang, F.; Xiang, L.; Zhu, J.; Shen, B.; Gong, Z. Clinical characteristics of 25 death cases with COVID-19: A retrospective review of medical records in a single medical center, Wuhan, China. Int. J. Infect. Dis. 2020, 94, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Q.; Xu, R.; Volkow, N.D. Increased risk of COVID-19 infection and mortality in people with mental disorders: Analysis from electronic health records in the United States. World Psychiatry 2021, 20, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Jindal, V.; Sahu, K.K.; Gaikazian, S.; Siddiqui, A.D.; Jaiyesimi, I. Cancer treatment during COVID-19 pandemic. Med. Oncol. 2020, 37, 1–3. [Google Scholar] [CrossRef]
- Finer, N.; Garnett, S.P.; Bruun, J.M. COVID-19 and obesity. Clin. Obes. 2020, 10. [Google Scholar] [CrossRef]
- Lee, S.C.; Son, K.J.; Han, C.H.; Park, S.C.; Jung, J.Y. Impact of COPD on COVID-19 prognosis: A nationwide population-based study in South Korea. Sci. Rep. 2021, 11, 1–8. [Google Scholar] [CrossRef]
- Domingo, J.L.; Marquès, M.; Rovira, J. Influence of airborne transmission of SARS-CoV-2 on COVID-19 pandemic. A review. Environ. Res. 2020, 188, 17–20. [Google Scholar] [CrossRef]
- Milton, D.K. A Rosetta Stone for Understanding Infectious Drops and Aerosols. J. Pediatr. Infect. Dis. Soc. 2020, 9, 413–415. [Google Scholar] [CrossRef]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Licen, S.; Perrone, M.G.; Piazzalunga, A.; Borelli, M.; Palmisani, J.; DI Gilio, A.; et al. Potential role of particulate matter in the spreading of COVID-19 in Northern Italy: First observational study based on initial epidemic diffusion. BMJ Open 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, X.L.; Dai, D.W.; Huang, Z.Y.; Ma, Z.; Guan, Y.J. Air pollution and temperature are associated with increased COVID-19 incidence: A time series study. Int. J. Infect. Dis. 2020, 97, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., III. Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. JAMA 2002, 287, 1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franklin, B.A.; Brook, R.; Arden Pope, C. Air pollution and cardiovascular disease. Curr. Probl. Cardiol. 2015, 40, 207–238. [Google Scholar] [CrossRef]
- Power, M.C.; Adar, S.D.; Yanosky, J.D.; Weuve, J. Exposure to air pollution as a potential contributor to cognitive function, cognitive decline, brain imaging, and dementia: A systematic review of epidemiologic research. Neurotoxicology 2016, 56, 235–253. [Google Scholar] [CrossRef] [Green Version]
- Travaglio, M.; Yu, Y.; Popovic, R.; Selley, L.; Leal, N.S.; Martins, L.M. Links between air pollution and COVID-19 in England. Environ. Pollut. 2021, 268, 115859. [Google Scholar] [CrossRef]
- Ribas, V.; Miralles, F.; Rey, O.; Rafael, X.; Subías, P.; Torrent, M.; Vicens, J.A.; Saez, M.; Barceló, M.A.; Ponce-de-León, M.; et al. Big Data i Intel·Ligència Artificial per a la Prevenció D’epidèmies. Monitoratge i Predicció per a la Detecció Primerenca de brots Epidèmics; Generalitat de Catalunya. Departament de Polítiques Digitals i Administració Pública i el Departament de Salut: Barcelona, Spain, 2021; in press. (In Catalan)
- García Hernández, E.; Sancho Gracia, V.; Pascual Vilarroya, S.; Cartanyà Ferre, J.; Blanco Abillá, G.; Dolz Dolz, N.; Babot Gaspa, D. Informe Anual del Sector Porcí; Edicions de la Universitat de Lleida: Lleida, Spain, 2018. [Google Scholar]
- Kamau, E.; Ongus, J.; Gitau, G.; Galgalo, T.; Lowther, S.A.; Bitek, A.; Munyua, P. Knowledge and practices regarding Middle East Respiratory Syndrome Coronavirus among camel handlers in a Slaughterhouse, Kenya, 2015. Zoonoses Public Health 2019, 66, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Omrani, A.S.; Al-Tawfiq, J.A.; Memish, Z.A. Middle east respiratory syndrome coronavirus (Mers-coV): Animal to human interaction. Pathog. Glob. Health 2015, 109, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Middleton, J.; Reintjes, R.; Lopes, H. Meat plants-a new front line in the covid-19 pandemic. BMJ 2020, 370, m2716. [Google Scholar] [CrossRef]
- Enserink, M. Coronavirus rips through Dutch mink farms, triggering culls. Science 2020, 368, 1169. [Google Scholar] [CrossRef] [PubMed]
- Oreshkova, N.; Molenaar, R.J.; Vreman, S.; Harders, F.; Oude Munnink, B.B.; Hakze-van der Honing, R.W.; Gerhards, N.; Tolsma, P.; Bouwstra, R.; Sikkema, R.S.; et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Euro Surveill. 2020, 25. [Google Scholar] [CrossRef] [PubMed]
- Garcés, L. COVID-19 exposes animal agriculture’s vulnerability. Agric. Hum. Values 2020, 1, 3. [Google Scholar] [CrossRef]
- Boada, M.; Gomez, F.J. Boscos de Catalunya; Lunwerg: Barcelona, Spain, 2012; ISBN 9788497859318. [Google Scholar]
- Hidalgo, J.; Masson, V.; Baklanov, A.; Pigeon, G.; Gimeno, L. Advances in urban climate modeling. Ann. N. Y. Acad. Sci. 2008, 1146, 354–374. [Google Scholar] [CrossRef]
- Demir, M.; Dindaroǧlu, T.; Yilmaz, S. Effects of forest areas on air quality; Aras Basin and its environment. J. Environ. Health Sci. Eng. 2014, 12, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mcdonald, A.G.; Bealey, W.J.; Fowler, D.; Dragosits, U.; Skiba, U.; Smith, R.I.; Donovan, R.G.; Brett, H.E.; Hewitt, C.N.; Nemitz, E. Quantifying the effect of urban tree planting on concentrations and depositions of PM 10 in two UK conurbations. Atmos. Environ. 2007, 41. [Google Scholar] [CrossRef]
- Codinas, M.; Sans, C. Alcaldes del Pirineu Denuncien L’arribada de Turistes de Segones Residències. Available online: https://www.segre.com/noticies/comarques/2020/04/09/alcaldes_del_pirineu_denuncien_arribada_turistes_segones_residencies_103590_1091.html (accessed on 3 July 2020).
Urban Areas | Industrial, Commercial and Transport Units | Agricultural Areas | Forest and Semi-NATURAL Areas |
---|---|---|---|
Discontinuous urban fabric | Industrial or commercial units | Permanently irrigated land | Lowland natural grasslands |
Continuous urban fabric | Road and rail networks and associated land | Non-irrigated arable land | Montane natural grasslands |
Unirrigated Fruit tress | Alpine natural grasslands | ||
Irrigated Fruit trees | Transitional woodland/shrub | ||
Vineyards | Wetland vegetation | ||
Rice fields | Coniferous forest | ||
Citrus trees | Broad-leaved forest | ||
Sclerophyll forest |
Covariate (Units) | Description |
---|---|
Demographics, socioeconomic status, and comorbidity (Main model) | |
Sex: Females | Categorical variable comparing females to males, used as a reference level. |
Percent > 65 (%) | Percentage of people aged above 65 years. |
SES A | Socioeconomic status categorised with 5 levels, comparing very high, high, low and very low (A, B, D, E) socioeconomic status to normal (C), used as the reference level. Data from 2014. |
SES B | |
SES D | |
SES E | |
Cardiovascular diseases (%) | Group variable. Percentage of people with congestive heart failure, hypertension, ischemic cardiomyopathy or who suffered cerebrovascular accident in 2014. |
Psychological disorders (%) | Group variable. Percentage of people with depression, schizophrenia, intellectual disability, conduct disorder, attention deficit disorder or psychosis in 2014. |
All-cause cancer (%) | Group variable. Percentage of people with any type of cancer in 2014. |
Human activity | |
NO2 (µg/m3) * | Nitrogen dioxide annual weighed average in 2016. |
PM10 (µg/m3) * | Particulate matter with diameter of 10 µm annual weighed average in 2016. |
Meat industry * | Number of industries based on slaughtering of livestock, conservation and elaboration of meat products in 2020. |
Fish industry * | Number of industries based on preparation and conservation of fish, crustaceans and molluscs in 2020. |
Vegetable industry * | Number of industries based on preparation and preservation of fruits and vegetables in 2020. |
Animal oils and fats * | Number of industries based on manufacturing of vegetable and animal oils and fats in 2020. |
Milk products * | Number of industries based on manufacturing of milk products in 2020. |
Grain mill industry * | Number of industries based on manufacturing of grain mill products, starches and starch products in 2020. |
Bakery industry * | Number of industries based on manufacturing of bakery and pasta products in 2020. |
Other food products * | Number of industries based on manufacturing of other food products in 2020. |
Animal feeding * | Number of industries based on manufacturing of products for animal feeding in 2020. |
Beverage industry * | Number of industries based on manufacturing of beverages in 2020. |
Forest industry * | Number of forest industries in 2020. |
Leather and fur industry * | Number of industries based on preparation, tanning and dyeing animal skins in 2020. |
Garden industry * | Number of industries based on seed conditioning and handling, substrate production and ornamental plant conservation in 2020. |
Land use and Land cover | |
ilr-Urban areas * | Isometric logratio (ilr) transformation of the percentage of urban areas in a given BHA. Numerical variable. |
ilr-Industrial areas * | Isometric logratio (ilr) transformation of the percentage of industrial, commercial and transport unit areas in a given BHA. Numerical variable. |
ilr-Agricultural areas * | Isometric logratio (ilr) transformation of the percentage of agricultural areas in a given BHA. Numerical variable. |
ilr-Forested areas * | Isometric logratio (ilr) transformation of the percentage of forested and semi-natural areas in a given BHA. Numerical variable. |
Mean ± SD | Statistical Results | ||||
---|---|---|---|---|---|
Variables | 2016 Concentration Levels | 2018/2019 Concentration Levels | df | t | p-Value |
NO2 | 20.23 ± 12.163 | 21.37 ± 10.700 | 246 | 0.792 | 0.428 |
PM10 | 21.52 ± 4.397 | 20.72 ± 5.241 | 351.37 | −1.559 | 0.119 |
Incidence of COVID-19 | Mortality of COVID-19 | |||||||
---|---|---|---|---|---|---|---|---|
Adjusted Main Model | Unadjusted | Adjusted Main Model | Unadjusted | |||||
Covariates | Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value |
Main Model | ||||||||
Sex: Female | 1.772 (1.7577–1.7870) | *** | 1.723 (1.7087–1.7366) | *** | 1.034 (0.9974–1.0724) | - | 0.990 (0.9551–1.0257) | - |
Percent > 65 | 1.006 (1.0047–1.0072) | *** | 1.018 (1.0171–1.0189) | *** | 1.023 (1.0171–1.0281) | *** | 1.052 (1.0481–1.0562) | *** |
SES A (very high) | 1.199 (1.1832–1.2150) | *** | 1.171 (1.1568–1.1848) | *** | 1.547 (1.4556–1.6434) | *** | 1.523 (1.4414–1.6093) | *** |
SES B (high) | 1.126 (1.1116–1.1402) | *** | 1.153 (1.1387–1.1674) | *** | 1.241 (1.1696–1.3166) | *** | 1.346 (1.2702–1.4271) | *** |
SES D (low) | 0.967 (0.9542–0.9800) | *** | 0.998 (0.9849–1.0114) | - | 0.914 (0.8573–0.9754) | * | 1.015 (0.9517–1.0815) | - |
SES E (very low) | 0.956 (0.9432–0.9688) | *** | 0.994 (0.9806–1.0067) | - | 0.908 (0.8511–0.9677) | ** | 1.011 (0.9493–1.0778) | - |
Cardiovascular diseases | 1.003 (1.0020–1.0049) | *** | 1.016 (1.0153–1.0173) | *** | 1.007 (1.0006–1.0136) | * | 1.038 (1.0336–1.0423) | *** |
Psychological disorders | 1.148 (1.1418–1.1545) | *** | 1.057 (1.0517–1.0627) | *** | 1.312 (1.2809–1.3435) | *** | 1.255 (1.2282–1.2827) | *** |
All-cause cancer | 1.021 (1.0153–1.0258) | *** | 1.084 (1.0805–1.0883) | *** | 1.102 (1.0774–1.1272) | *** | 1.239 (1.2205–1.2584) | *** |
Human activity | ||||||||
NO2 | 0.999 (0.9989–0.9996) | *** | 1.002 (1.0014–1.0020) | *** | 1.013 (1.0118–1.0151) | *** | 1.017 (1.0154–1.0182) | *** |
PM10 | 1.003 (1.0015–1.0038) | *** | 1.009 (1.0077–1.0098) | *** | 1.048 (1.0421–1.0541) | *** | 1.050 (1.0451–1.0559) | *** |
Meat industry | 1.002 (1.0012–1.0019) | *** | 1.001 (1.0006–1.0014) | *** | 0.995 (0.9926–0.9965) | *** | 0.992 (0.9900–0.9938) | *** |
Fish industry | 0.993 (0.9911–0.9951) | *** | 0.982 (0.9799–0.9840) | *** | 0.964 (0.9536–0.9755) | *** | 0.929 (0.9177–0.9412) | *** |
Vegetable industry | 0.988 (0.9867–0.9885) | *** | 0.985 (0.9839–0.9856) | *** | 0.941 (0.9340–0.9478) | *** | 0.923 (0.9154–0.9300) | *** |
Animal oils and fats | 0.982 (0.9812–0.9836) | *** | 0.980 (0.9789–0.9813) | *** | 0.909 (0.8988–0.9189) | *** | 0.888 (0.8781–0.8991) | *** |
Milk products | 1.000 (0.9982–1.0013) | - | 1.001 (0.9995–1.0024) | - | 0.973 (0.9650–0.9806) | *** | 0.975 (0.9675–0.9822) | *** |
Grain mill industry | 0.948 (0.9441–0.9523) | *** | 0.944 (0.9397–0.9478) | *** | 0.777 (0.7502–0.8047) | *** | 0.753 (0.7266–0.7811) | *** |
Bakery industry | 0.984 (0.9809–0.9873) | *** | 0.977 (0.9740–0.9801) | *** | 0.974 (0.9589–0.9891) | ** | 0.938 (0.9236–0.9517) | *** |
Other food products | 0.984 (0.9829–0.9861) | *** | 0.977 (0.9752–0.9783) | *** | 0.933 (0.9244–0.9412) | *** | 0.910 (0.9019–0.9178) | *** |
Animal feeding | 0.998 (0.9967–0.9994) | ** | 0.999 (0.9975–1.0001) | - | 0.970 (0.9630–0.9768) | *** | 0.967 (0.9605–0.9739) | *** |
Beverage industry | 0.999 (0.9994–0.9996) | *** | 0.999 (0.9994–0.9996) | *** | 0.998 (0.9970–0.9983) | *** | 0.997 (0.9963–0.9978) | *** |
Forest industry | 1.004 (1.0011–1.0077) | * | 0.990 (0.9869–0.9931) | *** | 0.945 (0.9278–0.9632) | *** | 0.907 (0.8911–0.9240) | *** |
Leather and fur industry | 1.070 (1.0624–1.0779) | *** | 1.078 (1.0702–1.0856) | *** | 1.110 (1.0776–1.1441) | *** | 1.115 (1.0823–1.1489) | *** |
Garden industry | 0.922 (0.9122–0.9329) | *** | 0.922 (0.9119–0.9321) | *** | 0.717 (0.6715–0.7649) | *** | 0.709 (0.6649–0.7560) | *** |
Land use and cover | ||||||||
ilr-Urban areas | 1.006 (1.0048–1.0076) | *** | 1.013 (1.0114–1.0136) | *** | 1.050 (1.0440–1.0569) | *** | 1.062 (1.0566–1.0669) | *** |
ilr-Industrial areas | 0.990 (0.9884–0.9921) | *** | 0.991 (0.9892–0.9926) | *** | 1.039 (1.0304–1.0477) | *** | 1.036 (1.0281–1.0442) | *** |
ilr-Agricultural areas | 0.982 (0.9806–0.9835) | *** | 0.977 (0.9762–0.9786) | *** | 0.936 (0.9303–0.9422) | *** | 0.925 (0.9200–0.9300) | *** |
ilr-Forested areas | 1.014 (1.0131–1.0158) | *** | 1.012 (1.0111–1.0136) | *** | 0.991 (0.9856–0.9971) | ** | 0.987 (0.9816–0.9925) | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaldo-Aubanell, Q.; Campillo i López, F.; Bach, A.; Serra, I.; Olivet-Vila, J.; Saez, M.; Pino, D.; Maneja, R. Community Risk Factors in the COVID-19 Incidence and Mortality in Catalonia (Spain). A Population-Based Study. Int. J. Environ. Res. Public Health 2021, 18, 3768. https://doi.org/10.3390/ijerph18073768
Zaldo-Aubanell Q, Campillo i López F, Bach A, Serra I, Olivet-Vila J, Saez M, Pino D, Maneja R. Community Risk Factors in the COVID-19 Incidence and Mortality in Catalonia (Spain). A Population-Based Study. International Journal of Environmental Research and Public Health. 2021; 18(7):3768. https://doi.org/10.3390/ijerph18073768
Chicago/Turabian StyleZaldo-Aubanell, Quim, Ferran Campillo i López, Albert Bach, Isabel Serra, Joan Olivet-Vila, Marc Saez, David Pino, and Roser Maneja. 2021. "Community Risk Factors in the COVID-19 Incidence and Mortality in Catalonia (Spain). A Population-Based Study" International Journal of Environmental Research and Public Health 18, no. 7: 3768. https://doi.org/10.3390/ijerph18073768
APA StyleZaldo-Aubanell, Q., Campillo i López, F., Bach, A., Serra, I., Olivet-Vila, J., Saez, M., Pino, D., & Maneja, R. (2021). Community Risk Factors in the COVID-19 Incidence and Mortality in Catalonia (Spain). A Population-Based Study. International Journal of Environmental Research and Public Health, 18(7), 3768. https://doi.org/10.3390/ijerph18073768