Effects of Adding Inter-Set Static Stretching to Flywheel Resistance Training on Flexibility, Muscular Strength, and Regional Hypertrophy in Young Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Protocol
2.2. Participants
2.3. Knee ROM
2.4. Dynamometry
2.5. One-Repetition Maximum
2.6. Muscle Thickness
2.7. Training Intervention
2.8. Test–Retest Reliability of the Measurements
2.9. Statistical Analyses
3. Results
3.1. Changes in ROM, PT-ISO, PT-CON, PT-ECC, and 1-RM
3.2. Changes in Muscle Thickness of Quadriceps, Hamstrings, and Gluteus Maximus Muscles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duchateau, J.; Stragier, S.; Baudry, S.; Carpentier, A. Strength Training: In Search of Optimal Strategies to Maximize Neuromuscular Performance. Exerc. Sport Sci. Rev. 2021, 49, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Maroto-Izquierdo, S.; Mcbride, J.M.; Gonzalez-Diez, N.; García-López, D.; González-Gallego, J.; De Paz, J.A. Comparison of Flywheel and Pneumatic Training on Hypertrophy, Strength, and Power in Professional Handball Players. Res. Q. Exerc. Sport 2020, 15, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Maroto-Izquierdo, S.; Fernandez-Gonzalo, R.; Magdi, H.R.; Manzano-Rodriguez, S.; González-Gallego, J.; De Paz, J.A. Comparison of the Musculoskeletal Effects of Different Iso-Inertial Resistance Training Modalities: Flywheel vs. Electric-Motor. Eur. J. Sport Sci. 2019, 19, 1184–1194. [Google Scholar] [CrossRef] [PubMed]
- Norrbrand, L.; Pozzo, M.; Tesch, P.A. Flywheel Resistance Training Calls for Greater Eccentric Muscle Activation than Weight Training. Eur. J. Appl. Physiol. 2010, 110, 997–1005. [Google Scholar] [CrossRef]
- Tesch, P.A.; Fernandez-Gonzalo, R.; Lundberg, T.R. Clinical Applications of Iso-Inertial, Eccentric-Overload (Yoyo) Resistance Exercise. Front. Physiol. 2017, 8, 241. [Google Scholar] [CrossRef] [Green Version]
- Maroto-Izquierdo, S.; Garcia-Lopez, D.; Fernandez-Gonzalo, R.; Moreira, O.C.; Gonzalez-Gallego, J.; De Paz, J.A. Skeletal Muscle Functional and Structural Adaptations after Eccentric Overload Flywheel Resistance Training: A Systematic Review and Meta-Analysis. J. Sci. Med. Sport 2017, 20, 943–951. [Google Scholar] [CrossRef]
- Norrbrand, L.; Fluckey, J.D.; Pozzo, M.; Tesch, P.A. Resistance Training Using Eccentric Overload Induces Early Adaptations in Skeletal Muscle Size. Eur. J. Appl. Physiol. 2008, 102, 271–281. [Google Scholar] [CrossRef]
- Nunes, J.P.; Schoenfeld, B.J.; Nakamura, M.; Ribeiro, A.S.; Cunha, P.M.; Cyrino, E.S. Does Stretch Training Induce Muscle Hypertrophy in Humans? A Review of the Literature. Clin. Physiol. Funct. Imaging 2020, 40, 148–156. [Google Scholar] [CrossRef]
- Mohamad, N.I.; Nosaka, K.; Cronin, J. Maximizing Hypertrophy: Possible Contribution of Stretching in the Interset Rest Period. Strength Cond. J. 2011, 33, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, D.M.; Lima, C.S. Influence of Chronic Stretching on Muscle Performance: Systematic Review. Hum. Mov. Sci. 2017, 54, 220–229. [Google Scholar] [CrossRef]
- Kay, A.D.; Blazevich, A.J. Effect of Acute Static Stretch on Maximal Muscle Performance: A Systematic Review. Med. Sci. Sports Exerc. 2012, 44, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Peck, E.; Chomko, G.; Gaz, D.V.; Farrell, A.M. The Effects of Stretching on Performance. Curr. Sports Med. Rep. 2014, 13, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Junior, R.M.; Berton, R.; De Souza, T.M.; Chacon-Mikahil, M.P.; Cavaglieri, C.R. Effect of the Flexibility Training Performed Immediately Before Resistance Training on Muscle Hypertrophy, Maximum Strength and Flexibility. Eur. J. Appl. Physiol. 2017, 117, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Kubo, K.; Kanehisa, H.; Fukunaga, T. Effects of Resistance and Stretching Training Programmes on the Viscoelastic Properties of Human Tendon Structures in Vivo. J. Physiol. 2002, 538, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.C.; Bentes, C.M.; De Salles, B.F.; Reis, V.M.; Alves, J.V.; Miranda, H.; da Silva Novaes, J. Influence of Inter-Set Stretching on Strength, Flexibility and Hormonal Adaptations. J. Hum. Kinet. 2013, 36, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, A.L.; De Souza, E.O.; Moreira, D.C.B.; Alonso, A.C.; Teixeira, C.V.S.; Wadhi, T.; Rauch, J.; Bocalini, D.S.; De Assis Pereira, P.E.; Greve, J.M.D. Interset Stretching vs. Traditional Strength Training: Effects on Muscle Strength and Size in Untrained Individuals. J. Strength Cond. Res. 2019, 33 (Suppl. 1), S159–S166. [Google Scholar] [CrossRef] [PubMed]
- Ema, R.; Wakahara, T.; Miyamoto, N.; Kanehisa, H.; Kawakami, Y. Inhomogeneous Architectural Changes of the Quadriceps Femoris Induced By Resistance Training. Eur. J. Appl. Physiol. 2013, 113, 2691–2703. [Google Scholar] [CrossRef]
- Simpson, C.L.; Kim, B.D.H.; Bourcet, M.R.; Jones, G.R.; Jakobi, J.M. Stretch Training Induces Unequal Adaptation in Muscle Fascicles and Thickness in Medial and Lateral Gastrocnemii. Scand. J. Med. Sci. Sports 2017, 27, 1597–1604. [Google Scholar] [CrossRef]
- Nunes, J.P.; Ribeiro, A.S.; Schoenfeld, B.J.; Cyrino, E.S. Comment on: “Comparison of Periodized and Non-Periodized Resistance Training on Maximal Strength: A Meta-Analysis”. Sports Med. 2018, 48, 491–494. [Google Scholar] [CrossRef] [PubMed]
- Buckner, S.L.; Jessee, M.B.; Mattocks, K.T.; Mouser, J.G.; Counts, B.R.; Dankel, S.J.; Loenneke, J.P. Determining Strength: A Case for Multiple Methods of Measurement. Sports Med. 2017, 47, 193–195. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.S.; Nunes, J.P.; Schoenfeld, B.J. Selection of Resistance Exercises for Older Individuals: The Forgotten Variable. Sports Med. 2020, 50, 1051–1057. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Gill, N.D.; Zhou, S. Intra- and Intermuscular Variation in Human Quadriceps Femoris Architecture Assessed in Vivo. J. Anat. 2006, 209, 289–310. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Fukunaga, T. Relationships between Subcutaneous Fat and Muscle Distributions and Serum HDL-Cholesterol. J. Atheroscler. Thromb. 1994, 1, 15–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikezoe, T.; Mori, N.; Nakamura, M.; Ichihashi, N. Age-Related Muscle Atrophy in the Lower Extremities and Daily Physical Activity in Elderly Women. Arch. Gerontol. Geriatr. 2011, 53, E153–E157. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: Hillsdale, Michigan, 1988. [Google Scholar]
- Nakamura, M.; Sato, S.; Hiraizumi, K.; Kiyono, R.; Fukaya, T.; Nishishita, S. Effects of Static Stretching Programs Performed at Different Volume-Equated Weekly Frequencies on Passive Properties of Muscle-Tendon Unit. J. Biomech. 2020, 103, 109670. [Google Scholar] [CrossRef] [PubMed]
- Freitas, S.R.; Mendes, B.; Le Sant, G.; Andrade, R.J.; Nordez, A.; Milanovic, Z. Can Chronic Stretching Change the Muscle-Tendon Mechanical Properties? A Review. Scand. J. Med. Sci. Sports 2018, 28, 794–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, S.; Hiraizumi, K.; Kiyono, R.; Fukaya, T.; Nishishita, S.; Nunes, J.P.; Nakamura, M. The Effects of Static Stretching Programs on Muscle Strength and Muscle Architecture of the Medial Gastrocnemius. PLoS ONE 2020, 15, e0235679. [Google Scholar] [CrossRef]
- Nakamura, M.; Ikezoe, T.; Takeno, Y.; Ichihashi, N. Effects of a 4-Week Static Stretch Training Program on Passive Stiffness of Human Gastrocnemius Muscle-Tendon Unit in Vivo. Eur. J. Appl. Physiol. 2012, 112, 2749–2755. [Google Scholar] [CrossRef] [Green Version]
Variables | Condition | PRE | POST | Effect Size | %Diff |
---|---|---|---|---|---|
Knee flexion | Control | 148.2 ± 3.9 | 148.8 ± 6.5 | 0.10 | 0.5 |
ROM (°) | Inter-set SS | 146.3 ± 4.4 | 152.9 ± 3.8 ** | 1.63 | 4.5 |
Leg press | Control | 73.1 ± 9.0 | 77.8± 11.6 * | 0.46 | 6.4 |
1-RM (kg) | Inter-set SS | 71.9 ± 10.9 | 79.4 ± 14.0 * | 0.60 | 10.4 |
Knee extension | Control | 138.9 ± 24.3 | 150.7 ± 20.0 * | 0.53 | 8.5 |
PT-ISO (Nm) | Inter-set SS | 137.7 ± 31.0 | 158.9 ± 29.3 ** | 0.70 | 15.4 |
Knee extension | Control | 166.9 ± 32.7 | 183.3 ± 30.2 ** | 0.52 | 9.8 |
PT-CON (Nm) | Inter-set SS | 173.8 ± 38.6 | 193.3 ± 31.0 * | 0.56 | 11.2 |
Knee extension | Control | 209.9 ± 43.3 | 202.4 ± 21.5 | −0.23 | −3.6 |
PT-ECC (Nm) | Inter-set SS | 220.3 ± 54.3 | 227.7 ± 48.9 | 0.14 | 3.4 |
Variables | Condition | PRE | POST | Effect Size | %Diff | |
---|---|---|---|---|---|---|
VL | Distal | Control | 22.1 ± 4.1 | 23.6 ± 4.7 | 0.35 | 6.7 |
Inter-set SS | 20.2 ± 3.3 | 21.4 ± 3.3 | 0.38 | 5.9 | ||
Proximal | Control | 23.1 ± 3.4 | 26.0 ± 2.8 ** | 0.96 | 12.6 | |
Inter-set SS | 23.0 ± 3.0 | 26.1 ± 3.7 ** | 0.94 | 13.5 | ||
VM | Distal | Control | 25.8 ± 4.6 | 27.7 ± 3.7 ** | 0.47 | 7.4 |
Inter-set SS | 25.6 ± 4.9 | 28.3 ± 4.0 ** | 0.67 | 10.5 | ||
Proximal | Control | 31.8 ± 4.7 | 33.7 ± 3.8 * | 0.39 | 6.0 | |
Inter-set SS | 31.2 ± 4.5 | 33.7 ± 3.8 ** | 0.60 | 8.0 | ||
RF | Distal | Control | 19.4 ± 2.8 | 21.2 ± 2.1 ** | 0.71 | 9.3 |
Inter-set SS | 19.6 ± 3.4 | 21.7 ± 1.8 ** | 0.78 | 10.7 | ||
Proximal | Control | 23.5 ± 2.5 | 24.2 ± 2.0 | 0.34 | 3.0 | |
Inter-set SS | 23.6 ± 2.4 | 24.9 ± 2.1 ** | 0.59 | 5.5 | ||
VI lateral | Distal | Control | 15.7 ± 3.3 | 16.5 ± 4.2 | 0.21 | 5.1 |
Inter-set SS | 17.4 ± 4.6 | 18.2 ± 5.0 | 0.15 | 4.6 | ||
Proximal | Control | 18.9 ± 5.3 | 19.0 ± 4.7 | 0.01 | 0.5 | |
Inter-set SS | 19.6 ± 5.8 | 17.9 ± 4.0 | −0.34 | −8.7 | ||
VI medial | Distal | Control | 16.6 ± 2.3 | 19.0 ± 2.7 ** | 0.93 | 14.5 |
Inter-set SS | 16.0 ± 2.6 | 17.8 ± 2.1 ** | 0.79 | 11.3 | ||
Proximal | Control | 21.8 ± 3.5 | 23.5 ± 3.8 * | 0.46 | 7.8 | |
Inter-set SS | 21.2 ± 3.4 | 23.0 ± 2.6 * | 0.61 | 8.5 | ||
Hamstrings | Control | 27.0 ± 3.2 | 27.3 ± 2.8 | 0.10 | 1.1 | |
Inter-set SS | 26.4 ± 3.2 | 26.9 ± 3.2 | 0.16 | 1.9 | ||
Gluteus maximus | Control | 22.6 ± 4.0 | 22.3 ± 6.6 | −0.06 | −1.3 | |
Inter-set SS | 23.1 ± 4.9 | 22.3 ± 3.8 | −0.19 | −3.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, M.; Ikezu, H.; Sato, S.; Yahata, K.; Kiyono, R.; Yoshida, R.; Takeuchi, K.; Nunes, J.P. Effects of Adding Inter-Set Static Stretching to Flywheel Resistance Training on Flexibility, Muscular Strength, and Regional Hypertrophy in Young Men. Int. J. Environ. Res. Public Health 2021, 18, 3770. https://doi.org/10.3390/ijerph18073770
Nakamura M, Ikezu H, Sato S, Yahata K, Kiyono R, Yoshida R, Takeuchi K, Nunes JP. Effects of Adding Inter-Set Static Stretching to Flywheel Resistance Training on Flexibility, Muscular Strength, and Regional Hypertrophy in Young Men. International Journal of Environmental Research and Public Health. 2021; 18(7):3770. https://doi.org/10.3390/ijerph18073770
Chicago/Turabian StyleNakamura, Masatoshi, Hirotaka Ikezu, Shigeru Sato, Kaoru Yahata, Ryosuke Kiyono, Riku Yoshida, Kosuke Takeuchi, and João Pedro Nunes. 2021. "Effects of Adding Inter-Set Static Stretching to Flywheel Resistance Training on Flexibility, Muscular Strength, and Regional Hypertrophy in Young Men" International Journal of Environmental Research and Public Health 18, no. 7: 3770. https://doi.org/10.3390/ijerph18073770
APA StyleNakamura, M., Ikezu, H., Sato, S., Yahata, K., Kiyono, R., Yoshida, R., Takeuchi, K., & Nunes, J. P. (2021). Effects of Adding Inter-Set Static Stretching to Flywheel Resistance Training on Flexibility, Muscular Strength, and Regional Hypertrophy in Young Men. International Journal of Environmental Research and Public Health, 18(7), 3770. https://doi.org/10.3390/ijerph18073770