Activated Olive Stones as a Low-Cost and Environmentally Friendly Adsorbent for Removing Cephalosporin C from Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Cephalosporin C Quantum Calculations
2.2.2. Adsorbent Preparation
2.2.3. Adsorbent Characterization
2.2.4. Adsorption Experiments
3. Results and Discussion
3.1. Cephalosporin C Quantum Calculations
3.2. Adsorbent Characterization
3.3. Equilibrium Studies
3.4. Kinetic Studies
3.4.1. Adsorption Kinetics
3.4.2. Adsorption Mechanism
3.5. Thermodynamic Studies
3.5.1. Effect of Temperature on Adsorption
3.5.2. Thermodynamic Parameters
3.6. Comparison with Other Adsorbents
3.7. Practical Implications of This Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Russell, V.S. Pollution: Concept and definition. Biol. Conserv. 1974, 6, 157–161. [Google Scholar] [CrossRef]
- Norman Network. Glossary of Terms: Emerging Pollutants. Available online: http://www.norman-network.net/?q=node/9#pos_E (accessed on 2 March 2021).
- Miller, T.H.; Bury, N.R.; Owen, S.F.; MacRae, J.I.; Barron, L.P. A review of the pharmaceutical exposome in aquatic fauna. Environ. Pollut. 2018, 239, 129–146. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Sui, Q.; Lyu, S.; Zhao, W.; Liu, J.; Cai, Z.; Yu, G.; Barcelo, D. Municipal solid waste landfills: An underestimated source of pharmaceutical and personal care products in the water environment. Environ. Sci. Technol. 2020, 54, 9757–9768. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.Z.; Lin, C.H.; Ong, E.J.L.; Wang, M.; Zhou, Z. Occurrence and distribution of trace levels of antibiotics in surface waters and soils driven by non-point source pollution and anthropogenic pressure. Chemosphere 2019, 216, 213–223. [Google Scholar] [CrossRef]
- Bilal, M.; Mehmood, S.; Rasheed, T.; Iqbal, H.M. Antibiotics traces in the aquatic environment: Persistence and adverse environmental impact. Curr. Opin. Environ. Sci. Health 2020, 13, 68–74. [Google Scholar] [CrossRef]
- Osińska, A.; Korzeniewska, E.; Harnisz, M.; Felis, E.; Bajkacz, S.; Jachimowicz, P.; Niestępski, S.; Konopka, I. Small-scale wastewater treatment plants as a source of the dissemination of antibiotic resistance genes in the aquatic environment. J. Hazard. Mater. 2020, 381, 121221. [Google Scholar] [CrossRef]
- Bilal, M.; Ashraf, S.S.; Barceló, D.; Iqbal, H.M. Biocatalytic degradation/redefining “removal” fate of pharmaceutically active compounds and antibiotics in the aquatic environment. Sci. Total Environ. 2019, 691, 1190–1211. [Google Scholar] [CrossRef]
- Magdaleno, A.; Saenz, M.E.; Juarez, A.B.; Moretton, J. Effects of six antibiotics and their binary mixtures on growth of Pseudokirchneriella subcapitata. Ecotoxicol. Environ. Saf. 2015, 113, 72–78. [Google Scholar] [CrossRef]
- Pandei, S.; Sumant, O. Cephalosporin Market by Generation (First-Generation, Second-Generation, Third-Generation, Fourth-Generation, and Fifth-Generation), Type (Branded and Generic), Route of Drug Administration (Intravenous and Oral), and Application (Respiratory Tract Infection, Skin Infection, Ear Infection, Urinary Tract Infection, and Sexually Transmitted Infection): Global Opportunity Analysis and Industry Forecast, 2019–2027. Available online: https://www.alliedmarketresearch.com/cephalosporin-market (accessed on 4 March 2021).
- Yu, X.; Tang, X.; Zuo, J.; Zhang, M.; Chen, L.; Li, Z. Distribution and persistence of cephalosporins in cephalosporin producing wastewater using SPE and UPLC–MS/MS method. Sci. Total Environ. 2016, 569, 23–30. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Bernd Sures, B.; Schmidt, T.C. Cephalosporin antibiotics in the aquatic environment: A critical review of occurrence, fate, ecotoxicity and removal technologies. Environ. Pollut. 2018, 241, 1153–1166. [Google Scholar] [CrossRef]
- El-Shaboury, S.R.; Saleh, G.A.; Mohamed, F.A.; Rageh, A.H. Analysis of cephalosporin antibiotics. Rev. J. Pharm. Biomed. Anal. 2007, 45, 1–19. [Google Scholar] [CrossRef]
- Sader, H.S.; Jones, R.N. Historical overview of the cephalosporin spectrum: Four generations of structural evolution. Antimicrob. Newsl. 1992, 8, 75–82. [Google Scholar] [CrossRef]
- Dąbrowska, M.; Muszyńska, B.; Starek, M.; Żmudzki, P.; Opoka, W. Degradation pathway of cephalosporin antibiotics by in vitro cultures of Lentinula edodes and Imleria badia. Int. Biodeterior. Biodegrad. 2018, 127, 104–112. [Google Scholar] [CrossRef]
- Guo, R.; Chen, J. Application of alga-activated sludge combined system (AASCS) as a novel treatment to remove cephalosporins. Chem. Eng. J. 2015, 260, 550–556. [Google Scholar] [CrossRef]
- Elbalkiny, H.T.; Yehia, A.; Riad, S.M.; Elsaharty, T.S. Removal and tracing of cephalosporins in industrial wastewater by SPE-HPLC: Optimization of adsorption kinetics on mesoporous silica nanoparticles. J. Anal. Sci. Technol. 2019, 10, 21. [Google Scholar] [CrossRef]
- Fakhri, A.; Adami, S. Adsorption and thermodynamic study of Cephalosporins antibiotics from aqueous solution onto MgO nanoparticles. J. Taiwan Inst. Chem. Eng. 2014, 45, 1001–1006. [Google Scholar] [CrossRef]
- Yang, B.; Zuo, J.; Li, P.; Wang, K.; Yu, X.; Zhang, M. Effective ultrasound electrochemical degradation of biological toxicity and refractory cephalosporin pharmaceutical wastewater. Chem. Eng. J. 2016, 287, 30–37. [Google Scholar] [CrossRef]
- Qian, Y.; Liu, X.; Li, K.; Gaoa, P.; Chen, J.; Liu, Z.; Zhou, X.; Zhang, Y.; Chen, H.; Li, X.; et al. Enhanced degradation of cephalosporin antibiotics by matrix components during thermally activated persulfate oxidation process. Chem. Eng. J. 2020, 384, 123332. [Google Scholar] [CrossRef]
- Watkinson, A.J.; Murby, E.J.; Costanzo, S.D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Res. 2007, 41, 4164–4176. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Onaga-Medina, F.M.; Aguiar, M.B.; Parolo, M.E.; Avena, M.J. Insights of competitive adsorption on activated carbon of binary caffeine and diclofenac solutions. J. Environ. Manag. 2021, 278, 111523. [Google Scholar] [CrossRef] [PubMed]
- Bedia, J.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodriguez, J.J.; Belver, C. A Review on the Synthesis and Characterization of Biomass-Derived Carbons for Adsorption of Emerging Contaminants from Water. J. Carbon Res. 2018, 4, 63. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Shi, J.; Du, Q.; Zhang, H.; Cui, Y. Antibiotic removal by agricultural waste biochars with different forms of iron oxide. RSC Adv. 2019, 9, 14143. [Google Scholar] [CrossRef] [Green Version]
- Silva, B.; Martins, M.; Rosca, M.; Rocha, V.; Lago, A.; Neves, I.C.; Tavares, T. Waste-based biosorbents as cost-effective alternatives to commercial adsorbents for the retention of fluoxetine from water. Sep. Purif. Technol. 2020, 235, 116139. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A., Jr.; Vreven, T.; Kudin, K.N.; Burant, J.C.; et al. Gaussian 03, Revision D.02; Gaussian, Inc.: Wallingford, CT, USA, 2004. [Google Scholar]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Mermer, A.; Bayrak, H.; Alyar, S.; Alagumuthu, M. Synthesis, DFT calculations, biological investigation, molecular docking studies of β-lactam derivatives. J. Mol. Struct. 2020, 1208, 127891. [Google Scholar] [CrossRef]
- Chern, J.M.; Wu, C.Y. Desorption of dye from activated carbon beds: Effects of temperature, pH, and alcohol. Water Res. 2001, 35, 4159–4165. [Google Scholar] [CrossRef]
- Calero de Hoces, M.; Blázquez-García, G.; Ronda-Gálvez, A.; Martín-Lara, M.A. Effect of the Acid Treatment of Olive Stone on the Biosorption of Lead in a Packed-Bed Column. Ind. Eng. Chem. Res. 2010, 49, 12587–12595. [Google Scholar] [CrossRef]
- Ahmad, F.; Daud, W.M.A.W.; Ahmad, M.A.; Radzi, R. The effects of acid leaching on porosity and surface functional groups of cocoa (Theobroma cacao)-shell based activated carbon. Chem. Eng. Res. Des. 2013, 91, 1028–1038. [Google Scholar] [CrossRef]
- León, G.; Hidalgo, A.M.; Miguel, B.; Guzmán, M.A. Pertraction of Co(II) through Novel Ultrasound Prepared Supported Liquid Membranes Containing D2EHPA. Optimization and Transport Parameters. Membranes 2020, 10, 436. [Google Scholar] [CrossRef]
- Mahmood, T.; Saddique, M.T.; Naeem, A.; Westerhoff, P.; Mustafa, S.; Alum, A. Comparison of Different Methods for the Point of Zero Charge Determination of NiO. Ind. Eng. Chem. Res. 2011, 50, 10017. [Google Scholar] [CrossRef]
- Blázquez, G.; Martín-Lara, M.A.; Dionisio-Ruiz, E.; Tenorio, G.; Calero, M. Evaluation and comparison of the biosorption process of copper ions onto olive stone and pine bark. J. Ind. Eng. Chem. 2011, 17, 824–833. [Google Scholar] [CrossRef]
- Tumampos, S.B.; Ensano, B.M.B.; Pingul-Ong, S.M.B.; Ong, D.C.; Kan, C.C.; Yee, J.J.; de Luna, M.D.G. Isotherm, Kinetics and Thermodynamics of Cu(II) and Pb(II) Adsorption on Groundwater Treatment Sludge-Derived Manganese Dioxide for Wastewater Treatment Applications. Int. J. Environ. Res. Public Health 2021, 18, 3050. [Google Scholar] [CrossRef]
- Molday, R.S.; Kallen, R.G. Substituent effects on amide hydrogen exchange rates in aqueous solution. J. Am. Chem. Soc. 1972, 94, 6739–6745. [Google Scholar] [CrossRef]
- Eriksson, M.A.L.; Hard, T.; Nilsson, L. On the pH Dependence of Amide Proton Exchange Rates in Proteins. Biophys. J. 1995, 69, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Alekseev, V.G. Acid–base properties of penicillins and cephalosporins (a review). Pharm. Chem. J. 2010, 44, 14–24. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Schmidt, T.C. Determination of acid dissociation constants (pKa) of cephalosporin antibiotics: Computational and experimental approaches. Chemosphere 2017, 169, 524–533. [Google Scholar] [CrossRef]
- Zhang, K.; Cassady, C.J.; Chung-Phillips, A. Ab Initio Studies of Neutral and Protonated Triglycines: Comparison of Calculated and Experimental Gas-Phase Basicity. J. Am. Chem. Soc. 1994, 116, 11512–11521. [Google Scholar] [CrossRef]
- Naja, G.; Mustin, C.; Volesky, B.; Berthelin, J. A high resolution titrator: A new approach to studying binding sites of microbial biosorbents. Water Res. 2005, 39, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Ting, Y.P. Characterization of PEI-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II). Water Res. 2005, 39, 2167–2177. [Google Scholar] [CrossRef]
- Martínez, M.; Miralles, N.; Hidalgo, S.; Fiol, N.; Villaescusa, I.; Poch, J. Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste. J. Hazard. Mater. 2006, 133, 203–211. [Google Scholar] [CrossRef]
- Bohli, T.; Ouederni, A.; Fiol, N.; Villaescusa, I. Evaluation of an activated carbon from olive stones used as an adsorbent for heavy metal removal from aqueous phases. Comptes Rendus Chim. 2015, 18, 88–99. [Google Scholar] [CrossRef]
- Benzekri, M.B.; Benderdouche, N.; Bestani, B.; Douara, N.; Duclaux, L. Valorization of olive stones into a granular activated carbon for the removal of methylene blue in batch and fixed bed modes. J. Mater. Environ. Sci. 2018, 9, 272–284. [Google Scholar] [CrossRef]
- Fiol, N.; Villaescusa, I. Determination of sorbent point zero charge: Usefulness in sorption studies. Environ. Chem. Lett. 2009, 7, 79–84. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, Mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Guo, X. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef] [PubMed]
- Zaheer, Z.; Aisha, A.A.; Aazam, E.S. Adsorption of methyl red on biogenic Ag@Fe nanocomposite adsorbent: Isotherms, kinetics and mechanisms. J. Mol. Liq. 2019, 283, 287–298. [Google Scholar] [CrossRef]
- Weber, T.; Chakravorti, R. Pore and solid diffusion models for fixed-bed adsorbers. AIChE J. 1974, 20, 228–238. [Google Scholar] [CrossRef]
- Freundlich, H. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–471. [Google Scholar]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- León, G.; García, F.; Miguel, B.; Bayo, J. Equilibrium, kinetics and thermodynamic studies of methyl orange removal by adsorption onto granular activated carbon. Desalin. Water Treat. 2016, 57, 17104–17117. [Google Scholar] [CrossRef]
- Temkin, M.; Pyzhev, V. Kinetics of Ammonia synthesis on promoted Iron catalysts. Acta Physicochim. URSS 1940, 12, 327–356. [Google Scholar]
- Rajahmundry, G.K.; Garlapati, C.; Kumar, P.S.; Alwi, R.S.; Vo, D.V.N. Statistical analysis of adsorption isotherm models and its appropriate selection. Chemosphere 2021, 276, 130176. [Google Scholar] [CrossRef]
- Jovanovic, D.S. Physical adsorption of gases. I: Isotherms for monolayer and multilayer adsorption. Kolloid Z. Z. Polym. 1969, 235, 1203–1213. [Google Scholar] [CrossRef]
- Saadi, R.; Saadi, Z.; Fazaeli, R.; Fard, N. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean J. Chem. Eng. 2015, 32, 787–799. [Google Scholar] [CrossRef]
- Dubinin, M.M.; Radushkevich, L.V. The equation of the characteristic curve of the activated charcoal. Proc. Acad. Sci. Ussr Phys. Chem. Sect. 1947, 55, 331–337. [Google Scholar]
- Dubinin, M. The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surfaces. Chem. Rev. 1960, 60, 235–241. [Google Scholar] [CrossRef]
- Lagergren, S. About the theory of so-called adsorption of soluble substances. K. Sven. Vetensk. Handl. 1898, 24, 1–39. [Google Scholar]
- Tseng, R.L.; Wu, F.C.; Juang, R.S. Characteristics and applications of the Lagergren’s first-order equation for adsorption kinetics. J. Taiwan Inst. Chem. Eng. 2010, 41, 661–669. [Google Scholar] [CrossRef]
- Ho, Y.S. Review of second-order model for adsorption systems. J. Hazard. Mater. 2006, 136, 681–689. [Google Scholar] [CrossRef] [Green Version]
- Hubbe, M.A.; Azizian, S.; Douven, S. Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review. BioResources 2019, 14, 7582–7626. [Google Scholar] [CrossRef]
- Elovich, S.Y.; Larinov, O.G. Theory of adsorption from solutions of non-electrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form, (II) verification of the equation of adsorption isotherm from solutions. Izvestyja Akad. Nauk SSSR Otd. Khimicheskikh Nauk 1962, 2, 209–216. [Google Scholar]
- Chien, S.H.; Clayton, W.R. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci. Soc. Am. J. 1980, 44, 265–268. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of phase change. I General theory. J. Chem. Phys. 1940, 7, 1103–1112. [Google Scholar] [CrossRef]
- Samiey, B.; Abdollahi-Jonaghani, S. A New Approach for Analysis of Adsorption from Liquid Phase: A Critical Review. J. Pollut. Eff. Control 2015, 3, 1000139. [Google Scholar]
- Acharya, J.; Sahu, J.N.; Sahoo, B.K.; Mohanty, C.R.; Meikap, B.C. Removal of chromium(VI) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride. Chem. Eng. J. 2009, 150, 25–39. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 1963, 1, 1–2. [Google Scholar]
- Boyd, G.E.; Adamson, A.W.; Myers, L.S. The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J. Am. Chem. Soc. 1947, 69, 2836–2848. [Google Scholar] [CrossRef]
- Tabak, A.; Baltas, N.; Afsin, B.; Emirik, M.; Caglar, B.; Eren, E. Adsorption of Reactive Red 120 from aqueous solutions by cetylpyridinium-bentonite. J. Chem. Technol. Biotechnol. 2010, 85, 1199–1207. [Google Scholar] [CrossRef]
- Amin, N.K. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics. J. Hazard. Mater. 2009, 165, 52–62. [Google Scholar] [CrossRef]
- Weng, C.H.; Lin, Y.T.; Tzeng, T.W. Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder. J. Hazard. Mater. 2009, 170, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cai, D.; Zhang, G.; Cai, C.; Zhang, C.; Qiu, G.; Zheng, K.; Wu, Z. Adsorption of methylene blue from aqueous solution onto multiporous palygorskite modified by ion beam bombardment: Effect of contact time, temperature, pH and ionic strength. Appl. Clay Sci. 2013, 83–84, 137–143. [Google Scholar] [CrossRef]
- Agarwal, S.; Tyagi, I.; Gupta, V.K.; Ghasemi, N.; Shahivand, M.; Ghasemi, M. Kinetics, equilibrium studies and thermodynamics of methylene blue adsorption on Ephedra strobilacea saw dust and modified using phosphoric acid and zinc chloride. J. Mol. Liq. 2016, 218, 208–218. [Google Scholar] [CrossRef]
- Vasiliu, S.; Bunia, I.; Racovita, S.; Neagu, V. Adsorption of cefotaxime sodium salt on polymer coated ion exchange resin microparticles: Kinetics, equiklibrium and thermodynamic studies. Carbohydr. Polym. 2011, 85, 376–387. [Google Scholar] [CrossRef]
- Lee, J.W.; Park, H.C.; Moon, H. Adsorption and desorption of cephalosporin C on non-ionic polymeric sorbents. Sep. Purif. Technol. 1997, 12, 1–11. [Google Scholar]
- Lee, J.W.; Moon, H. Effect of pH on Adsorption of Cephalosporin C by A Nonionic Polymeric Sorbent. Adsorption 1999, 5, 381–390. [Google Scholar] [CrossRef]
Dihedrals Angles | CPC (Theor. Molec.) | CPCH42+ | CPCH3+ | CPCH2 | CPCH−1 | CPC−2 | |
---|---|---|---|---|---|---|---|
D(11,14,13,2) | 46 | 52 | 55 | 54 | 55 | 49 | |
D(11,14,13,10) | −130 | −127 | −123 | −123 | −122 | −128 | |
D(11,14,15,2) | 169 | 172 | 174 | 174 | 174 | 171 | |
A(11,14,15) | 117 | 114 | 113 | 113 | 113 | 117 | |
A(11,14,13) | 121 | 119 | 118 | 119 | 118 | 121 |
Mulliken Charge | CPC (Theor. Molec.) | CPCH42+ | CPCH3+ | CPCH2 | CPCH−1 | CPC−2 |
---|---|---|---|---|---|---|
O (ring) | −0.043 | −0.036 | −0.042 | −0.043 | −0.572 | −0.572 |
O (alkyl chain) | −0.070 | −0.020 | −0.024 | −0.556 | −0.557 | −0.619 |
N (amide) | −0.136 | 0.309 | −0.133 | −0.135 | −0.135 | −0.295 |
N (amine) | −0.064 | 0.663 | 0.657 | 0.539 | 0.538 | −0.139 |
Dipole (Debye) | 2.443 | 40.618 | 3.504 | 15.924 | 30.138 | 30.671 |
HOMO Energy(eV) | −6.555 | −6.914 | −6.578 | −6.316 | −5.723 | −5.430 |
LUMO Energy (ev) | −1.577 | −2.039 | −1.604 | 1.586 | −0.673 | −0.651 |
HOMO-LUMO Energy (eV) | −4.978 | −4.875 | −4.974 | −4.730 | −5.057 | −4.779 |
Molar volumen (cm3/mol) | 254.809 | 255.831 | 273.847 | 262.635 | 319.743 | 262.432 |
Total non-electrostatic (eV) | −0.82 | −0.80 | −0.81 | −0.82 | −0.86 | −0.86 |
Langmuir Isotherm | Freundlich Isotherm | Elovich Isotherm | ||||||||
Temperature (K) | qm (mg/g) | KL (L/mg) | RL | R2 | N | KF (mg/g) (L/mg)1/n | R2 | qmE (mg/g) | KE (L/g) | R2 |
283 | 31.25 | 0.00140 | 0.871 | 0.992 | 1.310 | 0.119 | 0.9992 | 21.65 | 0.0022 | 0.9927 |
293 | 55.56 | 0.00142 | 0.774 | 0.9576 | 1.261 | 0.180 | 0.9987 | 43.10 | 0.0019 | 0.9499 |
303 | 129.87 | 0.00168 | 0.665 | 0.8492 | 1.270 | 0.496 | 0.9940 | 102.04 | 0.0022 | 0.8014 |
313 | 227.27 | 0.00255 | 0.494 | 0.8745 | 1.257 | 1.153 | 0.9971 | 178.57 | 0.0033 | 0.8435 |
Temkin Isotherm | Javanovic Isotherm | Dubinin–Radushkevich Isotherm | ||||||||
Temperature (K) | A (L/mg) | B (mg/g) | R2 | qm (mg/g) | KJ (L/mg) | R2 | qm (mg/g) | K (mol2/L2) | E (Jmol) | R2 |
283 | 0.0213 | 5.082 | 0.9843 | 2.9755 | 0.0370 | 0.9506 | 10.07 | 1654.9 | 0.0174 | 0.9166 |
293 | 0.0224 | 8.649 | 0.9716 | 4.6464 | 0.0042 | 0.9557 | 16.68 | 1265.9 | 0.0199 | 0.9071 |
303 | 0.0271 | 19.892 | 0.9596 | 10.5804 | 0.0052 | 0.9729 | 37.81 | 790.39 | 0.0252 | 0.8688 |
313 | 0.0437 | 33.558 | 0.9502 | 17.2412 | 0.0083 | 0.9657 | 56.06 | 232.88 | 0.0463 | 0.9479 |
Pseudo-First Order | Pseudo-Second Order | Elovich | Avrami | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Co (mg/L) | qe,exp | k1 (1/min) | qe,cal (mg/g) | R2 | k2 [g/(mg·min)] | qe,cal (mg/g) | R2 | A (mg/g·min) | B (g/mg) | R2 | KAV (1/min) | nAV | R2 |
100 | 5.9873 | 0.0014 | 4.5435 | 0.9164 | 0.00120099 | 6.1690 | 0.9981 | 0.1482 | 1.0097 | 0.9950 | 0.0294 | 0.6183 | 0.9811 |
200 | 10.6883 | 0.0011 | 8.2672 | 0.8923 | 0.00057981 | 10.9409 | 0.9934 | 0.2383 | 0.5828 | 0.9875 | 0.0352 | 0.5580 | 0.9877 |
300 | 14.3992 | 0.0014 | 11.4707 | 0.9317 | 0.00040596 | 15.0150 | 0.9985 | 0.2804 | 0.4017 | 0.9869 | 0.0200 | 0.6711 | 0.9860 |
400 | 18.7234 | 0.0013 | 39.2009 | 0.8810 | 0.00017744 | 20.3252 | 0.9958 | 0.3845 | 0.3115 | 0.9855 | 0.0196 | 0.6768 | 0.9643 |
Initial Cephalosporin C Concentration (mg/L) | |||||
---|---|---|---|---|---|
100 | 200 | 300 | 400 | Kinetic Constant k2 (g/mg·min) | |
Temparature (K) | qe (mg/g) | ||||
283 | 3.86 | 6.56 | 8.90 | 10.87 | 0.000588 |
293 | 5.99 | 10.69 | 14.41 | 18.72 | 0.000591 |
303 | 14.31 | 23.12 | 34.67 | 42.04 | 0.000595 |
313 | 21.82 | 40.71 | 57.58 | 76.42 | 0.000599 |
ΔH0 (kJ/mol) | ΔS0 (kJ/mol K) | ΔG (kJ/mol) | Ea (kJ/mol) | |||
---|---|---|---|---|---|---|
283 K | 293 K | 303 K | 313 K | |||
62.7618 | 0.2219 | −0.0467 | −2.2661 | −4.4855 | −6.7049 | 0.4569 |
Adsorbent [Ref.] | Temperature | pH | [CPC]0 mol/m3 | qe (mol/kg) |
---|---|---|---|---|
SP207 [81] | 25 °C | 5.3 | 5 | 0.061 |
10 | 0.095 | |||
15 | 0.123 | |||
20 | 0.137 | |||
SP850 [82] | 25 °C | 7.5 | 5 | 0.032 |
10 | 0.073 | |||
15 | 0.119 | |||
20 | 0.134 | |||
XAD-2 [81] | 25 °C | 5.3 | 5 | 0.018 |
10 | 0.033 | |||
15 | 0.045 | |||
20 | 0.061 | |||
AC [this paper] | 30 °C | HCl 10−3 M | 0.209 | 0.161 |
0.418 | 0.254 | |||
0.627 | 0.358 | |||
0.836 | 0.431 | |||
AOS [this paper] | 30 °C | HCl 10−3 M | 0.209 | 0.030 |
0.418 | 0.048 | |||
0.627 | 0.073 | |||
0.836 | 0.088 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
León, G.; Saura, F.; Hidalgo, A.M.; Miguel, B. Activated Olive Stones as a Low-Cost and Environmentally Friendly Adsorbent for Removing Cephalosporin C from Aqueous Solutions. Int. J. Environ. Res. Public Health 2021, 18, 4489. https://doi.org/10.3390/ijerph18094489
León G, Saura F, Hidalgo AM, Miguel B. Activated Olive Stones as a Low-Cost and Environmentally Friendly Adsorbent for Removing Cephalosporin C from Aqueous Solutions. International Journal of Environmental Research and Public Health. 2021; 18(9):4489. https://doi.org/10.3390/ijerph18094489
Chicago/Turabian StyleLeón, Gerardo, Francisco Saura, Asunción María Hidalgo, and Beatriz Miguel. 2021. "Activated Olive Stones as a Low-Cost and Environmentally Friendly Adsorbent for Removing Cephalosporin C from Aqueous Solutions" International Journal of Environmental Research and Public Health 18, no. 9: 4489. https://doi.org/10.3390/ijerph18094489
APA StyleLeón, G., Saura, F., Hidalgo, A. M., & Miguel, B. (2021). Activated Olive Stones as a Low-Cost and Environmentally Friendly Adsorbent for Removing Cephalosporin C from Aqueous Solutions. International Journal of Environmental Research and Public Health, 18(9), 4489. https://doi.org/10.3390/ijerph18094489