Biomarkers of Low-Level Environmental Exposure to Benzene and Oxidative DNA Damage in Primary School Children in Sardinia, Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Studied Population
2.2. Personal and Environmental Sampling
2.3. Urine Sampling
2.4. Chemicals and Supplies
2.5. Analytical Methods
2.5.1. Determination of Airborne Benzene and Toluene
2.5.2. Determination of Biological Markers in Urines
2.5.3. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fustinoni, S.; Campo, L.; Satta, G.; Campagna, M.; Ibba, A.; Tocco, M.G.; Atzeri, S.; Avataneo, G.; Flore, C.; Meloni, M.; et al. Environmental and lifestyle factors affect benzene uptake biomonitoring of residents near a petrochemical plant. Environ. Int. 2012, 39, 2–7. [Google Scholar] [CrossRef]
- Duarte-Davidson, R.; Courage, C.; Rushton, L.; Levy, L. Benzene in the environment: An assessment of the potential risks to the health of the population. Occup. Environ. Med. 2001, 58, 2–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrieri, M.; Tranfo, G.; Pigini, D.; Paci, E.; Salamon, F.; Scapellato, M.L.; Fracasso, M.E.; Manno, M.; Bartolucci, G.B. Correlation between environmental and biological monitoring of exposure to benzene in petrochemical industry operators. Toxicol. Lett. 2010, 192, 17–21. [Google Scholar] [CrossRef]
- Capleton, A.C.; Levy, L.S. An overview of occupational benzene exposures and occupational exposure limits in Europe and North America. Chem. Biol. Interact. 2005, 153, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Lovreglio, P.; D’Errico, M.N.; Fustinoni, S.; Drago, I.; Barbieri, A.; Sabatini, L.; Carrieri, M.; Apostoli, P.; Soleo, L. Biomarkers of internal dose for the assessment of environmental exposure to benzene. J. Environ. Monit. 2011, 13, 2921–2928. [Google Scholar] [CrossRef]
- Panko, J.M.; Gaffney, S.H.; Burns, A.M.; Unice, K.M.; Kreider, M.L.; Booher, L.E.; Gelatt, R.H.; Ralph Marshall, J.; Paustenbach, D.J. Occupational exposure to benzene at the exxonmobil refinery at Baton Rouge, Louisiana (1977–2005). J. Occup. Environ. Hyg. 2009, 6, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Demirel, G.; Özden, Ö.; Döǧeroǧlu, T.; Gaga, E.O. Personal exposure of primary school children to BTEX, NO2 and ozone in Eskişehir, Turkey: Relationship with indoor/outdoor concentrations and risk assessment. Sci. Total Environ. 2014, 473, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Godoi, R.H.M.; Godoi, A.F.L.; Gonçalves Junior, S.J.; Paralovo, S.L.; Borillo, G.C.; Gonçalves Gregório Barbosa, C.; Arantes, M.G.; Charello, R.C.; Rosário Filho, N.A.; Grassi, M.T.; et al. Healthy environment-indoor air quality of Brazilian elementary schools nearby petrochemical industry. Sci. Total Environ. 2013, 463, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Andreoli, R.; Spatari, G.; Pigini, D.; Poli, D.; Banda, I.; Goldoni, M.; Riccelli, M.G.; Petyx, M.; Protano, C.; Vitali, M.; et al. Urinary biomarkers of exposure and of oxidative damage in children exposed to low airborne concentrations of benzene. Environ. Res. 2015, 142, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Kampeerawipakorn, O.; Navasumrit, P.; Settachan, D.; Promvijit, J.; Hunsonti, P.; Parnlob, V.; Nakngam, N.; Choonvisase, S.; Chotikapukana, P.; Chanchaeamsai, S.; et al. Health risk evaluation in a population exposed to chemical releases from a petrochemical complex in Thailand. Environ. Res. 2017, 152, 207–213. [Google Scholar] [CrossRef]
- Peluso, M.; Munnia, A.; Ceppi, M.; Giese, R.W.; Catelan, D.; Rusconi, F.; Godschalk, R.W.L.; Biggeri, A. Malondialdehyde-deoxyguanosine and bulky DNA adducts in schoolchildren resident in the proximity of the Sarroch industrial estate on Sardinia Island, Italy. Mutagenesis 2013, 28, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagorio, S.; Ferrante, D.; Ranucci, A.; Negri, S.; Sacco, P.; Rondelli, R.; Cannizzaro, S.; Torregrossa, M.V.; Cocco, P.; Forastiere, F.; et al. Exposure to benzene and childhood leukaemia: A pilot case-control study. BMJ Open 2013, 3, e002275. [Google Scholar] [CrossRef]
- Fang, M.Z.; Shin, M.K.; Park, K.W.; Kim, Y.S.; Lee, J.W.; Cho, M.H. Analyis of urinary S-phenylmercapturic acid and trans, trans-muconic acid as exposure biomarkers of benzene in petrochemical and industrial areas of Korea. Scand. J. Work Environ. Health 2000, 26, 62–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrero, A.; Esplugues, A.; Estarlich, M.; Llop, S.; Cases, A.; Mantilla, E.; Ballester, F.; Iñiguez, C. Infants’ indoor and outdoor residential exposure to benzene and respiratory health in a Spanish cohort. Environ. Pollut. 2017, 222, 486–494. [Google Scholar] [CrossRef]
- Campagna, M.; Satta, G.; Campo, L.; Flore, V.; Ibba, A.; Meloni, M.; Tocco, M.G.; Avataneo, G.; Flore, C.; Fustinoni, S.; et al. Analysis of potential influence factors on background urinary benzene concentration among a non-smoking, non-occupationally exposed general population sample. Int. Arch. Occup. Environ. Health 2014, 87, 793–799. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Benzene; IARC: Lyon, France, 2018; Volume 120. [Google Scholar]
- Cocco, P.; t’Mannetje, A.; Fadda, D.; Melis, M.; Becker, N.; de Sanjosé, S.; Foretova, L.; Mareckova, J.; Staines, A.; Kleefeld, S.; et al. Occupational exposure to solvents and risk of lymphoma subtypes: Results from the Epilymph case-control study. Occup. Environ. Med. 2010, 67, 341–347. [Google Scholar] [CrossRef]
- Smith, M.T. Advances in Understanding Benzene Health Effects and Susceptibility. Annu. Rev. Public Health 2010, 31, 133–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission Directive 2000/69/EC of the European Parliament and of the council of 16 November 2000 relating to limit values for benzene and carbon monoxide in ambient air. Off. J. Eur. Union 2000, 313, 12–21. [CrossRef]
- U.S. Environmental Protection Agency. Integrated Risk Information System (IRIS). Benzene (CASRN 71-43-2); EPA: Washington, DC, USA, 2003. Available online: https://semspub.epa.gov/iris/subst/0276.htm (accessed on 15 November 2020).
- World Health Organization. Air Quality Guidelines for Europe, 2nd ed.; WHO Regional Office for Europe: Copenhagen, Denmark, 2000. [Google Scholar]
- Scientific Committee on Occupational Exposure Limits. Recommendation from the Scientific Committee on Occupational Exposure Limits for Benzene; European Commission Employment, Social Affairs and Inclusion: Brussels, Belgium, 1991. [Google Scholar]
- National Institute for Occupational Safety and Health. NIOSH Pocket Guide to Chemical Hazards; (DHHS (NIOSH) Publication No. 2005-149); Department of Health and Human Services, Centers for Disease Control: Cincinnati, OH, USA, 2007. [Google Scholar]
- Akerstrom, M.; Almerud, P.; Andersson, E.M.; Strandberg, B.; Sallsten, G. Personal exposure to benzene and 1,3‑butadiene during petroleum refinery turnarounds and work in the oil harbour. Int. Arch. Occup. Environ. Health 2016, 89, 1289–1297. [Google Scholar] [CrossRef] [Green Version]
- Göethel, G.; Brucker, N.; Moro, A.M.; Charão, M.F.; Fracasso, R.; Barth, A.; Bubols, G.; Durgante, J.; Nascimento, S.; Baierle, M.; et al. Evaluation of genotoxicity in workers exposed to benzene and atmospheric pollutants. Mutat. Res.-Genet. Toxicol. Environ. Mutagen. 2014, 770, 61–65. [Google Scholar] [CrossRef]
- Broccia, G.; Carter, J.; Ozsin-Osler, C.; Meloni, F.; Pilia, I.; Satta, G.; Murgia, G.; Campagna, M.; Cocco, P. Haemolymphatic cancer among children in Sardinia, Italy: 1974–2003 incidence. BMJ Open 2020, 10, e037163. [Google Scholar] [CrossRef]
- Istituto Centrale di Statistica. Indicatori Demografici-Stime per l’Anno 2015; ISTAT: Rome, Italy, 2016; pp. 4–7. Available online: www.istat.it/it/files/2016/02/Indicatori-demografici_2015.pdf (accessed on 15 November 2020).
- Istituto Centrale di Statistica (ISTAT). I.Stat Database: Environment and Energy, Urban Environment-Broken Time Series, Private Transportation; ISTAT: Rome, Italy, 2012; Available online: https://www.istat.it/it/archivio/ambiente+urbano (accessed on 15 November 2020).
- Agenzia Regionale per la Protezione dell’Ambiente della Sardegna (ARPAS). Relazione Annuale Sulla Qualità dell’Aria in Sardegna per l’Anno 2015; Regione Autonoma della Sardegna: Cagliari, Italy, 2019. [Google Scholar]
- Cocheo, C.; Sacco, P.; Ballesta, P.P.; Donato, E.; Garcia, S.; Gerboles, M.; Gombert, D.; McManus, B.; Patier, R.F.; Roth, C.; et al. Evaluation of the best compromise between the urban air quality monitoring resolution by diffusive sampling and resource requirements. J. Environ. Monit. 2008, 10, 941–950. [Google Scholar] [CrossRef] [PubMed]
- van Aalst, R.; Edwards, L.; Pulles, T.; de Saeger, E.; Tombrou, M.; Tonnesen, D. Guidance Report on Preliminary Assessment Under EC Air Quality Directives; European Environment Agency: Copenhagen, Denmark, 1999. [Google Scholar]
- El-Hashemy, M.A.; Ali, H.M. Characterization of BTEX group of VOCs and inhalation risks in indoor microenvironments at small enterprises. Sci. Total Environ. 2018, 645, 974–983. [Google Scholar] [CrossRef]
- Fustinoni, S.; Buratti, M.; Campo, L.; Colombi, A.; Consonni, D.; Pesatori, A.C.; Bonzini, M.; Farmer, P.; Garte, S.; Valerio, F.; et al. Urinary t,t-muconic acid, S-phenylmercapturic acid and benzene as biomarkers of low benzene exposure. Chem. Biol. Interact. 2005, 153, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Fustinoni, S.; Giampiccolo, R.; Pulvirenti, S.; Buratti, M.; Colombi, A. Headspace solid-phase microextraction for the determination of benzene, toluene, ethylbenzene and xylenes in urine. J. Chromatogr. B Biomed. Sci. Appl. 1999, 723, 105–115. [Google Scholar] [CrossRef]
- de Paiva, G.R.; Bárbara, P.C.; Jennifer, R.; Xavier, C.M.; de Cássia, F.A.R.J. Validation of a new high-throughput method to determine urinary S-phenylmercapturic acid using low-temperature partitioning extraction and ultra-high-performance liquid chromatography–mass spectrometry. J. Sep. Sci. 2016, 40, 550–557. [Google Scholar] [CrossRef]
- Committee for Medicinal Products for Human Use (CHMP). Guideline on Bioanalytical Method Validation; European Medicines Agency: London, UK, 2011. [Google Scholar]
- Man, C.N.; Gam, L.H.; Ismail, S.; Lajis, R.; Awang, R. Simple, rapid and sensitive assay method for simultaneous quantification of urinary nicotine and cotinine using gas chromatography-mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2006, 844, 322–327. [Google Scholar] [CrossRef]
- Kroll, M.H.; Chesler, R.; Hagengruber, C.; Blank, D.W.; Kestner, J.; Rawe, M. Automated determination of urinary creatinine without sample dilution: Theory and practice. Clin. Chem. 1986, 32, 446–452. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Biological Monitoring of Chemical Exposure in the Workplace; WHO: Geneva, Switzerland, 1996; Volume 1. [Google Scholar]
- Helsel, D.R. Non Detects and Data Analysis: Statistics for Censored Environmental Data; John Wiley and Sons: New York, NY, USA, 2004. [Google Scholar]
- Kang, H. The prevention and handling of the missing data. Korean J. Anesthesiol. 2013, 64, 402–406. [Google Scholar] [CrossRef]
- van Leeuwen, D.M.; Pedersen, M.; Hendriksen, P.J.M.; Boorsma, A.; van Herwijnen, M.H.M.; Gottschalk, R.W.H.; Kirsch-Volders, M.; Knudsen, L.E.; Šrám, R.J.; Bajak, E.; et al. Genomic analysis suggests higher susceptibility of children to air pollution. Carcinogenesis 2008, 29, 977–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romagnoli, P.; Balducci, C.; Perilli, M.; Vichi, F.; Imperiali, A.; Cecinato, A. Indoor air quality at life and work environments in Rome, Italy. Environ. Sci. Pollut. Res. 2016, 23, 3503–3516. [Google Scholar] [CrossRef]
- Vanker, A.; Barnett, W.; Nduru, P.M.; Gie, R.P.; Sly, P.D.; Zar, H.J. Home environment and indoor air pollution exposure in an African birth cohort study. Sci. Total Environ. 2015, 536, 362–367. [Google Scholar] [CrossRef] [Green Version]
- Sakai, N.; Yamamoto, S.; Matsui, Y.; Khan, M.F.; Latif, M.T.; Ali Mohd, M.; Yoneda, M. Characterization and source profiling of volatile organic compounds in indoor air of private residences in Selangor State, Malaysia. Sci. Total Environ. 2017, 586, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- Raysoni, A.U.; Stock, T.H.; Sarnat, J.A.; Chavez, M.C.; Sarnat, S.E.; Montoya, T.; Holguin, F.; Li, W.W. Evaluation of VOC concentrations in indoor and outdoor microenvironments at near-road schools. Environ. Pollut. 2017, 231, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Caselli, M.; de Gennaro, G.; Marzocca, A.; Trizio, L.; Tutino, M. Assessment of the impact of the vehicular traffic on BTEX concentration in ring roads in urban areas of Bari (Italy). Chemosphere 2010, 81, 306–311. [Google Scholar] [CrossRef]
- Miller, L.; Xu, X.; Wheeler, A.; Atari, D.O.; Grgicak-Mannion, A.; Luginaah, I. Spatial variability and application of ratios between BTEX in two Canadian cities. Sci. World J. 2011, 11, 2536–2549. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, D.; Kumar, K.; Singh, B.B.; Jain, V.K. Distribution of VOCs in urban and rural atmospheres of subtropical India: Temporal variation, source attribution, ratios, OFP and risk assessment. Sci. Total Environ. 2018, 613, 492–501. [Google Scholar] [CrossRef]
- Hoet, P.; De Smedt, E.; Ferrari, M.; Imbriani, M.; Maestri, L.; Negri, S.; De Wilde, P.; Lison, D.; Haufroid, V. Evaluation of urinary biomarkers of exposure to benzene: Correlation with blood benzene and influence of confounding factors. Int. Arch. Occup. Environ. Health 2009, 82, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Hays, S.M.; Pyatt, D.W.; Kirman, C.R.; Aylward, L.L. Biomonitoring Equivalents for benzene. Regul. Toxicol. Pharmacol. 2012, 62, 62–73. [Google Scholar] [CrossRef]
- Jalai, A.; Ramezani, Z.; Ebrahim, K. Urinary Trans, Trans-Muconic Acid is Not a Reliable Biomarker for Low-level Environmental and Occupational Benzene Exposures. Saf. Health Work 2017, 8, 220–225. [Google Scholar] [CrossRef] [Green Version]
- Società Italiana per i Valori di Riferimento. Terza Lista di Valori di Riferimento per Elementi, Composti Organici e Loro Metaboliti. Available online: http://www.sivr.it/documenti/sivr2011.pdf (accessed on 15 November 2020).
- Jain, R.B. Levels of selected urinary metabolites of volatile organic compounds among children aged 6–11 years. Environ. Res. 2015, 142, 461–470. [Google Scholar] [CrossRef]
- Protano, C.; Guidotti, M.; Manini, P.; Petyx, M.; La Torre, G.; Vitali, M. Benzene exposure in childhood: Role of living environments and assessment of available tools. Environ. Int. 2010, 36, 779–787. [Google Scholar] [CrossRef]
- Barbieri, A.; Violante, F.S.; Sabatini, L.; Graziosi, F.; Mattioli, S. Urinary biomarkers and low-level environmental benzene concentration: Assessing occupational and general exposure. Chemosphere 2008, 74, 64–69. [Google Scholar] [CrossRef]
- Arnold, S.M.; Angerer, J.; Boogaard, P.J.; Hughes, M.F.; O’Lone, R.B.; Robison, S.H.; Robert Schnatter, A. The use of biomonitoring data in exposure and human health risk assessment: Benzene case study. Crit. Rev. Toxicol. 2013, 43, 119–153. [Google Scholar] [CrossRef] [Green Version]
- Fustinoni, S.; Campo, L.; Mercadante, R.; Consonni, D.; Mielzynska, D.; Bertazzi, P.A. A quantitative approach to evaluate urinary benzene and S-phenylmercapturic acid as biomarkers of low benzene exposure. Biomarkers 2011, 16, 334–345. [Google Scholar] [CrossRef]
- Tranfo, G.; Pigini, D.; Paci, E.; Marini, F.; Bonanni, R.C. Association of exposure to benzene and smoking with oxidative damage to nucleic acids by means of biological monitoring of general population volunteers. Environ. Sci. Pollut. Res. 2017, 24, 13885–13894. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L. Cotinine as a biomarker of environmental tobacco smoke exposure. Epidemiol. Rev. 1996, 18, 188–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fustinoni, S.; Rossella, F.; Campo, L.; Mercadante, R.; Bertazzi, P.A. Urinary BTEX, MTBE and naphthalene as biomarkers to gain environmental exposure profiles of the general population. Sci. Total Environ. 2010, 408, 2840–2849. [Google Scholar] [CrossRef] [PubMed]
- Brajenović, N.; Karačonji, I.B.; Bulog, A. Evaluation of Urinary Btex, Nicotine, and Cotinine as Biomarkers of Airborne Pollutants in Nonsmokers and Smokers. J. Toxicol. Environ. Health Part A. 2015, 78, 1133–1136. [Google Scholar] [CrossRef]
- Fracasso, M.E.; Doria, D.; Bartolucci, G.B.; Carrieri, M.; Lovreglio, P.; Ballini, A.; Soleo, L.; Tranfo, G. Low air levels of benzene: Correlation between biomarkers of exposure and genotoxic effects. Toxicol. Lett. 2010, 192, 22–28. [Google Scholar] [CrossRef]
- Parke, D.V. Personal Reflections on 50 Years of Study of Benzene Toxicology. Environ. Health Perspect. 1996, 104 (Suppl. S6), 1123–1128. [Google Scholar] [CrossRef] [Green Version]
- Whysner, J.; Vijayaraj Reddy, M.; Ross, P.M.; Mohan, M.; Lax, E.A. Genotoxicity of benzene and its metabolites. Mutat. Res. Rev. Mutat. Res. 2004, 566, 99–130. [Google Scholar] [CrossRef]
- Fenga, C.; Gangemi, S.; Teodoro, M.; Rapisarda, V.; Golokhvast, K.; Docea, A.O.; Tsatsakis, A.M.; Costa, C. 8-Hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to low-dose benzene. Toxicol. Rep. 2017, 4, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Franken, C.; Koppen, G.; Lambrechts, N.; Govarts, E.; Bruckers, L.; Den Hond, E.; Loots, I.; Nelen, V.; Sioen, I.; Nawrot, T.S.; et al. Environmental exposure to human carcinogens in teenagers and the association with DNA damage. Environ. Res. 2017, 152, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.-M.; Cooke, M.S.; Pan, C.-H.; Chao, M.-R.; Hu, C.-W. Clinical relevance of guanine-derived urinary biomarkers of oxidative stress, determined by LC-MS/MS. Redox Biol. 2019, 20, 556–565. [Google Scholar] [CrossRef]
- Zhao, G.; Fu, Y.; Yu, J.; Wang, S.; Duan, K.; Xie, F.; Liu, H. A Simple Method for the Determination of 8-Oxoguanosine, 8-Oxo-2′-Deoxyguanosine and 8-Iso-Prostaglandin F2α in Human Urine by UHPLC–MS/MS. Chromatographia 2017, 80, 401–408. [Google Scholar] [CrossRef]
- Valavanidis, A.; Vlachogianni, T.; Fiotakis, C. 8-hydroxy-2′-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2009, 27, 120–139. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, H.E.; Nadal, L.L.; Broedbaek, K.; Nielsen, P.E.; Weimann, A. Detection and interpretation of 8-oxodG and 8-oxoGua in urine, plasma and cerebrospinal fluid. Biochim. Biophys. Acta 2014, 1840, 801–808. [Google Scholar] [CrossRef]
- Buthbumrung, N.; Maidol, C.; Navasumrit, P.; Promvijit, J.; Hunsonti, P.; Autrup, H.; Ruchirawat, M. Oxidative DNA damage and influence of genetic polymorphisms among urban and rural schoolchildren exposed to benzene. Chem. Biol. Interact. 2008, 172, 185–194. [Google Scholar] [CrossRef]
- Lovreglio, P.; Maffei, F.; Carrieri, M.; D’Errico, M.N.; Drago, I.; Hrelia, P.; Bartolucci, G.B.; Soleo, L. Evaluation of chromosome aberration and micronucleus frequencies in blood lymphocytes of workers exposed to low concentrations of benzene. Mutat. Res. Toxicol. Environ. Mutagen. 2014, 770, 55–60. [Google Scholar] [CrossRef]
- Pandey, A.K.; Bajpayee, M.; Parmar, D.; Kumar, R.; Rastogi, S.K.; Mathur, N.; Thorning, P.; de Matas, M.; Shao, Q.; Anderson, D.; et al. Multipronged evaluation of genotoxicity in Indian petrol-pump workers. Environ. Mol. Mutagen. 2008, 49, 695–707. [Google Scholar] [CrossRef] [PubMed]
Area Attributes | Cagliari (Urban) | Sarroch (Industrial) |
---|---|---|
Resident population * (No.) | 154,083 | 5267 |
Population density * (No. per km2) | 1821.9 | 77.7 |
Motorization rate ** (No. per 1000 inhabitants) | ||
Auto vehicles | 671.1 | not available |
Motorcycles | 96.3 | not available |
Annual mean of airborne pollutants *** | ||
Benzene (µg/m3) | 1.9 | 1.6 |
PM2.5 (µg/m3) | 16 | 13 |
Variable | Total | Urban | Industrial | p-Value |
---|---|---|---|---|
Gender | 83 | 35 | 48 | - |
(numbers of male, female) | (37, 46) | (13, 22) | (24, 24) | |
Age | 0.20 | |||
Mean, SD | 8.0, 2.3 | 7.6, 1.9 | 8.3, 2.5 | |
(min–max) | (3–13) | (3–11) | (3–13) | |
Family size | 0.80 | |||
Mean, SD | 4.0, 1.0 | 4.0, 1.0 | 4.0, 1.0 | |
Number of smokers in the household | 0.10 ** | |||
None | 49 | 15 | 34 | |
1 | 17 | 10 | 7 | |
≥2 | 13 | 6 | 7 | |
Missing | 4 | 4 | 0 | |
Number of cigarettes/day * | 0.2 | |||
Mean, SD | 13.2, 10.0 | 12.9, 10.8 | 13.5, 9.3 |
Summertime | Wintertime | |||||
---|---|---|---|---|---|---|
Sampling Campaign | Urban Area Median (IQ Range) | Industrial Area Median (IQ Range) | p-Value | Urban Area Median (IQ Range) | Industrial Area Median (IQ Range) | p-Value |
Environmental benzene | ||||||
2015 sampling campaign | 0.8 (0.7–1.1) | 1.1 (1.0–1.2) | 0.06 | 1.6 (1.4–2.1) | 3.4 (3.0–4.0) | <0.001 |
p-value vs. summer 2015 | 0.008 | 0.008 | ||||
2016 sampling campaign | 1.0 (0.9–1.2) | 1.7 (1.3–2.4) | 0.005 | n.a. | n.a. | |
Environmental toluene | ||||||
2015 sampling campaign | 3.0 (2.7–3.9) | 2.5 (1.9–3.0) | 0.072 | 3.6 (2.8–4.3) | 7.8 (6.9–8.1) | 0.001 |
p-value vs. summer 2015 | 0.575 | 0.008 | ||||
2016 sampling campaign | 2.7 (2.3–3.0) | 2.5 (2.2–3.8) | 1.000 | n.a. | n.a. | |
Environmental T/B | ||||||
2015 sampling campaign | 3.3 (3.1–3.8) | 2.2 (1.9–2.3) | <0.001 | 2.1 (1.7–2.4) | 2.1 (1.8–2.3) | 0.970 |
p-value vs. summer 2015 | 0.005 | 0.260 | ||||
2016 sampling campaign | 2.5 (2.4–2.6) | 1.6 (1.5–1.7) | 0.001 | n.a. | n.a. |
Samples | Urban Area Median (IQ Range) | Industrial Area Median (IQ Range) | p-Value |
---|---|---|---|
Indoor samples | |||
Benzene | 1.5 (0.9–1.6) | 1.8 (1.4–2.1) | 0.026 |
Toluene | 5.0 (4.6–5.4) | 5.3 (5.1–7.1) | 0.430 |
T/B* | 4.8 (3.0–6.0) | 3.0 (1.7–4.7) | 0.024 |
Personal samples | |||
Benzene | 1.0 (0.9–1.4) | 1.6 (1.4–2.1) | 0.001 |
Toluene | 3.7 (3.7–7.4) | 4.7 (4.7–9.2) | 0.070 |
T/B* | 3.4 (3.4–5.2) | 2.8 (2.8–6.5) | 0.490 |
TOT | Urban | Industrial | ||||
---|---|---|---|---|---|---|
Biomarker | Evening | Morning | Evening | Morning | Evening | Morning |
U-Benz | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 |
Median (IQ range) | (0.01–0.08) | (0.01–0.23) | (0.01–0.02) | (0.01–0.01) | (0.01–0.61) | (0.01–0.59) |
S-PMA | 0.07 | 0.05 | 0.07 | 0.05 | 0.08 | 0.06 |
Median (IQ range) | (0.06–0.11) | (0.04–0.08) | (0.06–0.10) | (0.03–0.06) | (0.06–0.11) | (0.04–0.09) |
Cotinine | 3.12 | 3.16 | 3.29 | 4.25 | 3.07 | 2.53 |
Median (IQ range) | (1.59–5.19) | (1.79–5.48) | (1.72–6.01) | (2.49–6.04) | (1.52–4.95) | (1.39–4.61) |
8-OHdG | 1.12 | 1.12 | 1.06 | 0.98 | 1.16 | 1.19 |
Median (IQ range) | (0.95–1.39) | (0.88–1.34) | (0.90–1.29) | (0.83–1.26) | (1.02–1.51) | (1.03–1.38) |
Covariates | Urinary Benzene OR (95% CI) | Urinary SPMA OR (95% CI) |
---|---|---|
Model 1 | ||
Age | 0.9 (0.7–1.2) | 0.9 (0.7–1.1) |
Gender (female vs. male) | 0.3 (0.1–1.1) | 0.8 (0.3–2.3) |
Area (industrial vs. urban) | 18.5 (1.9–179) | 3.2 (0.8–12.5) |
Central address vs. peripheral/rural | 2.6 (0.7–10.5) | 2.0 (0.6–6.2) |
Floor level (≥1 vs. street level) | 0.2 (0.04–1.1) | 1.9 (0.6–6.2) |
R2 | 0.262 | 0.075 |
Model 2 | ||
Age | 1.0 (0.8–1.3) | 0.9 (0.7–1.1) |
Gender (female vs. male) | 0.5 (0.2–1.7) | 0.8 (0.2–2.4) |
Airborne benzene (personal) | 1.4 (0.7–2.6) | 3.4 (1.3–8.4) |
Urinary benzene (>fourth quartile) | - | 1.7 (0.4–6.2) |
Smoking cohabitants | 0.5 (0.1–1.6) | 1.5 (0.5–4.9) |
R2 | 0.037 | 0.149 |
Covariates | β (95%CI) | Standard Error |
---|---|---|
Model 1 | ||
Age | −0.055 | 0.022 |
Gender | −0.023 | 0.097 |
Area (industrial) | −0.150 | 0.100 |
S-PMA | 0.331 | 0.715 |
R2 | 0.103 | |
Model 2 | ||
Age | −0.058 | 0.022 |
Gender | 0.022 | 0.098 |
Area (industrial) | −0.162 | 0.106 |
Urinary benzene > fourth quartile | 0.012 | 0.122 |
R2 | 0.101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilia, I.; Campagna, M.; Marcias, G.; Fabbri, D.; Meloni, F.; Spatari, G.; Cottica, D.; Cocheo, C.; Grignani, E.; De-Giorgio, F.; et al. Biomarkers of Low-Level Environmental Exposure to Benzene and Oxidative DNA Damage in Primary School Children in Sardinia, Italy. Int. J. Environ. Res. Public Health 2021, 18, 4644. https://doi.org/10.3390/ijerph18094644
Pilia I, Campagna M, Marcias G, Fabbri D, Meloni F, Spatari G, Cottica D, Cocheo C, Grignani E, De-Giorgio F, et al. Biomarkers of Low-Level Environmental Exposure to Benzene and Oxidative DNA Damage in Primary School Children in Sardinia, Italy. International Journal of Environmental Research and Public Health. 2021; 18(9):4644. https://doi.org/10.3390/ijerph18094644
Chicago/Turabian StylePilia, Ilaria, Marcello Campagna, Gabriele Marcias, Daniele Fabbri, Federico Meloni, Giovanna Spatari, Danilo Cottica, Claudio Cocheo, Elena Grignani, Fabio De-Giorgio, and et al. 2021. "Biomarkers of Low-Level Environmental Exposure to Benzene and Oxidative DNA Damage in Primary School Children in Sardinia, Italy" International Journal of Environmental Research and Public Health 18, no. 9: 4644. https://doi.org/10.3390/ijerph18094644
APA StylePilia, I., Campagna, M., Marcias, G., Fabbri, D., Meloni, F., Spatari, G., Cottica, D., Cocheo, C., Grignani, E., De-Giorgio, F., Cocco, P., & d’Aloja, E. (2021). Biomarkers of Low-Level Environmental Exposure to Benzene and Oxidative DNA Damage in Primary School Children in Sardinia, Italy. International Journal of Environmental Research and Public Health, 18(9), 4644. https://doi.org/10.3390/ijerph18094644