Examination of the Sprinting and Jumping Force-Velocity Profiles in Young Soccer Players at Different Maturational Stages
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Design
2.3. Methodology
2.4. Statistical Analyses
3. Results
4. Discussion
5. Practical Applications and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Jiménez-Reyes, P.; Samozino, P.; Brughelli, M.; Morin, J.B. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front. Physiol. 2017, 7, 677. [Google Scholar] [CrossRef] [Green Version]
- Samozino, P.; Rabita, G.; Dorel, S.; Slawinski, J.; Peyrot, N.; Saez de Villarreal, E.; Morin, J.B. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand. J. Med. Sci. Sport. 2016, 26, 648–658. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Reyes, P.; Samozino, P.; Pareja-Blanco, F.; Conceição, F.; Cuadrado-Peñafiel, V.; González-Badillo, J.J.; Morin, J.B. Validity of a simple method for measuring force-velocity-power profile in countermovement jump. Int. J. Sports Physiol. Perform. 2017, 12, 36–43. [Google Scholar] [CrossRef]
- García-Ramos, A.; Feriche, B.; Pérez-Castilla, A.; Padial, P.; Jaric, S. Assessment of leg muscles mechanical capacities: Which jump, loading, and variable type provide the most reliable outcomes? Eur. J. Sport Sci. 2017, 17, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Reyes, P.; Samozino, P.; Cuadrado-Peñafiel, V.; Conceição, F.; González-Badillo, J.J.; Morin, J.B. Effect of countermovement on power–force–velocity profile. Eur. J. Appl. Physiol. 2014, 114, 2281–2288. [Google Scholar] [CrossRef]
- Morin, J.B.; Samozino, P. Interpreting power-force-velocity profiles for individualized and specific training. Int. J. Sports Physiol. Perform. 2016, 11, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Reyes, P.; Samozino, P.; García-Ramos, A.; Cuadrado-Peñafiel, V.; Brughelli, M.; Morin, J.B. Relationship between vertical and horizontal force-velocity-power profiles in various sports and levels of practice. PeerJ 2018, 6, e5937. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Reyes, P.; García-Ramos, A.; Cuadrado-Peñafiel, V.; Párraga-Montilla, J.A.; Morcillo-Losa, J.A.; Samozino, P.; Morin, J.B. Differences in sprint mechanical force–velocity profile between trained soccer and futsal players. Int. J. Sports Physiol. Perform. 2019, 14, 478–485. [Google Scholar] [CrossRef]
- Marcote-Pequeño, R.; García-Ramos, A.; Cuadrado-Peñafiel, V.; González-Hernández, J.M.; Gómez, M.Á.; Jiménez-Reyes, P. Association between the force–velocity profile and performance variables obtained in jumping and sprinting in elite female soccer players. Int. J. Sports Physiol. Perform. 2019, 14, 209–215. [Google Scholar] [CrossRef]
- Buchheit, M.; Samozino, P.; Glynn, J.A.; Michael, B.S.; Al Haddad, H.; Mendez-Villanueva, A.; Morin, J.B. Mechanical determinants of acceleration and maximal sprinting speed in highly trained young soccer players. J. Sports Sci. 2014, 32, 1906–1913. [Google Scholar] [CrossRef]
- Nagahara, R.; Morin, J.B.; Koido, M. Impairment of sprint mechanical properties in an actual soccer match: A pilot study. Int. J. Sports Physiol. Perform. 2016, 11, 893–898. [Google Scholar] [CrossRef]
- Cross, M.R.; Lahti, J.; Brown, S.R.; Chedati, M.; Jimenez-Reyes, P.; Samozino, P.; Eriksrud, O.; Morin, J.B. Training at maximal power in resisted sprinting: Optimal load determination methodology and pilot results in team sport athletes. PLoS ONE 2018, 13, e0195477. [Google Scholar] [CrossRef] [Green Version]
- Baumgart, C.; Freiwald, J.; Hoppe, M. Sprint Mechanical Properties of Female and Different Aged Male Top-Level German Soccer Players. Sports 2018, 6, 161. [Google Scholar] [CrossRef] [Green Version]
- Morin, J.B.; Edouard, P.; Samozino, P. Technical ability of force application as a determinant factor of sprint performance. Med. Sci. Sports Exerc. 2011, 43, 1680–1688. [Google Scholar] [CrossRef]
- Castagna, C.; D’Ottavio, S.; Abt, G. Activity Profile of Young Soccer Players During Actual Match Play. J. Strength Cond. Res. 2003, 17, 775–780. [Google Scholar] [CrossRef]
- Hulse, M.A.; Morris, J.G.; Hawkins, R.D.; Hodson, A.; Nevill, A.M.; Nevill, M.E. A field-test battery for elite, young soccer players. Int. J. Sports Med. 2013, 34, 302–311. [Google Scholar] [CrossRef]
- Malina, R.M.; Peña Reyes, M.E.; Figueiredo, A.J.; Coelho E Silva, M.J.; Horta, L.; Miller, R.; Chamorro, M.; Serratosa, L.; Morate, F. Skeletal age in youth soccer players: Implication for age verification. Clin. J. Sport Med. 2010. [Google Scholar] [CrossRef]
- Malina, R.M.; Bouchard, C. Growth, Maturation, and Physical Activity. Med. Sci. Sport. Exerc. 1992. [Google Scholar] [CrossRef]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Villanueva, A.; Buchheit, M.; Kuitunen, S.; Douglas, A.; Peltola, E.; Bourdon, P. Age-related differences in acceleration, maximum running speed, and repeated-sprint performance in young soccer players. J. Sports Sci. 2011, 29, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Asadi, A.; Ramirez-Campillo, R.; Arazi, H.; Sáez de Villarreal, E. The effects of maturation on jumping ability and sprint adaptations to plyometric training in youth soccer players. J. Sports Sci. 2018, 36, 2405–2411. [Google Scholar] [CrossRef]
- Colyer, S.L.; Nagahara, R.; Takai, Y.; Salo, A.I.T. The effect of biological maturity status on ground reaction force production during sprinting. Scand. J. Med. Sci. Sport. 2020, 30, 1387–1397. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L.; Radnor, J.M.; Rhodes, B.C.; Faigenbaum, A.D.; Myer, G.D. Relationships between functional movement screen scores, maturation and physical performance in young soccer players. J. Sports Sci. 2015, 33, 11–19. [Google Scholar] [CrossRef]
- Moran, J.J.; Sandercock, G.R.H.; Ramírez-Campillo, R.; Meylan, C.M.P.; Collison, J.A.; Parry, D.A. Age-related variation in male youth athletes’ countermovement jump after plyometric training: A meta-analysis of controlled trials. J. Strength Cond. Res. 2017, 31, 552–565. [Google Scholar] [CrossRef]
- Moran, J.; Parry, D.A.; Lewis, I.; Collison, J.; Rumpf, M.C.; Sandercock, G.R.H. Maturation-related adaptations in running speed in response to sprint training in youth soccer players. J. Sci. Med. Sport 2018, 21, 538–542. [Google Scholar] [CrossRef] [Green Version]
- Pion, J.; Segers, V.; Fransen, J.; Debuyck, G.; Deprez, D.; Haerens, L.; Vaeyens, R.; Philippaerts, R.; Lenoir, M. Generic anthropometric and performance characteristics among elite adolescent boys in nine different sports. Eur. J. Sport Sci. 2015, 15, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Hertzog, M.; Paul, D.; Nassis, G.; Silva, J. Does Early Recruitment Predict Greater Physical Performance in Academy Soccer Players? Sports 2018, 6, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peña-González, I.; Fernández-Fernández, J.; Moya-Ramón, M.; Cervelló, E. Relative Age Effect, Biological Maturation, and Coaches’ Efficacy Expectations in Young Male Soccer Players. Res. Q. Exerc. Sport 2018, 89, 373–379. [Google Scholar] [CrossRef]
- Murtagh, C.F.; Brownlee, T.E.; O’Boyle, A.; Morgans, R.; Drust, B.; Erskine, R.M. Importance of speed and power in elite youth soccer depends on maturation status. J. Strength Cond. Res. 2018, 32, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Thomis, M.; Claessens, A.L.; Lefevre, J.; Philippaerts, R.; Beunen, G.P.; Malina, R.M. Adolescent growth spurts in female gymnasts. J. Pediatr. 2005, 146, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.A.; McKay, H.A.; Macdonald, H.; Nettlefold, L.; Baxter-Jones, A.D.G.; Cameron, N.; Brasher, P.M.A. Enhancing a somatic maturity prediction model. Med. Sci. Sports Exerc. 2015, 47, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Claessens, A.L.; Van Aken, K.; Thomis, M.; Lefevre, J.; Philippaerts, R.; Beunen, G.P. Maturity offset in gymnasts: Application of a prediction equation. Med. Sci. Sports Exerc. 2006, 38, 1342–1347. [Google Scholar] [CrossRef]
- Samozino, P.; Edouard, P.; Sangnier, S.; Brughelli, M.; Gimenez, P.; Morin, J.B. Force-velocity profile: Imbalance determination and effect on lower limb ballistic performance. Int. J. Sports Med. 2014, 35, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre-Fernández, C.; Glaister, M.; Lockey, R.A. The validity and reliability of an iPhone app for measuring vertical jump performance. J. Sports Sci. 2015, 33, 1574–1579. [Google Scholar] [CrossRef]
- Romero-Franco, N.; Jiménez-Reyes, P.; Castaño-Zambudio, A.; Capelo-Ramírez, F.; Rodríguez-Juan, J.J.; González-Hernández, J.; Toscano-Bendala, F.J.; Cuadrado-Peñafiel, V.; Balsalobre-Fernández, C. Sprint performance and mechanical outputs computed with an iPhone app: Comparison with existing reference methods. Eur. J. Sport Sci. 2017, 17, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meylan, C.M.P.; Cronin, J.B.; Oliver, J.L.; Hughes, M.G.; McMaster, D.T. The reliability of jump kinematics and kinetics in children of different maturity status. J. Strength Cond. Res. 2012, 26, 1015–1026. [Google Scholar] [CrossRef]
- Malina, R.M.; Cumming, S.P.; Kontos, A.P.; Eisenmann, J.C.; Ribeiro, B.; Aroso, J. Maturity-associated variation in sport-specific skills of youth soccer players aged 13-15 years. J. Sports Sci. 2005, 23, 515–522. [Google Scholar] [CrossRef]
- Lima, A.B.; Nascimento, J.V.; Leonardi, T.J.; Soares, A.L.; Paes, R.R.; Gonçalves, C.E.; Carvalho, H.M. Deliberate practice, functional performance and psychological characteristics in young basketball players: A bayesian multilevel analysis. Int. J. Environ. Res. Public Health 2020, 17, 4078. [Google Scholar] [CrossRef]
- Gastin, P.B.; Bennett, G.; Cook, J. Biological maturity influences running performance in junior Australian football. J. Sci. Med. Sport 2013, 16, 140–145. [Google Scholar] [CrossRef]
- McCunn, R.; Weston, M.; Hill, J.K.A.; Johnston, R.D.; Gibson, N.V. Influence of Physical Maturity Status on Sprinting Speed among Youth Soccer Players. J. Strength Cond. Res. 2017, 31, 1795–1801. [Google Scholar] [CrossRef] [Green Version]
- Malina, R.M. Quantification of fat, muscle and bone in man. Clin. Orthop. Relat. Res. 1969, 65, 9–38. [Google Scholar] [CrossRef]
- Meylan, C.M.; Cronin, J.; Hopkins, W.G.; Oliver, J. Adjustment of measures of strength and power in youth male athletes differing in body mass and maturation. Pediatr. Exerc. Sci. 2014, 26, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Tufano, J.J.; Amonette, W.E. Assisted Versus Resisted Training. Strength Cond. J. 2018, 40, 106–110. [Google Scholar] [CrossRef]
- Upton, D.E. The effect of assisted and resisted sprint training on acceleration and velocity in Division IA female soccer athletes. J. Strength Cond. Res. 2011, 25, 2645–2652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamilrasi, K.; Maniazhagu, D. Effects of combination of assisted and resisted sprint training on agiity among male soccer players. Int. J. Phys. Educ. Sport. Manag. Yogic Sci. 2014, 4, 23–28. [Google Scholar] [CrossRef]
- Lahti, J.; Jiménez-Reyes, P.; Cross, M.R.; Samozino, P.; Chassaing, P.; Simond-Cote, B.; Ahtiainen, J.P.; Morin, J.-B. Individual Sprint Force-Velocity Profile Adaptations to In-Season Assisted and Resisted Velocity-Based Training in Professional Rugby. Sports 2020, 8, 74. [Google Scholar] [CrossRef]
Category | n | Age (years) | Weight (kg) | Stature (cm) | Sitting Height (cm) | 5 m Time (s) | 20 m Time (s) | CMJ Height (cm) |
---|---|---|---|---|---|---|---|---|
U 18 | 18 | 17.27 ± 0.46 | 71.78 ± 11.37 | 177.39 ± 6.89 | 91.72 ± 3.04 | 1.55 ± 0.07 | 3.70 ± 0.14 | 35.0 ± 5.34 |
U 16 | 17 | 14.54 ± 0.45 | 61.12 ± 12.63 | 164.53 ± 5.0 | 87.98 ± 2.67 | 1.51 ± 0.15 | 3.98 ± 0.30 | 25.92 ± 4.97 |
U 14 | 17 | 12.71 ± 0.42 | 44.48 ± 7.06 | 151.47 ± 6.03 | 79.72 ± 3.17 | 1.61 ± 0.15 | 4.23 ± 0.36 | 22.35 ± 5.02 |
U 12 | 19 | 10.55 ± 0.44 | 43.58 ± 8.58 | 144.42 ± 6.19 | 75.22 ± 3.23 | 1.70 ± 0.14 | 4.52 ± 0.37 | 18.45 ± 5.83 |
U 10 | 18 | 8.40 ± 0.41 | 29.72 ± 5.17 | 129.0 ± 4.49 | 66.15 ± 2.30 | 1.78 ± 0.16 | 4.70 ± 0.40 | 18.06 ± 4.84 |
Maturity Offset | CA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Bivariate r | Partial r | Bivariate r | Partial r | |||||||
Sprinting | Mean | SD | r | p | r | p | r | p | r | p |
F0 (N) | 309.43 | 132.15 | 0.89 | <0.001 | 0.7 | <0.001 | 0.85 | <0.001 | 0.62 | <0.001 |
V0 (m·s−1) | 6.57 | 1.06 | 0.77 | <0.001 | 0.45 | <0.001 | 0.79 | <0.001 | 0.51 | <0.001 |
Pmax (W) | 530.41 | 286.63 | 0.92 | <0.001 | 0.78 | <0.001 | 0.9 | <0.001 | 0.73 | <0.001 |
FV slope (N·s·m−1) | 2572.87 | 1714.82 | −0.79 | <0.001 | −0.56 | <0.001 | −0.74 | <0.001 | −0.51 | <0.001 |
DRF (%) | –0.09 | 0.02 | 0.29 | 0.005 | 0.18 | 0.098 | 0.29 | 0.007 | 0.2 | 0.065 |
RF peak (%) | 0.43 | 0.05 | 0.59 | <0.001 | 0.26 | 0.015 | 0.61 | <0.001 | 0.3 | 0.005 |
Jumping | Mean | SD | r | p | r | p | r | p | r | p |
F0 (N) | 1407.2 | 618.21 | 0.91 | <0.001 | 0.79 | <0.001 | 0.89 | <0.001 | 0.75 | <0.001 |
V0 (m·s−1) | 3.62 | 1.08 | 0.23 | 0.034 | 0.11 | <0.001 | 0.21 | 0.226 | 0.07 | 0.508 |
Pmax (W) | 1277.69 | 695.75 | 0.87 | <0.001 | 0.67 | <0.001 | 0.83 | <0.001 | 0.6 | <0.001 |
FV slope (N·s·m−1) | 2292.78 | 1300.53 | −0.01 | 0.916 | −0.03 | 0.771 | −0.0 | 0.519 | −0.01 | 0.923 |
FV deficit (%) | 8.63 | 3.69 | 0.49 | <0.001 | 0.17 | 0.122 | −0.09 | 0.39 | 0.11 | 0.328 |
Sprinting | Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Maturity offset | B | SE B | β | B | SE B | β | B | SE B | β |
Pmax | 0.01 | 0 | 0.92 § | 0.01 | 0 | 0.9 § | 0.003 | 0.002 | 0.35 § |
DRF | 22.65 | 6.36 | 0.14 † | 38.94 | 8.5 | 0.24 § | |||
F0 | 0.11 | 0.004 | 0.55 † | ||||||
R2 adjusted | 0.849 | 0.867 | 0.877 | ||||||
CA | B | SE B | β | B | SE B | β | B | SE B | β |
Pmax | 0.01 | 0 | 0.9 § | 0.01 | 0 | 0.87 § | |||
DRF | 27.57 | 9.24 | 0.14 † | ||||||
R2 adjusted | 0.8 | 0.817 | |||||||
Jumping | Model 1 | Model 2 | |||||||
Maturity offset | B | SE B | β | B | SE B | β | |||
F0 | 0.004 | 0 | 0.91 § | 0.004 | 0 | 0.96 § | |||
FV slope | −0.15 | 0.03 | −0.23 § | ||||||
R2 adjusted | 0.834 | 0.882 | |||||||
CA | B | SE B | β | B | SE B | β | |||
F0 | 0.004 | 0 | 0.89 § | 0.005 | 0 | 0.94 § | |||
FV slope | −0.18 | 0.04 | −0.21 § | ||||||
R2 adjusted | 0.792 | 0.831 |
Sprinting | Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Maturity offset | B | SE B | β | B | SE B | β | B | SE B | β |
Pmax | 0.01 | 0 | 0.92 § | 0.01 | 0 | 0.64 § | 0.01 | 0.001 | 0.76 § |
Training experience | 0.39 | 0.06 | 0.36 § | 0.38 | 0.06 | 0.36 § | |||
RF peak | −7.76 | 2.22 | −0.16 † | ||||||
R2 adjusted | 0.849 | 0.897 | 0.909 | ||||||
CA | B | SE B | β | B | SE B | β | B | SE B | β |
Pmax | 0.01 | 0 | 0.9 § | 0.01 | 0 | 0.55 § | 0.01 | 0 | 0.62 § |
Training experience | 0.58 | 0.08 | 0.43 § | 0.53 | 0.08 | 0.4 § | |||
Body size | 0.12 | 0.04 | 0.12 * | ||||||
R2 adjusted | 0.8 | 0.87 | 0.881 | ||||||
Jumping | Model 1 | Model 2 | |||||||
Maturity offset | B | SE B | β | B | SE B | β | B | SE B | β |
F0 | 0.004 | 0 | 0.91 § | 0.003 | 0 | 0.7 § | 0.003 | 0 | 0.74 § |
Training experience | 0.43 | 0.06 | 0.4 § | 0.36 | 0.05 | 0.33 § | |||
FV slope | −0.11 | 0.2 | −0.17 § | ||||||
R2 adjusted | 0.834 | 0.901 | 926 | ||||||
CA | B | SE B | β | B | SE B | β | B | SE B | β |
F0 | 0.004 | 0 | 0.89 § | 0.003 | 0 | 0.54 § | 0.003 | 0 | 0.62 § |
Training experience | 0.61 | 0.08 | 0.46 § | 0.54 | 0.07 | 0.4 § | |||
FV slope | −0.12 | 0.3 | −0.14 § | ||||||
R2 adjusted | 0.792 | 0.880 | 0.896 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Galván, L.M.; Boullosa, D.; Jiménez-Reyes, P.; Cuadrado-Peñafiel, V.; Casado, A. Examination of the Sprinting and Jumping Force-Velocity Profiles in Young Soccer Players at Different Maturational Stages. Int. J. Environ. Res. Public Health 2021, 18, 4646. https://doi.org/10.3390/ijerph18094646
Fernández-Galván LM, Boullosa D, Jiménez-Reyes P, Cuadrado-Peñafiel V, Casado A. Examination of the Sprinting and Jumping Force-Velocity Profiles in Young Soccer Players at Different Maturational Stages. International Journal of Environmental Research and Public Health. 2021; 18(9):4646. https://doi.org/10.3390/ijerph18094646
Chicago/Turabian StyleFernández-Galván, Luis Miguel, Daniel Boullosa, Pedro Jiménez-Reyes, Víctor Cuadrado-Peñafiel, and Arturo Casado. 2021. "Examination of the Sprinting and Jumping Force-Velocity Profiles in Young Soccer Players at Different Maturational Stages" International Journal of Environmental Research and Public Health 18, no. 9: 4646. https://doi.org/10.3390/ijerph18094646
APA StyleFernández-Galván, L. M., Boullosa, D., Jiménez-Reyes, P., Cuadrado-Peñafiel, V., & Casado, A. (2021). Examination of the Sprinting and Jumping Force-Velocity Profiles in Young Soccer Players at Different Maturational Stages. International Journal of Environmental Research and Public Health, 18(9), 4646. https://doi.org/10.3390/ijerph18094646