The Seasonality Impact of the BTEX Pollution on the Atmosphere of Arad City, Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Measurement Site
2.2. Sampling and Analysis
2.3. Statistical Analysis
2.4. The Health Risk Assessment
- CA = contaminant concentration in air (mg m−3)
- CF = conversion factor (0.001 mg mg−1)
- IR = inhalation rate (m3 h−1) for an adult (0.83)
- ET = exposure time (24 h day−1)
- EF = exposure frequency (350 days year−1)
- ED = exposure duration (24 years for an adult)
- BW = body weight (70 kg for adults)
- AT = averaging time (ED in years × 365 days year−1) for noncarcinogenic risk calculation
- AT = ¼ averaging time (70 years × 365 day year−1) for carcinogenic risk calculation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Dong, F. Haze pollution and corruption: A perspective of mediating and moderating roles. J. Clean. Prod. 2021, 279, 123550. [Google Scholar] [CrossRef]
- Anenberg, S.C.; Haines, S.; Wang, E.; Nassikas, N.; Kinney, P.L. Synergistic health effects of air pollution, temperature, and pollen exposure: A systematic review of epidemiological evidence. Environ. Health 2020, 19, 1–19. [Google Scholar] [CrossRef]
- Holopainen, J.; Kivimäenpää, M.; Nizkorodov, S. Plant-derived Secondary Organic Material in the Air and Ecosystems. Trends Plant Sci. 2017, 22, 744–753. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, F.; Kurtén, T.; Riva, M.; Mohr, C.; Rissanen, M.P.; Roldin, P.; Berndt, T.; Crounse, J.D.; Wennberg, P.O.; Mentel, T.F.; et al. Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol. Chem. Rev. 2019, 119, 3472–3509. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, M.; Andreae, M.O.; Artaxo, P.; Barbosa, H.M.J.; Berg, L.K.; Brito, J.; Ching, J.; Easter, R.C.; Fan, J.; Fast, J.D.; et al. Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest. Nat. Commun. 2019, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.S.; Hsieh, C.C. Ambient volatile organic compound presence in the highly urbanized city: Source apportionment and emission position. Atmos. Environ. 2019, 206, 45–59. [Google Scholar] [CrossRef]
- Sicard, P.; Agathokleous, E.; De Marco, A.; Paoletti, E.; Calatayud, V. Urban population exposure to air pollution in Europe over the last decades. Environ. Sci. Eur. 2021, 33, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.U.; Liu, G.; Yousaf, B.; Ullah, H.; Abbas, Q.; Munir, M.A.M. A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment. Environ. Geochem. Health 2018, 41, 1131–1162. [Google Scholar] [CrossRef]
- Desouza, P. Air pollution in Kenya: A review. Air Qual. Atmos. Health 2020, 13, 1487–1495. [Google Scholar] [CrossRef]
- Galappaththi, H. Sri Lanka: Report on its children’s environmental health. Rev. Environ. Health 2020, 35, 65–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Cai, L.; Dang, H.; Jiao, Z.; Fan, H.; Cheng, F. Review on formation mechanism analysis method and control strategy of urban haze in China. Chin. J. Chem. Eng. 2019, 27, 1572–1577. [Google Scholar] [CrossRef]
- Crippa, M.; Janssens-Maenhout, G.; Dentener, F.; Guizzardi, D.; Sindelarova, K.; Muntean, M.; Van Dingenen, R.; Granier, C. Forty years of improvements in European air quality: Regional policy-industry interactions with global impacts. Atmos. Chem. Phys. Discuss. 2016, 16, 3825–3841. [Google Scholar] [CrossRef] [Green Version]
- Mallik, C.; Tomsche, L.; Bourtsoukidis, E.; Crowley, J.N.; Derstroff, B.; Fischer, H.; Hafermann, S.; Hüser, I.; Javed, U.; Keßel, S.; et al. Oxidation processes in the eastern Mediterranean atmosphere: Evidence from the modelling of HOx measurements over Cyprus. Atmos. Chem. Phys. Discuss. 2018, 18, 10825–10847. [Google Scholar] [CrossRef] [Green Version]
- Derstroff, B.; Hüser, I.; Bourtsoukidis, E.; Crowley, J.N.; Fischer, H.; Gromov, S.; Harder, H.; Janssen, R.H.H.; Kesselmeier, J.; Lelieveld, J.; et al. Volatile organic compounds (VOCs) in photochemically aged air from the eastern and western Mediterranean. Atmos. Chem. Phys. Discuss. 2017, 17, 9547–9566. [Google Scholar] [CrossRef] [Green Version]
- Volkamer, R.; Platt, U.; Wirtz, K. Primary and Secondary Glyoxal Formation from Aromatics: Experimental Evidence for the Bicycloalkyl−Radical Pathway from Benzene, Toluene, and p-Xylene. J. Phys. Chem. A 2001, 105, 7865–7874. [Google Scholar] [CrossRef]
- Borrás, E.; Tortajada-Genaro, L.A. Secondary organic aerosol formation from the photo-oxidation of benzene. Atmos. Environ. 2012, 47, 154–163. [Google Scholar] [CrossRef]
- Nehr, S.; Bohn, B.; Dorn, H.-P.; Fuchs, H.; Häseler, R.; Hofzumahaus, A.; Li, X.; Rohrer, F.; Tillmann, R.; Wahner, A. Atmospheric photochemistry of aromatic hydrocarbons: OH budgets during SAPHIR chamber experiments. Atmos. Chem. Phys. Discuss. 2014, 14, 6941–6952. [Google Scholar] [CrossRef] [Green Version]
- Borrás, E.; Tortajada-Genaro, L.; Sanz, F.; Muñoz, A. Multi-Oxygenated Organic Compounds in Fine Particulate Matter Collected in the Western Mediterranean Area. Atmosphere 2021, 12, 94. [Google Scholar] [CrossRef]
- Tiwari, V.; Hanai, Y.; Masunaga, S. Ambient levels of volatile organic compounds in the vicinity of petrochemical industrial area of Yokohama, Japan. Air Qual. Atmos. Health 2009, 3, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Bretón, J.G.C.; Bretón, R.M.C.; Morales, S.M.; Kahl, J.D.W.; Guarnaccia, C.; Severino, R.D.C.L.; Marrón, M.R.; Lara, E.R.; Fuentes, M.D.L.L.E.; Chi, M.P.U.; et al. Health Risk Assessment of the Levels of BTEX in Ambient Air of One Urban Site Located in Leon, Guanajuato, Mexico during Two Climatic Seasons. Atmosphere 2020, 11, 165. [Google Scholar] [CrossRef] [Green Version]
- Alghamdi, M.A.; Khoder, M.; Abdelmaksoud, A.S.; Harrison, R.M.; Hussein, T.; Lihavainen, H.; Al-Jeelani, H.; Goknil, M.H.; Shabbaj, I.I.; Almehmadi, F.M.; et al. Seasonal and diurnal variations of BTEX and their potential for ozone formation in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia. Air Qual. Atmos. Health 2014, 7, 467–480. [Google Scholar] [CrossRef]
- Berezina, E.; Moiseenko, K.; Skorokhod, A.; Pankratova, N.; Belikov, I.; Belousov, V.; Elansky, N. Impact of VOCs and NOx on Ozone Formation in Moscow. Atmosphere 2020, 11, 1262. [Google Scholar] [CrossRef]
- Abtahi, M.; Fakhri, Y.; Conti, G.O.; Ferrante, M.; Taghavi, M.; Tavakoli, J.; Heshmati, A.; Keramati, H.; Moradi, B.; Amanidaz, N.; et al. The Concentration of BTEX in the Air of Tehran: A Systematic Review-Meta Analysis and Risk Assessment. Int. J. Environ. Res. Public Health 2018, 15, 1837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, C.-Y.; Zeng, Y.-T.; Chen, Y.-C.; Chen, M.-J.; Lung, S.-C.C.; Wu, C.-D. Kriging-Based Land-Use Regression Models That Use Machine Learning Algorithms to Estimate the Monthly BTEX Concentration. Int. J. Environ. Res. Public Health 2020, 17, 6956. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Gupta, N.C.; Tyagi, S.K. Study of Seasonal and Spatial Variability among Benzene, Toluene, and p-Xylene (BTp-X) in Ambient Air of Delhi, India. Pollution 2019, 5, 135–146. [Google Scholar] [CrossRef]
- Wang, M.; Qin, W.; Chen, W.; Zhang, L.; Zhang, Y.; Zhang, X.; Xie, X. Seasonal variability of VOCs in Nanjing, Yangtze River delta: Implications for emission sources and photochemistry. Atmos. Environ. 2020, 223, 117254. [Google Scholar] [CrossRef]
- Malik, T.G.; Gajbhiye, T.; Pandey, S.K. Some insights into composition and monoterpene emission rates from selected dominant tropical tree species of Central India: Plant-specific seasonal variations. Ecol. Res. 2019, 34, 821–834. [Google Scholar] [CrossRef]
- Noe, S.M.; Hüve, K.; Niinemets, Ü.; Copolovici, L. Seasonal variation in vertical volatile compounds air concentrations within a remote hemiboreal mixed forest. Atmos. Chem. Phys. Discuss. 2012, 12, 3909–3926. [Google Scholar] [CrossRef] [Green Version]
- Cruz, L.P.; Santos, D.F.; dos Santos, I.F.; Gomes, Í.V.; Santos, A.V.; Souza, K.S. Exploratory analysis of the atmospheric levels of BTEX, criteria air pollutants and meteorological parameters in a tropical urban area in Northeastern Brazil. Microchem. J. 2020, 152, 104265. [Google Scholar] [CrossRef]
- Roba, C.; Rosu, C.; Stefanie, H.; Török, Z.; Kovacs, M.; Ozunu, A. Determination of volatile organic compounds and particulate matter levels in an urban area from romania. Environ. Eng. Manag. J. 2014, 13, 2261–2268. [Google Scholar] [CrossRef]
- Iordache, A.; Iordache, M.; Sandru, C.; Voica, C.; Stegarus, D.; Zgavarogea, R.; Ionete, R.E.; Ticu, S.C.; Miricioiu, M.G. A Fugacity Based Model for the Assessment of Pollutant Dynamic Evolution of VOCS and BTEX in the Olt River Basin (Romania). Rev. Chim. 2019, 70, 3456–3463. [Google Scholar] [CrossRef]
- Tosa, C.; Miwa, T.; Morikawa, T. Modelling and forecasting car ownership in Romania’s counties using bass diffusion model. In Proceedings of the 43rd European Transport Conference, Frankfurt, Germany, 28–30 September 2015. [Google Scholar]
- Claudio, A.B.; Emilia, G.; Osan, J.; Kresimir, S.; Szabina, T.; Blagorodka, V.; Maria, G.P.; Stergios, V.; Denise, P.; Elefhteriadis, K. Implications for the Implementation of the Air Quality Directives; European Comission: Brussels, Belgium, 2015. [Google Scholar]
- Bergmann, S.; Li, B.; Pilot, E.; Chen, R.; Wang, B.; Yang, J. Effect modification of the short-term effects of air pollution on morbidity by season: A systematic review and meta-analysis. Sci. Total. Environ. 2020, 716, 136985. [Google Scholar] [CrossRef] [PubMed]
- Kannaste, A.; Copolovici, L.; Niinemets, U. Gas Chromatography-Mass Spectrometry Method for Determination of Biogenic Volatile Organic Compounds Emitted by Plants. In Plant Isoprenoids: Methods and Protocols; RodriguezConcepcion, M., Ed.; Springer Science and Business Media LLC: Berlin, Germany, 2014; Volume 1153, pp. 161–169. [Google Scholar]
- Latif, M.T.; Hamid, H.H.A.; Ahamad, F.; Khan, F.; Nadzir, M.S.M.; Othman, M.; Sahani, M.; Wahab, M.I.A.; Mohamad, N.; Uning, R.; et al. BTEX compositions and its potential health impacts in Malaysia. Chemosphere 2019, 237, 124451. [Google Scholar] [CrossRef]
- Dimitriou, K.; Kassomenos, P. Background concentrations of benzene, potential long range transport influences and corresponding cancer risk in four cities of central Europe, in relation to air mass origination. J. Environ. Manag. 2020, 262, 110374. [Google Scholar] [CrossRef] [PubMed]
- Marć, M.; Namieśnik, J.; Zabiegała, B. BTEX concentration levels in urban air in the area of the Tri-City agglomeration (Gdansk, Gdynia, Sopot), Poland. Air Qual. Atmos. Health 2014, 7, 489–504. [Google Scholar] [CrossRef]
- Bretón, J.G.C.; Bretón, R.M.C.; Kahl, J.D.; Lara-Severino, R.D.C.; Lara, E.R.; Fuentes, M.D.L.L.E.; Marrón, M.R.; Chi, M.P.U. Atmospheric Levels of Benzene and C1-C2 Carbonyls in San Nicolas de los Garza, Nuevo Leon, Mexico: Source Implications and Health Risk. Atmosphere 2017, 8, 196. [Google Scholar] [CrossRef] [Green Version]
- Masih, A.; Lall, A.S.; Taneja, A.; Singhvi, R. Exposure levels and health risk assessment of ambient BTX at urban and rural environments of a terai region of northern India. Environ. Pollut. 2018, 242, 1678–1683. [Google Scholar] [CrossRef]
- Kashyap, P.; Kumar, A.; Kumar, K. BTEX Concentrations and Associated Health Risks at Urban Vegetative Sites in Delhi, India. Environ. Claims J. 2019, 31, 349–365. [Google Scholar] [CrossRef]
- Jafari, A.J.; Faridi, S.; Momeniha, F. Temporal variations of atmospheric benzene and its health effects in Tehran megacity (2010–2013). Environ. Sci. Pollut. Res. 2019, 26, 17214–17223. [Google Scholar] [CrossRef]
- Ramadan, A.; Yassin, M.F.; Alshammari, B.Z. Health risk assessment associated with volatile organic compounds in a parking garage. Int. J. Environ. Sci. Technol. 2019, 16, 2549–2564. [Google Scholar] [CrossRef]
- Hosaini, P.N.; Khan, F.; Mustaffa, N.I.H.; Amil, N.; Mohamad, N.; Jaafar, S.A.; Nadzir, M.S.M.; Latif, M.T. Concentration and source apportionment of volatile organic compounds (VOCs) in the ambient air of Kuala Lumpur, Malaysia. Nat. Hazards 2017, 85, 437–452. [Google Scholar] [CrossRef]
- Baghani, A.N.; Sorooshian, A.; Heydari, M.; Sheikhi, R.; Golbaz, S.; Ashournejad, Q.; Kermani, M.; Golkhorshidi, F.; Barkhordari, A.; Jafari, A.J.; et al. A case study of BTEX characteristics and health effects by major point sources of pollution during winter in Iran. Environ. Pollut. 2019, 247, 607–617. [Google Scholar] [CrossRef]
- Phuc, N.H.; Oanh, N.T.K. Determining factors for levels of volatile organic compounds measured in different microenvironments of a heavy traffic urban area. Sci. Total. Environ. 2018, 627, 290–303. [Google Scholar] [CrossRef]
- Gaga, E.O.; Arı, A.; Akyol, N.; Üzmez, Ö.Ö.; Kara, M.; Chow, J.C.; Watson, J.G.; Özel, E.; Döğeroğlu, T.; Odabasi, M. Determination of real-world emission factors of trace metals, EC, OC, BTEX, and semivolatile organic compounds (PAHs, PCBs and PCNs) in a rural tunnel in Bilecik, Turkey. Sci. Total. Environ. 2018, 643, 1285–1296. [Google Scholar] [CrossRef] [PubMed]
- Raysoni, A.U.; Stock, T.H.; Sarnat, J.A.; Chavez, M.C.; Sarnat, S.E.; Montoya, T.; Holguin, F.; Li, W.-W. Evaluation of VOC concentrations in indoor and outdoor microenvironments at near-road schools. Environ. Pollut. 2017, 231, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Khoder, M. Ambient levels of volatile organic compounds in the atmosphere of Greater Cairo. Atmos. Environ. 2007, 41, 554–566. [Google Scholar] [CrossRef]
- Miller, L.; Xu, X.; Wheeler, A.; Atari, D.O.; Grgicak-Mannion, A.; Luginaah, I. Spatial Variability and Application of Ratios between BTEX in Two Canadian Cities. Sci. World J. 2011, 11, 2536–2549. [Google Scholar] [CrossRef]
- Kerchich, Y.; Kerbachi, R. Measurement of BTEX (benzene, toluene, ethybenzene, and xylene) levels at urban and semirural areas of Algiers City using passive air samplers. J. Air Waste Manag. Assoc. 2012, 62, 1370–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelencsér, A.; Siszler, K.; Hlavay, J. Toluene−Benzene Concentration Ratio as a Tool for Characterizing the Distance from Vehicular Emission Sources. Environ. Sci. Technol. 1997, 31, 2869–2872. [Google Scholar] [CrossRef]
- Cerón-Bretón, J.G.; Cerón-Bretón, R.M.; Kahl, J.D.W.; Ramírez-Lara, E.; Guarnaccia, C.; Aguilar-Ucán, C.A.; Montalvo-Romero, C.; Anguebes-Franseschi, F.; López-Chuken, U. Diurnal and seasonal variation of BTEX in the air of Monterrey, Mexico: Preliminary study of sources and photochemical ozone pollution. Air Qual. Atmos. Health 2014, 8, 469–482. [Google Scholar] [CrossRef]
- Miri, M.; Shendi, M.R.A.; Ghaffari, H.R.; Aval, H.E.; Ahmadi, E.; Taban, E.; Gholizadeh, A.; Aval, M.Y.; Mohammadi, A.; Azari, A. Investigation of outdoor BTEX: Concentration, variations, sources, spatial distribution, and risk assessment. Chemosphere 2016, 163, 601–609. [Google Scholar] [CrossRef]
- Rad, H.D.; Babaei, A.A.; Goudarzi, G.; Angali, K.A.; Ramezani, Z.; Mohammadi, M.M. Levels and sources of BTEX in ambient air of Ahvaz metropolitan city. Air Qual. Atmos. Health 2014, 7, 515–524. [Google Scholar] [CrossRef]
- Pinto, D.M.; Blande, J.D.; Souza, S.R.; Nerg, A.-M.; Holopainen, J.K. Plant Volatile Organic Compounds (VOCs) in Ozone (O3) Polluted Atmospheres: The Ecological Effects. J. Chem. Ecol. 2010, 36, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Liu, Y. Policy evolution and effect evaluation of new-energy vehicle industry in China. Resour. Policy 2020, 67, 101655. [Google Scholar] [CrossRef]
- Hua, Y.; Dong, F.; Goodman, J. How to leverage the role of social capital in pro-environmental behavior: A case study of residents’ express waste recycling behavior in China. J. Clean. Prod. 2021, 280, 124376. [Google Scholar] [CrossRef]
Month | Jan. | Feb. | Mart. | April | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
T/B ratio | 0.23 | 0.59 | 0.40 | 0.54 | 0.43 | 0.76 | 1.41 | 1.22 | 1.00 | 0.85 | 0.66 | 0.37 |
Pollutant | Benzene | Toluene | Benzene Derivatives | BTEX | Ozone |
---|---|---|---|---|---|
Benzene | 1.000 | ||||
Toluene | 0.776 | 1.000 | |||
Benzene derivatives | 0.720 | 0.909 | 1.000 | ||
BTEX | 0.888 | 0.951 | 0.923 | 1.000 | |
Ozone | 0.713 | 0.488 | 0.287 | 0.476 | 1.000 |
Month | CDI (µg day−1 kg−1) | HQ | LTCR | |||
---|---|---|---|---|---|---|
Benzene | Toluene | Benzene Derivate | BTEX | Toluene | Benzene | |
Ian. | 1.22 | 0.28 | 4.05 | 5.56 | 2.03 × 10−4 | 3.33 × 10−5 |
Feb. | 1.16 | 0.68 | 6.52 | 8.35 | 4.83 × 10−4 | 3.15 × 10−5 |
Mart. | 1.27 | 0.51 | 4.05 | 5.83 | 3.63 × 10−4 | 3.46 × 10−5 |
April | 0.71 | 0.38 | 4.29 | 5.38 | 2.71 × 10−4 | 1.93 × 10−5 |
May | 0.22 | 0.10 | 1.85 | 2.17 | 6.97 × 10−5 | 6.13 × 10−6 |
June | 0.37 | 0.28 | 2.08 | 2.73 | 1.99 × 10−4 | 1.00 × 10−5 |
July | 0.25 | 0.35 | 2.61 | 3.20 | 2.47 × 10−4 | 6.72 × 10−6 |
Aug. | 0.23 | 0.28 | 2.08 | 2.59 | 2.02 × 10−4 | 6.32 × 10−6 |
Sept. | 0.27 | 0.27 | 1.86 | 2.40 | 1.92 × 10−4 | 7.33 × 10−6 |
Oct. | 0.29 | 0.25 | 1.71 | 2.25 | 1.76 × 10−4 | 7.89 × 10−6 |
Nov. | 1.35 | 0.90 | 4.11 | 6.36 | 6.42 × 10−4 | 3.69 × 10−5 |
Dec. | 1.68 | 0.62 | 4.21 | 6.51 | 4.46 × 10−4 | 4.60 × 10−5 |
City | Benzene Concentration (µg/m3) | Reference |
---|---|---|
Arad, Romania | 2.87 ± 0.58 | Present study |
Berlin, Germany | 0.82 ± 0.45 | [37] |
Budapest, Hungary | 0.89 ± 0.67 | [37] |
Mons, France | 0.57 ± 0.45 | [37] |
Torino, Italy | 0.63 ± 0.57 | [37] |
Gdansk, Poland | 0.75 ± 0.67 | [38] |
Gdynia, Poland | 0.66 ± 0.51 | [38] |
Sopot, Hungary | 0.63 ± 0.55 | [38] |
Nuevo Leon, Mexico | 0.65 | [39] |
Gorakhpur, India | 12.1 | [40] |
Delhi, India | 8.98 ± 4.72 | [41] |
Teheran, Iran | 2.57 | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popitanu, C.; Cioca, G.; Copolovici, L.; Iosif, D.; Munteanu, F.-D.; Copolovici, D. The Seasonality Impact of the BTEX Pollution on the Atmosphere of Arad City, Romania. Int. J. Environ. Res. Public Health 2021, 18, 4858. https://doi.org/10.3390/ijerph18094858
Popitanu C, Cioca G, Copolovici L, Iosif D, Munteanu F-D, Copolovici D. The Seasonality Impact of the BTEX Pollution on the Atmosphere of Arad City, Romania. International Journal of Environmental Research and Public Health. 2021; 18(9):4858. https://doi.org/10.3390/ijerph18094858
Chicago/Turabian StylePopitanu, Corina, Gabriela Cioca, Lucian Copolovici, Dennis Iosif, Florentina-Daniela Munteanu, and Dana Copolovici. 2021. "The Seasonality Impact of the BTEX Pollution on the Atmosphere of Arad City, Romania" International Journal of Environmental Research and Public Health 18, no. 9: 4858. https://doi.org/10.3390/ijerph18094858
APA StylePopitanu, C., Cioca, G., Copolovici, L., Iosif, D., Munteanu, F. -D., & Copolovici, D. (2021). The Seasonality Impact of the BTEX Pollution on the Atmosphere of Arad City, Romania. International Journal of Environmental Research and Public Health, 18(9), 4858. https://doi.org/10.3390/ijerph18094858