Agents of Campylobacteriosis in Different Meat Matrices in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Microbiological Analysis
2.2. Molecular Analysis of Specific Genes, Transcript Production and Genetic Similarity
2.3. Susceptibility to Antimicrobials
2.4. Statistical Analysis
3. Results
3.1. Prevalence of Campylobacter on Chicken Carcasses and in Meat Matrices
3.2. Antimicrobial Resistance Phenotypes
3.3. Characterization of Virulence Factors
3.4. Genetic Similarity
4. Discussion
4.1. Campylobacter Positivity
4.2. Resistance of Campylobacter Isolates
4.3. Virulence of Campylobacter Isolates
4.4. Similarity of Campylobacter Isolates
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ilktac, M.; Ongen, B.; Humphrey, T.J.; Williams, L.K. Molecular and phenotypical investigation of ciprofloxacin resistance among Campylobacter jejuni strains of human origin: High prevalence of resistance in Turkey. APMIS 2020, 128, 41–47. [Google Scholar] [CrossRef] [PubMed]
- EFSA. The European Union One Health 2020 Zoonoses Report. EFSA J. 2021, 19. [Google Scholar] [CrossRef]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Makaka, G.; Simon, M.; Okoh, A. An Overview of the Control of Bacterial Pathogens in Cattle Manure. Int. J. Environ. Res. Public Health 2016, 13, 843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heredia, N.; García, S. Animals as sources of food-borne pathogens: A review. Anim. Nutr. 2018, 4, 250–255. [Google Scholar] [CrossRef]
- Zhao, S.; Young, S.R.; Tong, E.; Abbott, J.W.; Womack, N.; Friedman, S.L.; McDermott, P.F. Antimicrobial Resistance of Campylobacter Isolates from Retail Meat in the United States between 2002 and 2007. Appl. Environ. Microbiol. 2010, 76, 7949–7956. [Google Scholar] [CrossRef] [Green Version]
- Kabir, S.M.L.; Chowdhury, N.; Asakura, M.; Shiramaru, S.; Kikuchi, K.; Hinenoya, A.; Neogi, S.B.; Yamasaki, S. Comparison of Established PCR Assays for Accurate Identification of Campylobacter jejuni and Campylobacter coli. Jpn. J. Infect. Dis. 2019, 72, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, K.; Osek, J. Antimicrobial Resistance Mechanisms among Campylobacter. BioMed Res. Int. 2013, 2013, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Farfán, M.; Lártiga, N.; Benavides, M.B.; Alegría-Morán, R.; Sáenz, L.; Salcedo, C.; Lapierre, L. Capacity to adhere to and invade human epithelial cells, as related to the presence of virulence genes in, motility of, and biofilm formation of campylobacter jejuni strains isolated from chicken and cattle. Can. J. Microbiol. 2019, 65, 126–134. [Google Scholar] [CrossRef]
- Associação Brasileira de Proteína Animal. ABPA Relatório Anual 2020; Associação Brasileira de Proteína Animal: Rio de Janeiro, Brazil, 2020. [Google Scholar]
- Thrusfield, M.V. Epidemiologia Veterinária; Roca: São Paulo, Brazil, 2004. [Google Scholar]
- Food and Agriculture Organization of the United Nations. World Health Organization–FAO/WHO Risk assessment of Campylobacter spp. in broiler chickens: Technical Report. Microbiol. Risk Assess. Ser. 2009, 12, 132. [Google Scholar]
- Noormohamed, A.; Fakhr, M. A Higher Prevalence Rate of Campylobacter in Retail Beef Livers Compared to Other Beef and Pork Meat Cuts. Int. J. Environ. Res. Public Health 2013, 10, 2058–2068. [Google Scholar] [CrossRef] [Green Version]
- Whyte, R.; Hudson, J.A.; Graham, C. Campylobacter in chicken livers and their destruction by pan frying. Lett. Appl. Microbiol. 2006, 43, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Birk, T.; Wik, M.T.; Lametsch, R.; Knøchel, S. Acid stress response and protein induction in Campylobacter jejuni isolates with different acid tolerance. BMC Microbiol. 2012, 12, 174. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-P.; Ingmer, H.; Madsen, M.; Bang, D.D. Cytokine responses in primary chicken embryo intestinal cells infected with Campylobacter jejuni strains of human and chicken origin and the expression of bacterial virulence-associated genes. BMC Microbiol. 2008, 8, 107. [Google Scholar] [CrossRef] [Green Version]
- Linton, D.; Lawson, A.J.; Owen, R.J.; Stanley, J. PCR detection, identification to species level, and fingerprinting of Campylobacter jejuni and Campylobacter coli direct from diarrheic samples. J. Clin. Microbiol. 1997, 35, 2568–2572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harmon, K.M.; Ransom, G.M.; Wesley, I.V. Differentiation ofCampylobacter jejuniandCampylobacter coliby polymerase chain reaction. Mol. Cell. Probes 1997, 11, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Hänel, I.; Müller, J.; Müller, W.; Schulze, F. Correlation between invasion of Caco-2 eukaryotic cells and colonization ability in the chick gut in Campylobacter jejuni. Vet. Microbiol. 2004, 101, 75–82. [Google Scholar] [CrossRef]
- Zheng, J.; Meng, J.; Zhao, S.; Singh, R.; Song, W. Adherence to and Invasion of Human Intestinal Epithelial Cells by Campylobacter jejuni and Campylobacter coli Isolates from Retail Meat Products. J. Food Prot. 2006, 69, 768–774. [Google Scholar] [CrossRef]
- Martinez, I.; Mateo, E.; Churruca, E.; Girbau, C.; Alonso, R.; Fernandezastorga, A. Detection of cdtA, cdtB, and cdtC genes in Campylobacter jejuni by multiplex PCR. Int. J. Med. Microbiol. 2006, 296, 45–48. [Google Scholar] [CrossRef]
- Datta, S.; Niwa, H.; Itoh, K. Prevalence of 11 pathogenic genes of Campylobacter jejuni by PCR in strains isolated from humans, poultry meat and broiler and bovine faeces. J. Med. Microbiol. 2003, 52, 345–348. [Google Scholar] [CrossRef]
- Biswas, D.; Hannon, S.J.; Townsend, H.G.G.; Potter, A.; Allan, B.J. Genes coding for virulence determinants of Campylobacter jejuni in human clinical and cattle isolates from Alberta, Canada, and their potential role in colonization of poultry. Int. Microbiol. 2011, 14, 25–32. [Google Scholar] [CrossRef]
- Elvers, K.T.; Park, S.F. Quorum sensing in Campylobacter jejuni: Detection of a luxS encoded signalling molecule. Microbiology 2002, 148, 1475–1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akopyanz, N.; Bukanov, N.O.; Westblom, T.U.; Kresovich, S.; Berg, D.E. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res. 1992, 20, 5137–5142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EUCAST. The European Committee on Antimicrobial Susceptibility Testing (2018) Breakpoint Tables for Interpretation of MICs and Zone Diameters. EUCAST 2018, Version 8. Available online: https://www.eucast.org/ (accessed on 25 January 2022).
- Koneman, E.; Allen, S. Diagnostic Microbiology; Lippincott: New York, NY, USA, 2010. [Google Scholar]
- Hungaro, H.M.; Mendonça, R.C.S.; Rosa, V.O.; Badaró, A.C.L.; Moreira, M.A.S.; Chaves, J.B.P. Low contamination of Campylobacter spp. on chicken carcasses in Minas Gerais state, Brazil: Molecular characterization and antimicrobial resistance. Food Control 2015, 51, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Andrzejewska, M.; Szczepańska, B.; Śpica, D.; Klawe, J.J. Prevalence, Virulence, and Antimicrobial Resistance of Campylobacter spp. in Raw Milk, Beef, and Pork Meat in Northern Poland. Foods 2019, 8, 420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NSW Food Authority. Campylobacter in Chicken Liver. Available online: https://www.foodauthority.nsw.gov.au/about-us/science/market-analysis/chicken-liver (accessed on 25 January 2022).
- Liu, S.; Kilonzo-Nthenge, A.; Nahashon, S.N.; Pokharel, B.; Mafiz, A.I.; Nzomo, M. Prevalence of Multidrug-Resistant Foodborne Pathogens and Indicator Bacteria from Edible Offal and Muscle Meats in Nashville, Tennessee. Foods 2020, 9, 1190. [Google Scholar] [CrossRef] [PubMed]
- Lanier, W.A.; Hale, K.R.; Geissler, A.L.; Dewey-Mattia, D. Chicken Liver–Associated Outbreaks of Campylobacteriosis and Salmonellosis, United States, 2000–2016: Identifying Opportunities for Prevention. Foodborne Pathog. Dis. 2018, 15, 726–733. [Google Scholar] [CrossRef]
- Narvaez-Bravo, C.; Taboada, E.N.; Mutschall, S.K.; Aslam, M. Epidemiology of antimicrobial resistant Campylobacter spp. isolated from retail meats in Canada. Int. J. Food Microbiol. 2017, 253, 43–47. [Google Scholar] [CrossRef]
- Teunis, P.F.M.; Bonačić Marinović, A.; Tribble, D.R.; Porter, C.K.; Swart, A. Acute illness from Campylobacter jejuni may require high doses while infection occurs at low doses. Epidemics 2018, 24, 1–20. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Campylobacter. Available online: https://www.who.int/news-room/fact-sheets/detail/campylobacter#:~:text=Campylobacter species can be killed by heat and,33 million of healthy life years are lost (accessed on 15 January 2022).
- Soro, A.B.; Whyte, P.; Bolton, D.J.; Tiwari, B.K. Strategies and novel technologies to control Campylobacter in the poultry chain: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1353–1377. [Google Scholar] [CrossRef] [PubMed]
- DIPOA. MAPA Anuário dos Programas de Controle de Alimentos de Origem Animal do DIPOA; Departamento de Inspeção de Produtos de Origem Animal: Brasil, Brazil, 2021.
- Wagenaar, J.A.; Mevius, D.J.; Havelaar, A.H. El agente Campylobacter en la producción animal y las estrategias de control para reducir la incidencia de la campilobacteriosis humana. Rev. Sci. Tech. Oie 2006, 25, 581–594. [Google Scholar] [CrossRef]
- Associação Brasileira de Proteína Animal. Relatório Anual 2021; ABPA: Brasil, Brazil, 2021. [Google Scholar]
- Brasil. MAPA Produtos Veterinários. Available online: https://mapa-indicadores.agricultura.gov.br/publico/single/?appid=a3e9ce67-d63b-43ff-a295-20123996ead7&sheet=377bdc66-84e3-4782-96b3-81718e4d83aa&lang=pt-BR&opt=ctxmenul&select=clearall (accessed on 2 April 2022).
- Hartmann, L.; Schieweck, O.; Greie, J.C.; Szabados, F. Human Campylobacter jejuni and Campylobacter coli Isolates: Demographic Pattern and Antimicrobial Susceptibility to Clinically Important Antimicrobials used in Livestock. J. Med. Microbiol. Diagn. 2018, 7, 269. [Google Scholar] [CrossRef]
- Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030. Antibiotics 2020, 9, 918. [Google Scholar] [CrossRef] [PubMed]
- Ramires, T.; de Oliveira, M.G.; Kleinubing, N.R.; de Fátima Rauber Würfel, S.; Mata, M.M.; Iglesias, M.A.; Lopes, G.V.; Dellagostin, O.A.; da Silva, W.P. Genetic diversity, antimicrobial resistance, and virulence genes of thermophilic Campylobacter isolated from broiler production chain. Braz. J. Microbiol. 2020, 51, 2021–2032. [Google Scholar] [CrossRef] [PubMed]
- Brasil. MAPA Instrução Normativa No. 26, de 09 de julho de 2009. Aprova o Regulamento Técnico para a Fabricação, o Controle de Qualidade, a Comercialização e o Emprego de Produtos Antimicrobianos de Uso Veterinário. Available online: https://sistemasweb.agricultura.gov.br/sislegis/action/detalhaAto.do?method=visualizarAtoPortalMapa&chave=1984822284 (accessed on 2 April 2022).
- Ge, B.; Wang, F.; Sjölund-Karlsson, M.; McDermott, P.F. Antimicrobial resistance in Campylobacter: Susceptibility testing methods and resistance trends. J. Microbiol. Methods 2013, 95, 57–67. [Google Scholar] [CrossRef]
- Dai, L.; Sahin, O.; Grover, M.; Zhang, Q. New and alternative strategies for the prevention, control, and treatment of antibiotic-resistant Campylobacter. Transl. Res. 2020, 223, 76–88. [Google Scholar] [CrossRef]
- WHO. WHO List of Critically Important Antimicrobials (CIA); WHO: Geneva, Switzerland, 2018; ISBN 9789241515528. [Google Scholar]
- Robles-Jimenez, L.E.; Aranda-Aguirre, E.; Castelan-Ortega, O.A.; Shettino-Bermudez, B.S.; Ortiz-Salinas, R.; Miranda, M.; Li, X.; Angeles-Hernandez, J.C.; Vargas-Bello-Pérez, E.; Gonzalez-Ronquillo, M. Worldwide Traceability of Antibiotic Residues from Livestock in Wastewater and Soil: A Systematic Review. Animals 2021, 12, 60. [Google Scholar] [CrossRef]
- Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa No. 14, de 17 de Maio de 2012. Available online: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-pecuarios/alimentacao-animal/arquivos-alimentacao-animal/legislacao/instrucao-normativa-no-14-de-17-de-maio-de-2012.pdf/view (accessed on 2 April 2022).
- Es-soucratti, K.; Hammoumi, A.; Bouchrif, B.; Asmai, R.; En-nassiri, H.; Karraouan, B. Occurrence and antimicrobial resistance of Campylobacter jejuni isolates from poultry in Casablanca-Settat, Morocco. Ital. J. Food Saf. 2020, 9. [Google Scholar] [CrossRef] [Green Version]
- Whitehouse, C.A.; Zhao, S.; Tate, H. Antimicrobial Resistance in Campylobacter Species: Mechanisms and Genomic Epidemiology. Adv. Appl. Microbiol. 2018, 103, 1–47. [Google Scholar]
- Würfel, S.D.F.R.; da Fontoura Prates, D.; Kleinubing, N.R.; Dalla Vecchia, J.; Vaniel, C.; Haubert, L.; Dellagostin, O.A.; da Silva, W.P. Comprehensive characterization reveals antimicrobial-resistant and potentially virulent Campylobacter isolates from poultry meat products in Southern Brazil. LWT 2021, 149, 111831. [Google Scholar] [CrossRef]
- Nisar, M.; Mushtaq, M.H.; Shehzad, W.; Hussain, A.; Muhammad, J.; Nagaraja, K.V.; Goyal, S.M. Prevalence and antimicrobial resistance patterns of Campylobacter spp. isolated from retail meat in Lahore, Pakistan. Food Control. 2017, 80, 327–332. [Google Scholar] [CrossRef]
- Marin, C.; Lorenzo-Rebenaque, L.; Moreno-Moliner, J.; Sevilla-Navarro, S.; Montero, E.; Chinillac, M.C.; Jordá, J.; Vega, S. Multidrug-Resistant Campylobacer jejuni on Swine Processing at a Slaughterhouse in Eastern Spain. Animals 2021, 11, 1339. [Google Scholar] [CrossRef]
- Woodcock, D.J.; Krusche, P.; Strachan, N.J.C.; Forbes, K.J.; Cohan, F.M.; Méric, G.; Sheppard, S.K. Genomic plasticity and rapid host switching can promote the evolution of generalism: A case study in the zoonotic pathogen Campylobacter. Sci. Rep. 2017, 7, 9650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, S.; Joe, A.; Lynett, J.; Hani, E.K.; Sherman, P.; Chan, V.L. JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol. Microbiol. 2004, 39, 1225–1236. [Google Scholar] [CrossRef] [PubMed]
- Ngobese, B.; Zishiri, O.T.; El Zowalaty, M.E. Molecular detection of virulence genes in Campylobacter species isolated from livestock production systems in South Africa. J. Integr. Agric. 2020, 19, 1656–1670. [Google Scholar] [CrossRef]
- Rivera-Amill, V.; Kim, B.J.; Seshu, J.; Konkel, M.E. Secretion of the Virulence-Associated Campylobacter Invasion Antigens from Campylobacter jejuni Requires a Stimulatory Signal. J. Infect. Dis. 2001, 183, 1607–1616. [Google Scholar] [CrossRef] [Green Version]
- Wysok, B.; Wojtacka, J. Detection of virulence genes determining the ability to adhere and invade in Campylobacter spp. from cattle and swine in Poland. Microb. Pathog. 2018, 115, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Hendrixson, D.R.; Akerley, B.J.; DiRita, V.J. Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol. Microbiol. 2001, 40, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Stead, D.; Park, S.F. Roles of Fe Superoxide Dismutase and Catalase in Resistance of Campylobacter coli to Freeze-Thaw Stress. Appl. Environ. Microbiol. 2000, 66, 3110–3112. [Google Scholar] [CrossRef] [Green Version]
- Stintzi, A.; Whitworth, L. Investigation of the Campylobacter jejuni Cold-Shock Response by Global Transcript Profiling. Genome Lett. 2003, 2, 18–27. [Google Scholar]
- Trindade, M.M.; Perdoncini, G.; Sierra-Arguello, Y.M.; Lovato, M.; Borsoi, A.; Nascimento, V.P. Detecção dos genes codificantes da toxina CDT, e pesquisa de fatores que influenciam na produção de hemolisinas em amostras de Campylobacter jejuni de origem avícola. Pesqui. Veterinária Bras. 2015, 35, 709–715. [Google Scholar] [CrossRef]
- Asakura, M.; Samosornsuk, W.; Hinenoya, A.; Misawa, N.; Nishimura, K.; Matsuhisa, A.; Yamasaki, S. Development of a cytolethal distending toxin (cdt) gene-based species-specific multiplex PCR assay for the detection and identification of Campylobacter jejuni, Campylobacter coli and Campylobacter fetus. FEMS Immunol. Med. Microbiol. 2008, 52, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Quino, W.; Caro-Castro, J.; Hurtado, V.; Flores-León, D.; Gonzalez-Escalona, N.; Gavilan, R.G. Genomic Analysis and Antimicrobial Resistance of Campylobacter jejuni and Campylobacter coli in Peru. Front. Microbiol. 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Angelovski, L.; Popova, Z.; Blagoevska, K.; Mojsova, S.; Manovska, M.R.; Prodanov, M.; Jankuloski, D.; Sekulovski, P. Isolation Rate of Campylobacter Spp. and Detection of Virulence Genes of Campylobacter jejuni Across the Broiler Chain. Maced. Vet. Rev. 2021, 44, 149–157. [Google Scholar] [CrossRef]
- Bandara, H.M.H.N.; Lam, O.L.T.; Jin, L.J.; Samaranayake, L. Microbial chemical signaling: A current perspective. Crit. Rev. Microbiol. 2012, 38, 217–249. [Google Scholar] [CrossRef] [PubMed]
- Mouftah, S.F.; Cobo-Díaz, J.F.; Álvarez-Ordóñez, A.; Mousa, A.; Calland, J.K.; Pascoe, B.; Sheppard, S.K.; Elhadidy, M. Stress resistance associated with multi-host transmission and enhanced biofilm formation at 42 °C among hyper-aerotolerant generalist Campylobacter jejuni. Food Microbiol. 2021, 95, 103706. [Google Scholar] [CrossRef]
- Borba Martins Peres, P.A.; Torres de Melo, R.; Armendaris, P.M.; Barreto, F.; Follmann Perin, T.; Grazziotin, A.L.; Paz Monteiro, G.; Pereira Mendonça, E. Multi-virulence and phenotypic spread of Campylobacter jejuni carried by 2chicken meat in Brazil. PLoS ONE, 2022; in press. [Google Scholar] [CrossRef]
- Aidley, J.; Rajopadhye, S.; Akinyemi, N.M.; Lango-Scholey, L.; Bayliss, C.D. Nonselective Bottlenecks Control the Divergence and Diversification of Phase-Variable Bacterial Populations. mBio 2017, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Gomes, C.N.; Passaglia, J.; Vilela, F.P.; Pereira da Silva, F.M.H.S.; Duque, S.S.; Falcão, J.P. High survival rates of Campylobacter coli under different stress conditions suggest that more rigorous food control measures might be needed in Brazil. Food Microbiol. 2018, 73, 327–333. [Google Scholar] [CrossRef]
- Backert, S. Fighting Campylobacter Infections-Towards a One Health Approach; Springer: Amsterdam, The Netherlands, 2021; Volume 6, ISBN 9783030654801. [Google Scholar]
- Ben Romdhane, R.; Merle, R. Fighting Campylobacter Infections. Curr. Top. Microbiol. Immunol. 2021, 431, 818. [Google Scholar]
- Han, X.; Guan, X.; Zeng, H.; Li, J.; Huang, X.; Wen, Y.; Zhao, Q.; Huang, X.; Yan, Q.; Huang, Y.; et al. Prevalence, antimicrobial resistance profiles and virulence-associated genes of thermophilic Campylobacter spp. isolated from ducks in a Chinese slaughterhouse. Food Control 2019, 104, 157–166. [Google Scholar] [CrossRef]
- Food Spoilage Microorganisms; Blackburn, C.D.W. (Ed.) Cambridge University Press: Cambridge, UK, 2006; ISBN 9781855739666. [Google Scholar]
- Lynch, Ó.A.; Cagney, C.; McDowell, D.A.; Duffy, G. Occurrence of fastidious Campylobacter spp. in fresh meat and poultry using an adapted cultural protocol. Int. J. Food Microbiol. 2011, 150, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Gichure, J.N.; Kamau Njage, P.M.; Wambui, J.M.; Dykes, G.A.; Buys, E.M.; Coorey, R. Systematic-review and meta-analysis on effect of decontamination interventions on prevalence and concentration of Campylobacter spp. during primary processing of broiler chickens. Food Microbiol. 2022, 102, 103923. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.; Novo, C.S.; Feddern, V.; Coldebella, A.; Scheuermann, G.N. Determination of Eleven Veterinary Drugs in Chicken Meat and Liver. Appl. Sci. 2021, 11, 8731. [Google Scholar] [CrossRef]
Meat Matrix | Pexp * | Chilled | Frozen | Total | Isolation Protocol ISO 10272-1:2006 (ISO, 2006) | Matrix Portion |
---|---|---|---|---|---|---|
Chicken carcasses | 80% 1 | 80 | 166 | 246 | A: Rinsing | ⅟2 carcass |
Pork shank | 10% 2 | 138 | 138 | B: Rinsing | 150 g | |
Bovine liver | 80% 3 | 132 | 114 | 246 | B: Rinsing | 150 g |
Chicken liver | 90% 4 | 24 | 114 | 138 | C: Homogenization | 10 g |
Minced meat | 10% 2 | 138 | 138 | C: Homogenization | 10 g | |
Total | 512 | 394 | 906 |
Genes | Function | Primers | Sequence 5′ → 3′ | Size (bp) | DNA (ng) | Primer (pmol) | PCR Condition | Reference |
---|---|---|---|---|---|---|---|---|
16S-rRNA | Gender identification | 16S-rRNA-F 16S-rRNA-R | ATCTAATGGCTTAACCATTAAAC GGACGGTAACTAGTTTAGTATT | 857 | 30 | 40 | 94 °C—1 min; 25 cycles: 94 °C—1 min, 60 °C—1 min, 72 °C—1 min; 72 °C—7 min | Linton et al. [16] |
pg | Multiplex PCR: Identification of C. jejuni and C. coli | pg3 pg50 | GAACTTGAACCGATTTG ATGGGATTTCGTATTAAC | 460 | 20 | 40 | 94 °C—4 min; 25 cycles: 94 °C—1 min, 47 °C—1 min, 72 °C—1 min; 72 °C—7 min | Harmon et al. [17] |
C | C1 C4 | CAAATAAAGTTAGAGGTAGAATGT GGATAAGCACTAGCTAGCTGAT | 160 | 20 | ||||
flaA | Motility | flaA-F flA-R | ATGGGATTTCGTATTAACAC CTGTAGTAATCTTAAAACATTTTG | 1728 | 20 | 30 | 95 °C—10 min; 35 cycles: 95 °C—1 min, 45 °C—1 min, 72 °C—2 min; 72 °C—10 min | Hänel et al. [18] |
pdlA | Paracellular invasion | pldA- 361 pldA-726 | AAGAGTGAGGGAAATTCCA GCAAGATGGCAGGATTATCA | 385 | 20 | 30 | 95 °C—10 min; 35 cycles: 95 °C—1 min, 45 °C—1 min, 72 °C—2 min; 72 °C—10 min | Zheng et al. [19] |
cadF | Colonization | cadFI-F2B cadFI-R1B | TTGAAGGTAATTTAGATATG CTAATACCTAAAGTTGAAAC | 400 | 20 | 30 | 95 °C—10 min; 35 cycles: 95 °C—1 min, 45 °C—1 min, 72 °C—2 min; 72 °C—10 min | Zheng et al. [19] |
ciaB | Intracellular invasion | ciaBI-652 ciaB-1159 | TGCGAGATTTTTCGAGAATG TGCCCGCCTTAGAACTTACA | 527 | 20 | 30 | 95 °C—10 min; 35 cycles: 95 °C—1 min, 45 °C—1 min, 72 °C—2 min; 72 °C—10 min | Zheng et al. [19] |
cdtABC | Multiplex PCR: Cytotoxin | cdtA-F cdtA-R cdtB-F cdtB-R cdtC-F cdtC-R | CTATTACTCCTATTACCCCACC AATTTGAACCGCTGTATTGCTC AGGAACTTTACCAAGAACAGCC GGTGGAGTATAGGTTTGTTGTC ACTCCTACTGGAGATTTGAAAG CACAGCTGAAGTTGTTGTTGGC | 420 531 339 | 80 | 20 | 94 °C—5 min; 30 cycles: 94 °C—1 min, 57 °C—1 min, 72 °C—1 min; 72 °C—5 min | Martinez et al. [20] |
dnaJ | Thermotolerance | dnaJ F dnaJ R | AAGGCTTTGGCTCATC CTTTTTGTTCATCGTT | 720 | 20 | 20 | 95 °C—2 min; 30 cycles: 94 °C—1 min, 46 °C—1 min, 72 °C—1 min; 72 °C—5 min | Datta et al. [21] |
sodB | Oxidative stress | sodB F sodB R | ATGATACCAATGCTTTTGGTGATTT TAATACGACTCACTATAGGGCATTTGCATA AAAGCTAACTGATCC | 638 | 20 | 20 | 95 °C—2 min; 30 cycles: 94 °C—1 min, 46 °C—1 min, 72 °C—1 min; 72 °C—5 min | Biswas et al. [22] |
luxS | Quorum-sensing | luxS-1 luxS-2 | AGGCAAAGCTCCTGGTAAGGCCAA GGATCCGTATAGGTAAGTTCATTTT TGCTCC | 1080 | 50 | 10 | 94 °C—3 min; 30 cycles: 94 °C—30 s, 57 °C—1 min; 72 °C—1 min; 72 °C—10 min | Elvers, Park [23] |
HLWL85 1290 | RAPD-PCR: genetic similarity | HLWL85 1290 | ACGTATCTGC GTGGATGCGA | -- | 10 | 30 | 92 °C—2 min; 35 cycles: 92 °C—15 s, 36 °C —1 min; 72 °C—1 min; 1 final cycle at 72 °C—5 min. | Akopyanz et al. [24] |
ciaB | RT-PCR: Invasion | ATATTTGCTAGCAGCGAAGAG GATGTCCCACTTGTAAAGGTG | 157 | 200 | 4 | 94 °C—3 min; 45 cycles: 94 °C—15 s, 51 °C—20 s, 72 °C—20 s; 72 °C—3 min | Li et al. [15] | |
dnaJ | RT-PCR: Thermotolerance | AGTGTCGAGCTTAATATCCC GGCGATGATCTTAACATACA | 117 | 200 | 4 | 94 °C—3 min; 45 cycles: 94 °C—15 s, 51 °C—20 s, 72 °C—20 s; 72 °C—3 min | Li et al. [15] | |
p19 | RT-PCR: Iron uptake under stress | GATGATGGTCCTCACTATGG CATTTTGGCGTGCCTGTGTA | 206 | 200 | 4 | 94 °C—3 min; 45 cycles: 94 °C—15 s, 51 °C—20 s, 72 °C—20 s; 72 °C—3 min | Birk et al. [14] | |
sodB | RT-PCR: Oxidative Stress | TATCAAAACTTCAAATGGGG TTTTCTAAAGATCCAAATTCT | 170 | 200 | 4 | 94 °C—3 min; 45 cycles: 94 °C—15 s, 51 °C—20 s, 72 °C—20 s; 72 °C—3 min | Birk et al. [14] |
MATRIX | N | Forms of Commercialization (N) | Campylobacter spp. n/N (%) | C. coli n/N (%) | C. jejuni n/N (%) | TOTAL n/N (%) |
---|---|---|---|---|---|---|
Chicken carcasses | 246 | Frozen (166) Chilled (80) | 8/166 (4.82) 2/80 (2.50) a | 9/166 (5.42) 2/80 (2.50) a | 19/166 (11.45) 6/80 (7.50) b | 36/166 (21.69) 10/80 (12.50) I |
Chicken liver | 138 | Frozen (114) Chilled (24) | 1/114 (0.87) 1/24 (4.16) a | 1/114 (0.87) 1/24 (4.16) a | 1/114 (0.87) --- a | 3/114 (2.63) 2/24 (8.33) II |
Bovine liver | 246 | Frozen (114) Chilled (132) | 0 7/132 (5.30) a | 0 2/132 (1.51) a | 0 2/132 (1.51) a | --- 11/132 (8.33) II |
Minced meat | 138 | Chilled (138) | 5/138 (3.62) a | 0 a | 0 a | 5/138 (3.62) II |
Pork shank | 138 | Chilled (138) | 6/138 (4.35) a | 5/138 (3.62) a | 3/138 (2.17) a | 14/138 (10.14) II |
TOTAL | 906 | Chicken carcasses (246) Other meat matrix (660) | 10/246 (4.07) a 20/660 (3.03) a | 11/246 (4.47) a 9/660 (25.71) ab | 25/246 (10.16) b 6/35 (17.14) b | 46/246 (18.69) I 35/660 (5.30) II |
Frozen (394) Chilled (512) | 9/394 a 21/512 a | 10/394 a 10/512 a | 20/394 a 11/512 a | 39/394 I 42/512 I | ||
Total (906) | 30/906 (3.31) a | 20/906 a | 31/906 a | 81/906 |
Antimicrobial | Source N = 81 | C. jejuni n1 = 25 n2 = 6 | C. coli n1 = 11 n2 = 9 | Campylobacter spp. n1 = 10 n2 = 20 | Total N1 = 46 N2 = 35 |
---|---|---|---|---|---|
Chicken carcasses 1 | 14/25 (56%) | 8/11 (72.7%) | 6/10 (60%) | 28/46 (60.9%) a | |
CIP | Other meat matrices 2 | 2/6 (33.3%) | 3/9 (33.3%) | 8/20 (40%) | 13/35 (37.1%) b |
Total | 16/31 (51.6%) | 11/20 (55%) | 14/30 (46.7%) | 41/81 (50.61%) | |
Chicken carcasses 1 | 11/25 (44%) | 5/11 (45.5%) | 4/10 (40%) | 25/46 (54.3%) | |
AMC | Other meat matrices 2 | 2/6 (33.3%) | 4/9 (44.4%) | 9/20 (45%) | 15/35 (42.9%) |
Total | 13/31 (41.9%) | 9/20 (45%) | 13/30 (43.3%) | 40/81 (49.4%) | |
Chicken carcasses 1 | 11/25 (44%) | 2/11 (18.2%) | 4/10 (40%) | 17/46 (37%) | |
GEN | Other meat matrices 2 | 2/6 (33.3%) | 2/9 (22.2%) | 5/20 (25%) | 9/35 (25.7%) |
Total | 13/31 (41.9%) | 4/20 (20%) | 9/30 (30%) | 26/81 (32.09%) | |
Chicken carcasses 1 | 11/25 (44%) | 6/11 (54.5%) | 2/10 (20%) | 19/46 (41.3%) | |
ERY | Other meat matrices 2 | 1/6 (16,7%) | 2/9 (22.2%) | 6/20 (30%) | 9/35 (25.7%) |
Total | 12/31 (38.7%) | 8/20 (40%) | 8/30 (26.7%) | 28/81 (34.6%) | |
Chicken carcasses 1 | 11/25 (44%) | 2/11 (18.2%) | 8/10 (80%) | 21/46 (45,7%) | |
TET | Other meat matrices2 | 4/6 (66.7%) | 5/9 (55.5%) | 12/20 (60%) | 21/35 (60%) |
Total | 15/31 (48.4%) | 7/20 (35%) I | 20/30 (66.7%) II | 42/81 (51.9%) | |
Chicken carcasses 1 | 6/25 (24%) | 4/11 (36.4%) | 3/10 (30%) | 13/46 (28.3%) | |
AZM | Other meat matrices 2 | 1/6 (16.7%) | 2/9 (22.2%) | 6/20 (30%) | 9/35 (25.7%) |
Total | 7/31 (22.6%) | 6/20 (30%) | 9/30 (30%) | 22/81 (27.2%) |
Profiles | Number of Profiles | Caracter | Origin | Campylobacter spp. | C. jejuni | C. coli | Total 1 | Total 2 (%) | |
---|---|---|---|---|---|---|---|---|---|
P1 | 1 | Susceptible | Carcasses | 1 | 1 | 2 | 2 (2.5) A | ||
Other meat matrix | - | - | - | ||||||
P2 a P7 | 6 | Monoresistance | Carcasses | - | 4 | 4 | 8 | 16 (19.8) B | |
Other meat matrix | 4 | - | 4 | 8 | |||||
P8 a P13 | 6 | Co-Resistance | Carcasses | 5 | 8 | 2 | 15 I | 19 (23.5) B | |
Other meat matrix | 2 | - | 2 | 4 II | |||||
P14 a P24 | 11 | MDR (3C) | Carcasses | 2 | 11 | 2 | 15 | 22 (27.2) | 44 (54.3) C |
Other meat matrix | 5 | 1 | 1 | 7 | |||||
P25 a P34 | 10 | MDR (4C and 5C) | Carcasses | 2 | 2 | 3 | 7 | 18 (22.2)/ | |
Other meat matrix | 6 | 4 | 1 | 11 | |||||
P35 | 1 | MDR (all) | Carcasses | - | - | - | 0 I | 4 (4.9) | |
Other meat matrix | 3 | - | 1 | 4 II | |||||
Total | 35 | - | Total | 30 | 31 | 20 | 81 |
GENE | Chicken Carcasses-n(%) | Total 1 N(%) | Other Meat Matrix-n(%) | Total 2 N(%) | TOTAL | ||||
---|---|---|---|---|---|---|---|---|---|
C. jejuni | C. coli | C. spp. | C. jejuni | C. coli | C. spp. | N(%) | |||
ciaB | 23 (92.0) | 7 (63.6) | 7 (70.0) | 37 (80.4) a | 4 (66.6) | 5 (55.5) | 4 (20.0) | 13 (37.1) b | 50 (61.7) |
pldA | 21 (84.0) | 8 (72.7) | 9 (90.0) | 38 (82.6) a | 3 (50.0) | 2 (22.2) | 6 (30.0) | 11 (31.4) b | 49 (60.5) |
flaA | 19 (76.0) | 11 (100.0) | 6 (60.0) | 36 (78.3) a | 2 (33.3) | 4 (44.4) | 2 (10.0) | 8 (22.8) b | 44 (54.3) |
cadF | 24 (96.0) | 11 (100.0) | 9 (90.0) | 44 (95.6) a | 3 (50.0) | 6 (50.0) | 9 (45.0) | 18 (51.4) b | 62 (76.5) |
cdtA | 14 (56.0) | 3 (27.3) | 4 (40.0) | 21 (45.6) a | 2 (33.3) | 0 | 1 (5.0) | 3 (8.5) b | 24 (29.6) |
cdtB | 15 (60.0) | 3 (27.3) | 4 (40.0) | 22 (47.8) a | 2 (33.3) | 0 | 1 (5.0) | 3 (8.5) b | 25 (30.9) |
cdtC | 14 (56.0) | 3 (27.3) | 4 (40.0) | 21 (45.6) a | 1 (16.7) | 0 | 1 (5.0) | 2 (5.7) b | 23 (28.4) |
luxS | 14 (56.0) | 0 | 1 (10.0) | 15 (32.6) a | 6 (100.0) | 5 (55.5) | 14 (70.0) | 25 (71.4) b | 40 (49.4) |
dnaJ | 18 (72.0) | 7 (63.6) | 5 (50.0) | 30 (65.3) a | 1 (16.7) | 5 (55.5) | 7 (35.0) | 13 (37.1) b | 43 (53.0) |
sodB | 2 (8.0) | 0 | 0 | 2 (4.4) a | 0 | 0 | 0 | 0 a | 2 (2.4) |
TOTAL | 25 (54.3) | 11 (24.0) | 10 (21.7) | 46 (100) | 6 (17.1) | 9 (25.7) | 20 (57.2) | 35 (100) | 81 (100) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takeuchi, M.G.; de Melo, R.T.; Dumont, C.F.; Peixoto, J.L.M.; Ferreira, G.R.A.; Chueiri, M.C.; Iasbeck, J.R.; Timóteo, M.F.; de Araújo Brum, B.; Rossi, D.A. Agents of Campylobacteriosis in Different Meat Matrices in Brazil. Int. J. Environ. Res. Public Health 2022, 19, 6087. https://doi.org/10.3390/ijerph19106087
Takeuchi MG, de Melo RT, Dumont CF, Peixoto JLM, Ferreira GRA, Chueiri MC, Iasbeck JR, Timóteo MF, de Araújo Brum B, Rossi DA. Agents of Campylobacteriosis in Different Meat Matrices in Brazil. International Journal of Environmental Research and Public Health. 2022; 19(10):6087. https://doi.org/10.3390/ijerph19106087
Chicago/Turabian StyleTakeuchi, Micaela Guidotti, Roberta Torres de Melo, Carolyne Ferreira Dumont, Jéssica Laura Miranda Peixoto, Gabriella Rayane Aparecida Ferreira, Mariana Comassio Chueiri, Jocasta Rodrigues Iasbeck, Marcela Franco Timóteo, Bárbara de Araújo Brum, and Daise Aparecida Rossi. 2022. "Agents of Campylobacteriosis in Different Meat Matrices in Brazil" International Journal of Environmental Research and Public Health 19, no. 10: 6087. https://doi.org/10.3390/ijerph19106087
APA StyleTakeuchi, M. G., de Melo, R. T., Dumont, C. F., Peixoto, J. L. M., Ferreira, G. R. A., Chueiri, M. C., Iasbeck, J. R., Timóteo, M. F., de Araújo Brum, B., & Rossi, D. A. (2022). Agents of Campylobacteriosis in Different Meat Matrices in Brazil. International Journal of Environmental Research and Public Health, 19(10), 6087. https://doi.org/10.3390/ijerph19106087