The Elemental Characteristics and Human Health Risk of PM2.5 during Haze Episode and Non-Haze Episode in Chiang Rai Province, Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Elemental Analysis of PM2.5
2.4. Data Analysis
2.5. Enrichment Factor
2.6. Health Risk Assessment
3. Results
3.1. PM2.5 Concentration
3.2. Elemental Composition
3.3. Enrichment Factor
3.4. Statistical Analyses of Data
3.5. Human Health Risk Assessment
3.6. Evaluation of Backward Air Mass Trajectories
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Air Pollution. 2016. Available online: https://www.who.int/health-topics/air-pollution#tab=tab_1 (accessed on 9 July 2020).
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, W.; Cai, T.; Fang, D.; Wang, Y.; Song, J.; Hu, M.; Zhang, Y. Concentrations and chemical compositions of fine particles (PM2.5) during haze and non-haze days in Beijing. Atmos. Res. 2016, 174–175, 62–69. [Google Scholar] [CrossRef]
- Fang, G.C.; Xiao, Y.F.; Zhuang, Y.J.; Cho, M.H.; Huang, C.Y.; Tsai, K.H. PM2.5 particulates and metallic elements (Ni, Cu, Zn, Cd and Pb) study in a mixed area of summer season in Shalu, Taiwan. Environ. Geochem. Health 2017, 39, 791–802. [Google Scholar] [CrossRef]
- Badaloni, C.; Cesaroni, G.; Cerza, F.; Davoli, M.; Brunekreef, B.; Forastiere, F. Effects of long-term exposure to particulate matter and metal components onmortality in the Rome longitudinal study. Environ. Int. 2017, 109, 146–154. [Google Scholar] [CrossRef]
- Fang, Y.; Naik, V.; Horowitz, L.W.; Mauzerall, D.L. Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present. Atmos. Chem. Phys. 2013, 13, 1377–1394. [Google Scholar] [CrossRef] [Green Version]
- WHO. Health Effects of Particulate Matter. 2013. Available online: https://www.euro.who.int/__data/assets/pdf_file/0006/189051/Health-effects-of-particulate-matter-final-Eng.pdf (accessed on 16 July 2020).
- Yang, H.C.; Chang, S.H.; Lu, R.; Liou, D.M. The effect of particulate matter size on cardiovascular health in Taipei Basin, Taiwan. Comput. Methods Programs Biomed. 2016, 137, 261–268. [Google Scholar] [CrossRef]
- Martins, N.R.; Carrilho da Graça, G. Impact of PM2.5 in indoor urban environments: A review. Sustain. Cities Soc. 2018, 42, 259–275. [Google Scholar] [CrossRef]
- Chen, N.; Mo, Q.; He, L.; Huang, X.; Yang, L.; Zeng, J.; Gao, Q. Electrochimica Acta Heterostructured MoC-MoP/N-doped carbon nanofibers as efficient electrocatalysts for hydrogen evolution reaction. Electrochim. Acta 2019, 299, 708–716. [Google Scholar] [CrossRef]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Johnston, H.J.; Mueller, W.; Steinle, S.; Vardoulakis, S.; Tantrakarnapa, K.; Loh, M.; Cherrie, J.W. How Harmful Is Particulate Matter Emitted from Biomass Burning? A Thailand Perspective. Curr. Pollut. Rep. 2019, 5, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Ruchiraset, A.; Tantrakarnapa, K. Time Series Modeling of Pneumonia Admissions and Its Association with Air Pollution and Climate Variables in Chiang Mai Province, Thailand. Environ. Sci. Pollut. Res. Int. 2018, 25, 33277–33285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acciai, C.; Zhang, Z.; Wang, F.; Zhong, Z.; Lonati, G. Characteristics and source Analysis of trace Elements in PM2.5 in the Urban Atmosphere of Wuhan in Spring. Aerosol Air Qual. Res. 2017, 17, 2224–2234. [Google Scholar] [CrossRef]
- Elhadi, R.E.; Abdullah, A.M.; Abdullah, A.H.; Ash’Aari, Z.H.; Khan, M.F. Seasonal variations of atmospheric particulate matter and its content of heavy metals in Klang valley, Malaysia. Aerosol Air Qual. Res. 2018, 18, 1148–1161. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Liu, H.; Alattar, M.; Jiang, S.; Han, J.; Ma, Y. The Preferential Accumulation of Heavy Metals in Different Tissues Following Frequent Respiratory Exposure to PM2.5 in Rats. Sci. Rep. 2015, 5, 16936. [Google Scholar] [CrossRef] [Green Version]
- Ju, Y.; Chen, W.; Liao, C. Assessing human exposure risk to cadmium through inhalation and seafood consumption. J. Hazard. Mater. 2012, 227–228, 353–361. [Google Scholar] [CrossRef]
- Winder, B.S.; Salmon, A.G.; Marty, M.A. Inhalation of an essential metal: Development of reference exposure levels for manganese. Regul. Toxicol. Pharmacol. 2010, 57, 195–199. [Google Scholar] [CrossRef]
- Iyer, S.; Sengupta, C.; Velumani, A. Lead toxicity: An overview of prevalence in Indians. Clin. Chim. Acta 2015, 451, 161–164. [Google Scholar] [CrossRef]
- Fay, M. Toxicological Profile for Nickel; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2005.
- Ballantyne, B.; Marrs, T.C.; Syversen, T. General and Applied Toxicology, 3rd ed.; Macmillan Reference Publishing: London, UK, 2009. [Google Scholar]
- Adamson, I.Y.R.; Prieditis, H.; Hedgecock, C.; Vincent, R.; Pharmacol, R.T.A. Zinc Is the Toxic Factor in the Lung Response to an Atmospheric Particulate Sample. Toxicol. Appl. Pharmacol. 2000, 119, 111–119. [Google Scholar] [CrossRef]
- Pinichka, C.; Makka, N.; Sukkumnoed, D.; Chariyalertsak, S.; Inchai, P.; Bundhamcharoe, K. Burden of disease attributed to ambient air pollution in Thailand: A GIS-based approach. PLoS ONE 2017, 12, e0189909. [Google Scholar] [CrossRef]
- Kliengchuay, W.; Worakhunpiset, S.; Limpanont, Y.; Meeyai, A.C.; Tantrakarnapa, K. Influence of the meteorological con-ditions and some pollutants on PM10 concentrations in Lamphun, Thailand. J. Environ. Health Sci. Eng. 2021, 19, 237–249. [Google Scholar] [CrossRef]
- Ruchiraset, A.; Tantrakarnapa, K. Association of climate factors and air pollutants with pneumonia incidence in Lam-pang province, Thailand: Findings from a 12-year longitudinal study. Int. J. Environ. Health Res. 2020, 32, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Jaee, N.; Archer, D.; Nopsert, C. Air Quality in Thailand Understanding the Regulatory Context (Issue February). 2021. Available online: https://www.sei.org/publications/air-quality-thailand-regulatory-context/ (accessed on 10 February 2022).
- Pollution Control Department. Air Quality Index Data. 2018. Available online: http://air4thai.pcd.go.th/webV3/#/AQIInfo (accessed on 10 February 2022).
- Taverniers, I.; de Loose, M.; van Bockstaele, E. Trends in Quality in the Analytical Laboratory. II. Analytical Method Validation and Quality Assurance. TrAC-Trends Anal. Chem. 2004, 23, 535–552. [Google Scholar] [CrossRef]
- Zajusz-zubek, E.; Kaczmarek, K.; Mainka, A. Trace Elements Speciation of Submicron Particulate Matter (PM1) Collected in the Surroundings of Power Plants. Int. J. Environ. Res. Public Health 2015, 12, 13085–13103. [Google Scholar] [CrossRef] [Green Version]
- Zarcinas, B.A.; Pongsakul, P.; McLaughlin, M.J.; Cozens, G. Heavy metals in soils and crops in southeast Asia. 2. Thailand. Environ. Geochem. Health 2004, 26, 359–371. [Google Scholar] [CrossRef]
- Prakongkep, N.; Suddhiprakarn, A.; Kheoruenromne, I.; Smirk, M.; Gilkes, R.J. The geochemistry of Thai paddy soils. Geoderma 2008, 144, 310–324. [Google Scholar] [CrossRef]
- Fitz-Simons, T. Guideline for Reporting of Daily Air Quality: Air Quality Index (AQI). No. PB-99-169237/XAB; EPA-454/R-99/010; Environmental Protection Agency, Office of Air Quality Planning and Standards: Research Triangle Park, NC, USA, 1999.
- US EPA IRIS Assessments. Available online: https://iris.epa.gov/AtoZ/?list_type=alpha (accessed on 18 December 2021).
- OEHHA OEHHA. Chemical Database Meta Data. Available online: https://oehha.ca.gov/chemicals (accessed on 18 December 2021).
- Punsompong, P.; Chantara, S. Identi fi cation of potential sources of PM10 pollution from biomass burning in northern Thailand using statistical analysis of trajectories. Atmos. Pollut. Res. 2018, 9, 1038–1051. [Google Scholar] [CrossRef] [Green Version]
- Kayee, J.; Sompongchaiyakul, P.; Sanwlani, N.; Bureekul, S.; Wang, X.; Das, R. Metal Concentrations and Source Apportionment of PM2.5 in Chiang Rai and Bangkok, Thailand during a Biomass Burning Season. ACS Earth Space Chem. 2020, 4, 1213–1226. [Google Scholar] [CrossRef]
- WHO. Ambient (Outdoor) Air Pollution. 2014. Available online: https://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 18 December 2021).
- Gao, J.; Tian, H.; Cheng, K. Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of Beijing, China: Mass concentration, enrichment characteristics, source apportionment, chemical speciation and bioavailability. Atmos. Environ. 2014, 99, 257–265. [Google Scholar] [CrossRef]
- Tsai, P.-J.; Young, L.-H.; Hwang, B.-F.; Lin, M.-Y.; Chen, Y.-C.; Hsu, H.-T. Source and health risk apportionment for PM2.5 collected in Sha-Lu area, Taiwan. Atmos. Pollut. Res. 2020, 11, 851–858. [Google Scholar] [CrossRef]
- Khamkaew, C.; Chantara, S.; Wiriya, W. Atmospheric PM2.5 and Its Elemental Composition from near Source and Receptor Sites during Open Burning Season in Chiang Mai, Thailand. Int. J. Environ. Sci. Dev. 2016, 7, 436–440. [Google Scholar] [CrossRef]
- Wang, F.; Wang, J.; Han, M.; Jia, C.; Zhou, Y. Heavy metal characteristics and health risk assessment of PM2.5 in students’ dormitories in a university in Nanjing, China. Build. Environ. 2019, 160, 106206. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, X.; Wang, Z.; Yang, L.; Wang, J.; Wang, W. Trace elements in PM2.5 in Shandong Province: Source identification and health risk assessment. Sci. Total. Environ. 2018, 621, 558–577. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wei, E.; Wu, L.; Fang, X.; Li, F.; Yang, Z.; Wang, T.; Mao, H. Elemental Composition and Health Risk Assessment of PM10 and PM2.5 in the Roadside Microenvironment in Tianjin, China. Aerosol Air Qual. Res. 2018, 18, 1817–1827. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.; Mandal, T.K. Chemical composition of fine mode particulate matter (PM2.5) in an urban area of Delhi, India and its source apportionment. Urban Clim. 2017, 21, 106–122. [Google Scholar] [CrossRef]
- Sah, D.; Verma, P.K.; Kandikonda, M.K.; Lakhani, A. Pollution characteristics, human health risk through multiple exposure pathways, and source apportionment of heavy metals in PM10 at Indo-Gangetic site. Urban Clim. 2019, 27, 149–162. [Google Scholar] [CrossRef]
- Heo, J.B.; Hopke, P.K.; Yi, S.M. Source apportionment of PM2.5 in Seoul, Korea. Atmos. Chem. Phys. 2009, 9, 4957–4971. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.J.; Kim, H.W.; Cho, S.H.; Kim, P.R.; Kim, W.J. Metallic elements in PM2.5 in different functional areas of Korea: Concentrations and source identification. Atmos. Res. 2015, 153, 416–428. [Google Scholar] [CrossRef]
- US EPA. Chromium(VI) CASRN 18540-29-9 | DTXSID7023982. Available online: https://iris.epa.gov/ChemicalLanding/&substance_nmbr=144 (accessed on 8 June 2020).
- Yatera, K.; Morimoto, Y.; Ueno, S.; Noguchi, S.; Kawaguchi, T.; Tanaka, F.; Suzuki, H.; Higashi, T. Cancer risks of hexavalent chromium in the respiratory tract. J. UOEH 2018, 40, 157–172. [Google Scholar] [CrossRef] [Green Version]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display system: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Kliengchuay, W.; Meeyai, A.C.; Worakhunpiset, S.; Tantrakarnapa, K. Relationships between meteorological parameters and particulate matter in Mae Hong Son province, Thailand. Int. J. Environ. Res. Public Health 2018, 15, 2801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Li, Y.; Liu, H.; Fan, Z.; Xia, J.; Chen, S.; Zheng, Y.; Chen, X. Temporal Distribution, Influencing Factors and Pollution Sources of Urban Ambient Air Quality in Nanchong, China. Environ. Eng. Res. 2015, 20, 260–267. [Google Scholar] [CrossRef]
- Kliengchuay, W.; Srimanus, R.; Srimanus, W.; Niampradit, S.; Preecha, N.; Mingkhwan, R.; Worakhunpiset, S.; Limpanont, Y.; Moonsri, K.; Tantrakarnapa, K. Particulate matter (PM10) prediction based on multiple linear regression: A case study in Chiang Rai Province, Thailand. BMC Public Health 2021, 251, 2149. [Google Scholar] [CrossRef] [PubMed]
2021 (Haze Episode) (n = 23) | 2021 (Non-Haze Episode) (n = 12) | WHO Guideline | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Min | Max | Mean | SD | Min | Max | ||
PM2.5 | 63.07 | 26.11 | 12.5 | 116.7 | 25.00 | 21.65 | 4.17 | 66.67 | 15 |
Cd | 0.48 | 0.38 | 0.05 | 0.81 | N.D. | N.D. | N.D. | N.D. | 5 |
Cr | 2.51 | 1.41 | 0.88 | 3.33 | 0.59 | 0.87 | 0.01 | 2.33 | 20 |
Cu | 1.69 | 1.92 | 0.06 | 7.06 | 1.49 | 1.26 | 0.12 | 3.49 | 70 |
Fe | 23.95 | 11.24 | 11.99 | 58.48 | 4.29 | 2.59 | 1.18 | 8.56 | - |
K | 77.44 | 30.80 | 28.54 | 156.46 | 11.70 | 10.76 | 1.46 | 33.58 | - |
Mn | 1.09 | 0.61 | 0.41 | 3.08 | 0.15 | 0.22 | 0.01 | 0.67 | 150 |
Pb | 1.74 | 1.93 | 0.50 | 7.43 | 0.69 | 0.74 | 0.00 | 2.17 | 500 |
Ni | 0.22 | 0.14 | 0.03 | 0.48 | 0.13 | 0.09 | 0.03 | 0.23 | 0.4 |
Zn | 2.07 | 1.74 | 0.03 | 5.15 | N.D. | N.D. | N.D. | N.D. | - |
Location | Seasons for the Sampling Period | PM2.5 | Cd | Cr | Cu | Fe | K | Mn | Ni | Pb | Zn | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chiang Rai, Thailand | 2021 (Haze) | 63.07 | 0.48 | 2.51 | 1.69 | 23.95 | 77.44 | 1.09 | 1.74 | 0.22 | 2.07 | This study |
2021 (Non-haze) | 25.00 | N.D. | 0.59 | 1.49 | 4.29 | 11.70 | 0.15 | 0.69 | 0.13 | N.D. | This study | |
Chiang Rai, Thailand | 2019 | 170 | - | 3 | 2.6 | 142 | - | 6.6 | 1.4 | 6.4 | 15 | [36] |
Bangkok, Thailand | 2019 | 91 | - | 1.8 | 4.4 | 123 | - | 7.3 | 1.6 | 9.7 | 34 | [36] |
Chiang Mai, Thailand | 2013 | 74.5 | 7 | 55 | 5 | 161 | 2231 | 10 | 24 | 38 | - | [40] |
Nanjing, China | 2016–2017 | 79.92 | 3.3 | 44.66 | 26.83 | 602.83 | - | 41.84 | 3.06 | 84.91 | 240.31 | [41] |
Shandong, China | 2006–2007 | 123.96 | 15.43 | 20 | 30 | 1180 | 4840 | 80 | 8.41 | 30 | 630 | [42] |
Wuhan, China | 2014 | 95.53 | - | 9.81 | 30.13 | 1820.76 | 3733.48 | 76.46 | 3.57 | 180.79 | 419.21 | [14] |
Tianjin, China | 2015 | 78.9 | 0.39 | 6.9 | 24.82 | 3454 | 643.3 | 14.51 | 10.78 | 19.75 | 80.54 | [43] |
Sha-Lu, Taiwan | 2013–2014 | 39.2 | 0.2 | 2.4 | 5 | 60.9 | - | 3.6 | 2.5 | 8 | 34.5 | [39] |
New Delhi, India | 2013–2014 | 125.5 | - | 80 | 40 | 260 | 4940 | 20 | - | 20 | 130 | [44] |
Agra, India | 2016–2017 | 214.6 | 7.04 | 238.57 | 193.11 | 2737.18 | - | 206.57 | 201.84 | 205.39 | 481.09 | [45] |
Seoul, Korea | 2003–2006 | 43.502 | - | - | 17 | 364 | 409 | 19 | 2.3 | 51 | 115 | [46] |
Chuncheon, Korea | 2012–2013 | 23 | 17.4 | 0.447 | 4.48 | 110 | 168 | 5.91 | 1.12 | 12.3 | 38.7 | [47] |
Yeongwol, Korea | 2012–2013 | 19.7 | 10.1 | 1.02 | 4.47 | 65.5 | 164 | 7.83 | 1.81 | 14.5 | 41.3 | [47] |
Parameter | Sampling Periods | Results of Mann–Whitney U Test | ||
---|---|---|---|---|
Haze Episode (Median) | Non-Haze Episode (Median) | Test Value U | Probability Test (p) | |
PM2.5 | 60.4 | 12.50 | 76.0 | 0.0015 |
Fe | 22.01 | 3.92 | 52.5 | <0.0001 |
K | 77.63 | 8.88 | 63.0 | 0.0003 |
Mn | 0.92 | 0.06 | 66.0 | 0.0009 |
Cu | 0.93 | 1.15 | 55.0 | 0.9254 |
Cr | 3.32 | 0.26 | 5.0 | 0.0952 |
Ni | 0.21 | 0.11 | 38.0 | 0.5418 |
Pb | 1.12 | 0.41 | 104.5 | 0.1317 |
Cd | 0.53 | 0.06 | - | - |
Zn | 1.73 | 4.23 | - | - |
Enrichment factor | 77.06 | 109.84 | 21.0 | 0.3531 |
Element | RfC (mg/m3) | IUR (μg/m3-Day) | Haze Season | Non-Haze Season | ||
---|---|---|---|---|---|---|
HQ | Cancer Risk | HQ | Cancer Risk | |||
Cd | 1.00 × 10−5 * | 1.80 × 10−3 * | 4.78 × 10−2 | 3.69 × 10−7 | 6.96 × 10−3 | 5.37 × 10−8 |
Cr | 1.00 × 10−4 * | 1.20 × 10−2 * | 2.51 × 10−2 | 1.29 × 10−5 | 5.87 × 10−3 | 3.02 × 10−6 |
Mn | 5.00 × 10−5 * | - | 2.18 × 10−2 | - | 2.93 × 10−3 | - |
Ni | 1.40 × 10−5 ** | 2.60 × 10−4 ** | 1.58 × 10−2 | 2.46 × 10−8 | 6.89 × 10−3 | 1.40 × 10−8 |
Pb | - | 1.20 × 10−5 ** | - | 8.96 × 10−9 | - | 3.55 × 10−9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niampradit, S.; Kliengchuay, W.; Mingkhwan, R.; Worakhunpiset, S.; Kiangkoo, N.; Sudsandee, S.; Hongthong, A.; Siriratruengsuk, W.; Muangsuwan, T.; Tantrakarnapa, K. The Elemental Characteristics and Human Health Risk of PM2.5 during Haze Episode and Non-Haze Episode in Chiang Rai Province, Thailand. Int. J. Environ. Res. Public Health 2022, 19, 6127. https://doi.org/10.3390/ijerph19106127
Niampradit S, Kliengchuay W, Mingkhwan R, Worakhunpiset S, Kiangkoo N, Sudsandee S, Hongthong A, Siriratruengsuk W, Muangsuwan T, Tantrakarnapa K. The Elemental Characteristics and Human Health Risk of PM2.5 during Haze Episode and Non-Haze Episode in Chiang Rai Province, Thailand. International Journal of Environmental Research and Public Health. 2022; 19(10):6127. https://doi.org/10.3390/ijerph19106127
Chicago/Turabian StyleNiampradit, Sarima, Wissanupong Kliengchuay, Rachaneekorn Mingkhwan, Suwalee Worakhunpiset, Nuttapohn Kiangkoo, Suntorn Sudsandee, Anuttara Hongthong, Weerayuth Siriratruengsuk, Thunyaluk Muangsuwan, and Kraichat Tantrakarnapa. 2022. "The Elemental Characteristics and Human Health Risk of PM2.5 during Haze Episode and Non-Haze Episode in Chiang Rai Province, Thailand" International Journal of Environmental Research and Public Health 19, no. 10: 6127. https://doi.org/10.3390/ijerph19106127
APA StyleNiampradit, S., Kliengchuay, W., Mingkhwan, R., Worakhunpiset, S., Kiangkoo, N., Sudsandee, S., Hongthong, A., Siriratruengsuk, W., Muangsuwan, T., & Tantrakarnapa, K. (2022). The Elemental Characteristics and Human Health Risk of PM2.5 during Haze Episode and Non-Haze Episode in Chiang Rai Province, Thailand. International Journal of Environmental Research and Public Health, 19(10), 6127. https://doi.org/10.3390/ijerph19106127