Relationship between Dietary Behaviors and Physical Activity and the Components of Metabolic Syndrome: A Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Metabolic Syndrome (Definition)
2.3. Biochemical Analyses
2.4. Nutritional Evaluation
2.5. Nutrition Knowledge
2.6. Physical Activity
- insufficient physical activity (less than 600 MET-min/week);
- sufficient physical activity (between 600 and 1500 MET-min/week);
- increased physical activity (1500–3000 MET-min/week, but less than 3 days per week of intense exercise);
- high physical activity (above 1500 MET-min/week but at least 3 days per week of intense exercise, or at least 3000 MET-min/week).
2.7. Anthropometry
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alberti, K.G.; Zimmet, P.; Shaw, J. IDF Epidemiology Task Force Consensus Group. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Beltran-Sanchez, H.; Harhay, M.O.; Harhay, M.M.; McElligott, S. Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999–2010. J. Am. Coll. Cardiol. 2013, 62, 697–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scuteri, A.; Laurent, S.; Cucca, F.; Cockcroft, J.; Cunha, P.G.; Manas, L.R.; Mattace Raso, F.U.; Muiesan, M.L.; Ryliskyte, L.; Rietzschel, E.; et al. Metabolic syndrome acrooss Europe: Different clusters of risk factors. Eur. J. Prev. Cardiol. 2015, 22, 486–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yki-Järvinen, H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2014, 2, 901–910. [Google Scholar] [CrossRef]
- Jia, Q.; Xia, Y.; Zhang, Q.; Wu, H.; Du, H.; Liu, L.; Wang, C.; Shi, H.; Guo, X.; Liu, X.; et al. Dietary patterns are associated with prevalence of fatty liver disease in adults. Eur. J. Clin. Nutr. 2015, 69, 914–921. [Google Scholar] [CrossRef]
- Hutcheson, R.; Rocic, P. The metabolic syndrome, oxidative stress, environment, and cardiovascular disease: The great exploration. Exp. Diabetes Res. 2012, 2012, 271028. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Buys, N.J.; Hills, A.P. Dietary pattern and its association with the prevalence of obesity, hypertension and other cardiovascular risk factors among Chinese older adults. Int. J. Environ. Res. Publ. Health 2014, 11, 3956–3971. [Google Scholar] [CrossRef]
- O’Connor, L.E.; Kim, J.E.; Campbell, W.W. Total red meat intake of ≥0.5 servings/d does not negatively influence cardiovascular disease risk factors: A systemically searched meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2017, 105, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Beck, K.L.; Jones, B.; Ullah, I.; McNaughton, S.A.; Haslett, S.J.; Stonehouse, W. Associations between dietary patterns, socio-demographic factors and anthropometric measurements in adult New Zealanders: An analysis of data from the 2008/09 New Zealand Adult Nutrition Survey. Eur. J. Nutr. 2018, 57, 1421–1433. [Google Scholar] [CrossRef]
- Asghari, G.; Yuzbashian, E.; Mirmiran, P.; Hooshmand, F.; Najafi, R.; Azizi, F. Dietary approaches to stop hypertension (DASH) dietary pattern is associated with reduced incidence of metabolic syndrome in children and adolescents. J. Pediatr. 2016, 174, 178–184.e1. [Google Scholar] [CrossRef]
- Mazidi, M.; Kengne, A.P. Nutrient patterns and their relationship with general and central obesity in US adults. Eur. J. Clin. Investig. 2017. Epub ahead of print. [Google Scholar] [CrossRef]
- Calton, E.K.; James, A.P.; Pannu, P.K.; Soares, M.J. Certain dietary patterns are beneficial for the metabolic syndrome: Reviewing the evidence. Nutr. Res. 2014, 34, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Song, Y.; Lee, K.H.; Lee, H.S.; Lee, M.; Jee, S.H.; Joung, H. A fruit and dairy dietary pattern is associated with a reduced risk of metabolic syndrome. Metabolism 2012, 61, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Rezagholizadeh, F.; Djafarian, K.; Khosravi, S.; Shab-Bidar, S. A posteriori healthy dietary patterns may decrease the risk of central obesity: Findings from a systematic review and meta-analysis. Nutr. Res. 2017, 41, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Patti, A.M.; Al-Rasadi, K.; Giglio, R.V.; Nikolic, D.; Mannina, C.; Castellino, G. Natural approaches in metabolic syndrome management. Arch. Med. Sci. 2018, 14, 422–441. [Google Scholar] [CrossRef]
- Goncalves, A.; Amiot, M.J. Fat-soluble micronutrients and metabolic syndrome. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 492–497. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Monforte, M.; Sánchez, E.; Barrio, F.; Costa, B.; Flores-Mateo, G. Metabolic syndrome and dietary patterns: A systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2017, 56, 925–947. [Google Scholar] [CrossRef]
- Sarrafzadegan, N.; Gharipour, M.; Sadeghi, M.; Nezafati, P.; Talaie, M.; Oveisgharan, S.; Nouri, F.; Khosravi, A. Metabolic syndrome and the risk of ischemic stroke. J. Stroke Cerebrovasc. Dis. 2017, 26, 286–294. [Google Scholar] [CrossRef]
- Movsisyan, N.K.; Vinciguerra, M.; Lopez-Jimenez, F.; Kunzová, Š.; Homolka, M.; Jaresova, J.; Cífková, R.; Sochor, O. Kardiovize Brno 2030, a prospective cardiovascular health study in central Europe: Methods, baseline findings and future directions. Eur. J. Prev. Cardiol. 2017, 25, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Shab-Bidar, S.; Golzarand, M.; Hajimohammadi, M.; Mansouri, S. A posteriori dietary patterns and metabolic syndrome in adults: A systematic review and meta-analysis of observational studies. Public Health Nutr. 2018, 21, 1681–1692. [Google Scholar] [CrossRef] [Green Version]
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J. Standards of Human Nutrition; National Food and Nutrition Institute: Warsaw, Poland, 2020. [Google Scholar]
- Kunachowicz, H.; Przygoda, B.; Nadolna, I.; Iwanow, K. Charts of Nutritive Values of Products and Foods. Expanded and Updated, 3rd ed.; PZWL: Warsaw, Poland, 2019. [Google Scholar]
- Jeżewska-Zychowicz, M.; Gawęcki, J.; Wądołowska, L.; Czarnocińska, J.; Galiński, G.; Kołłajtis-Dołowy, A.; Roszkowski, W.; Wawrzyniak, A.; Przybyłowicz, K.; Krusińska, B.; et al. Beliefs and Eating Habits Questionnaire Created by Behavioral Conditions of Nutrition Team, Committee of Human Nutri-tion Science, Polish Academy of Science. Warsaw. 2014. Available online: http://www.knozc.pan.pl/ (accessed on 1 September 2021).
- Biernat, E.; Stupnicki, R.; Gajewski, A. International Physical Activity Questionnaire (IPAQ)—Polish version. Wych. Fiz. Sport 2007, 51, 47–54. [Google Scholar]
- Syauqy, A.; Hsu, C.; Rau, H.H.; Chao, J.C.-J. Association of dietary patterns with components of metabolic syndrome and inflammation among middle-aged and older adults with metabolic syndrome in Taiwan. Nutrients 2018, 10, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agodi, A.; Maugeri, A.; Kunzova, S.; Sochor, O.; Bauerova, H.; Kiacova, N.; Barchitta, M.; Vinciguerra, M. Association of dietary patterns with metabolic syndrome: Results from the Kardiovize Brno 2030 Study. Nutrients 2018, 10, 898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Chen, X.; Liu, Z.; Varma, D.S.; Wan, R.; Wan, Q.; Zhao, S. Dietary patterns in relation to general and central obesity among adults in southwest china. Int. J. Environ. Res. Public Health 2016, 13, 1080. [Google Scholar] [CrossRef] [Green Version]
- Wagner, A.; Dallongeville, J.; Haas, B.; Ruidavets, J.B.; Amouyel, P.; Ferrières, J.; Simon, C.; Arveiler, D. Sedentary behaviour, physical activity and dietary patterns are independently associated with the metabolic syndrome. Diabetes Metab. 2012, 38, 428–435. [Google Scholar] [CrossRef]
- Suliga, E.; Kozieł, D.; Cieśla, E.; Rębak, D.; Głuszek, S. Dietary patterns in relation to metabolic syndrome among adults in Poland: A cross-sectional study. Nutrients 2017, 9, 1366. [Google Scholar] [CrossRef] [Green Version]
- Yeh, C.-J.; Chang, H.-Y.; Pan, W.-H. Time trend of obesity, the metabolic syndrome and related dietary pattern in Taiwan: From NAHSIT 1993–1996 to NAHSIT 2005–2008. Asia Pac. J. Clin. Nutr. 2011, 20, 292–300. [Google Scholar]
- Yang, C.Q.; Shu, L.; Wang, S.; Wang, J.J.; Zhou, Y.; Xuan, Y.J.; Wang, S.F. Dietary patterns modulate the risk of non-alcoholic fatty liver disease in Chinese adults. Nutrients 2015, 7, 4778–4791. [Google Scholar] [CrossRef] [Green Version]
- Piotrowicz, K.; Pałkowska, E.; Bartnikowska, E.; Krzesiński, P.; Stańczyk, A.; Biecek, P.; Skrobowski, A.; Gielerak, G. Self-reported health-related behaviors and dietary habits in patients with metabolic syndrome. Cardiol. J. 2015, 22, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Amarasekara, P.; De Silva, A.; Swarnamali, H.; Senarath, U.; Katulanda, P. Knowledge, attitudes, and practices on lifestyle and cardiovascular risk factors among metabolic syndrome patients in an Urban Tertiary Care Institute in Sri Lanka. Asia-Pac. J. Public Health 2016, 28 (Suppl. 1), 32S–40S. [Google Scholar] [CrossRef] [Green Version]
Characteristics | MS (n = 330) Mean ± SD/n (%) | Control (n = 270) Mean ± SD/n (%) | p-Value |
---|---|---|---|
Age (years) | 55.2 ± 7.9 | 56.2 ± 4.9 | 0.312 |
Sex (% women) | 159 (48.2) | 127 (47.0) | 0.357 |
Hypertension | 215 (65.2) | 51 (18.8) | <0.001 |
Use of antihypertensives | 118 (35.7) | 14 (5.2) | <0.001 |
Hyperlipidemia | 220 (66.7) | 76 (28.1) | <0.001 |
Use of hypolipidemics | 42 (12.7) | 11 (4.1) | <0.001 |
Systolic Blood Pressure (mmHg) | 133.5 ± 5.9 | 112.5 ± 7.1 | <0.001 |
Diastolic Blood Pressure (mmHg) | 89.3 ± 6.2 | 76.8 ± 5.4 | <0.001 |
Fasting Glucose (nmol/L) | 5.1 ± 0.6 | 4.6 ± 0.5 | <0.001 |
Triglycerides (nmol/L) | 1.5 ± 0.8 | 0.9 ± 0.6 | <0.001 |
Total Cholesterol (nmol/L) | 5.6 ± 1.2 | 4.8 ± 1.1 | <0.001 |
HDL Cholesterol (nmol/L) | 1.2 ± 0.7 | 1.6 ± 0.5 | <0.001 |
LDL Cholesterol (nmol/L) | 3.2 ± 1.5 | 2.8 ± 1.4 | <0.001 |
BMI (kg/m2) | 29.3 ± 4.7 | 23.8 ± 5.8 | <0.001 |
BMI categories | |||
Underweight | 0 (0) | 11 (4.1) | <0.001 |
Normal weight | 33 (10) | 181 (67.1) | |
Overweight | 176 (53.3) | 62 (22.9) | |
Obesity | 121 (36.7) | 16 (5.9) | |
Waist circumference (cm) | 104.6 ± 12.9 | 89.7 ± 11.6 | <0.001 |
WHR | 0.95 ± 0.13 | 0.81 ± 0.11 | <0.001 |
Central obesity (%) | 330 (100) | 152 (56.3) | <0.001 |
Body composition | |||
Body mass (kg) | 82.5 ± 7.8 | 76.5 ± 8.7 | <0.0001 |
Fat free mass (kg) | 42.9 ± 7.2 | 48.7 ± 5.9 | <0.0001 |
Fat mass (kg) | 37.4 ± 9.1 | 27.4 ± 8.3 | <0.0001 |
Fat mass (%) | 39.5 ± 7.9 | 34.7 ± 4.4 | <0.0001 |
Characteristics | MS (n = 330) Mean ± SD/n (%) | Control (n = 270) Mean ± SD/n (%) | p-Value |
---|---|---|---|
Physical activity | |||
Insufficient | 180 (54.5) | 28 (10.4) | <0.0001 |
Sufficient | 90 (27.3) | 140 (51.8) | |
Increased | 47 (14.2) | 91 (33.7) | |
High | 13 (3.9) | 11 (4.1) | |
Dietary intake | |||
Total energy intake (kcal/day) | 2112.3 ± 553.1 | 1920.2 ± 418.4 | 0.0673 |
Proteins (g/day) | 107.1 ± 38.8 | 96.6 ± 28.3 | 0.0351 |
Proteins (% total energy intake) | 19.7 ± 4.5 | 20.4 ± 3.5 | 0.0143 |
Carbohydrates (g/day) | 278.1 ± 98.2 | 277.3 ± 79.2 | 0.1284 |
Carbohydrates (% total energy intake) | 52.3 ± 6.8 | 47.1 ± 8.1 | 0.0565 |
Fats (g/day) | 84.7 ± 53.9 | 76.9 ± 21.1 | 0.0612 |
Fats (% total energy intake) | 36.6 ± 7.1 | 33.4 ± 7.2 | 0.0704 |
MUFA | 29.9 ± 24.1 | 33.2 ± 17.7 | 0.0347 |
PUFA | 9.9 ± 8.1 | 12.9 ± 6.1 | 0.0295 |
SFA | 38.4 ± 22.7 | 31.1 ± 16.9 | 0.0127 |
Cholesterol (mg) | 275.9 ± 16.3 | 221.8 ± 24.7 | 0.1053 |
Frequency of consumption (times per day, median and interquartile range) | |||
Vegetables | 1.1 (0.5–1.5) | 1.7 (0.7–3.5) | <0.001 |
Fruits | 1.5 (0.5–2.1) | 2.7 (0.7–2.9) | <0.001 |
Whole grain products | 1.2 (0.3–2.2) | 3.2 (1.0–4.5) | <0.001 |
White meat products | 3.5 (1.0–4.1) | 2.1 (1.0–4.1) | <0.001 |
Red meat | 1.6 (0.3–2.5) | 1.1 (0.5–2.4) | <0.001 |
Poultry | 1.5 (0.9–2.5) | 1.7 (0.5–2.6) | 0.0765 |
Fish | 0.3 (0.1–0.9) | 0.5 (0.5–1.3) | 0.0412 |
Dairy products | 1.0 (0.5–1.9) | 1.9 (0.5–2.7) | <0.001 |
Butter | 2.1 (0.5–3.0) | 2.2 (0.5–3.1) | 0.0624 |
Plant oils | 0.7 (0.0-1.7) | 1.5 (0.5–2.2) | <0.001 |
Fast foods | 1.5 (0.5–3.1) | 0.5 (0.5–1.9) | <0.001 |
Sweetened beverages | 1.8 (0.5–3.0) | 0.5 (0.5–1.5) | <0.001 |
Sweets | 2.1 (0.5–4.1) | 0.7 (0.5–2.0) | <0.001 |
Nutrition knowledge | |||
Insufficient (%) | 162 (49.1) | 37 (13.7) | <0.001 |
Sufficient (%) | 141 (42.7) | 152 (56.3) | |
High (%) | 27 (8.2) | 81 (30) |
Variables | Prudent-Active (n = 122) Mean ± SD/n (%) | NotPrudent-NotWestern-LowActive (n = 223) Mean ± SD/n (%) | Western-Sedentary (n = 255) Mean ± SD/n (%) | p-Value |
---|---|---|---|---|
Age (years) | 49.6 ± 2.3 | 51.3 ± 5.1 | 56.0 ± 6.3 | <0.001 |
Sex (% women) | 70 (57.4) | 122 (54.7) | 94 (36.9) | <0.001 |
MS (%) | 11 (9.0) | 118 (52.9) | 201 (78.8) | <0.001 |
Hypertension | 22 (18.0) | 89 (39.9) | 155 (60.8) | <0.001 |
Hyperlipidemia | 18 (14.8) | 110 (49.3) | 168 (65.9) | <0.001 |
Fasting Glucose (nmol/L) | 4.6± 0.4 | 4.9 ± 0.7 | 5.1 ± 0.6 | <0.001 |
Triglycerides (nmol/L) | 0.9 ± 0.5 | 1.3 ± 0.3 | 1.4 ± 0.9 | <0.001 |
Total Cholesterol (nmol/L) | 4.6 ± 0.9 | 5.2 ± 0.8 | 5.7 ± 0.5 | <0.001 |
HDL Cholesterol (nmol/L) | 1.5 ± 0.7 | 1.2 ± 0.5 | 0.9 ± 0.7 | <0.001 |
LDL Cholesterol (nmol/L) | 2.7 ± 0.8 | 2.9 ± 1.2 | 3.3 ± 0.5 | <0.001 |
BMI (kg/m2) | 22.7 ± 3.1 | 27.3 ± 3.6 | 29.4 ± 4.4 | <0.001 |
Waist circumference (cm) | 91 ± 8.9 | 97.3 ± 9.7 | 101 ± 13.2 | <0.001 |
Central obesity (%) | 63 (51.6) | 189 (84.7) | 230 (90.2) | <0.001 |
Dietary intake | ||||
Total energy intake (kcal/day) | 1901.4 ± 300.6 | 1995.3 ± 435.7 | 2184.9 ± 538.5 | 0.1296 |
Proteins (g/day) | 89.9 ± 20.7 | 96.5 ± 27.4 | 104 ± 35.8 | 0.0372 |
Proteins (% total energy intake) | 18.9 ± 4.2 | 19.3 ± 5.4 | 29.7 ± 3.9 | 0.0712 |
Carbohydrates (g/day) | 271.7 ± 73.2 | 283.6 ± 83.6 | 280.3 ± 93.5 | 0.3972 |
Carbohydrates (% total energy intake) | 57.1 ± 5.7 | 56.7 ± 6.2 | 51.3 ± 8.9 | 0.1287 |
Fats (g/day) | 65.9 ± 37.2 | 78.3 ± 46.8 | 89.4 ± 38.9 | 0.0367 |
Fats (% total energy intake) | 31.2 ± 7.3 | 35.2 ± 5.8 | 37.1 ± 3.9 | 0.0481 |
Nutrition knowledge | ||||
Insufficient (%) | 10 (8.2) | 77 (34.5) | 125 (49.1) | <0.001 |
Sufficient (%) | 81 (66.4) | 101 (45.3) | 98 (38.4) | |
High (%) | 31 (25.4) | 45 (20.2) | 32 (12.5) |
Variables | Prudent-Active (Ref.: NotPrudent-NotWestern-LowActive) | Western-Sedentary (Ref.: NotPrudent-NotWestern-LowActive) | Western-Sedentary (Ref.: Prudent-Active) |
---|---|---|---|
Women (ref.: men) | 1.37 * (1.21; 1.82) | 0.83 ** (0.64; 0.96) | 0.47 ** (0.31; 0.67) |
Metabolic syndrome (ref. without MS) | 0.27 * (0.21; 0.68) | 1.27 * (0.82; 1.56) | 2.46 *** (2.03; 2.77) |
Sufficient nutrition knowledge (ref.: insufficient) | 1.53 ** (1.12; 2.14) | 0.76 ** (0.41; 0.92) | 0.42 *** (0.21; 0.62) |
High nutrition knowledge (ref.: insufficient) | 2.23 ** (1.56; 3.13) | 0.43 * (0.12; 0.87) | 0.23 *** (0.14; 0.34) |
Variables | Central Obesity (Ref.: Lack) | Hypertension (Ref.: Lack) | Hyper-triglicerydemia (Ref.: Normal) | Low HDL-Cholesterol (Ref.: Normal) | Hyperglycemia (Ref.: Normal) |
---|---|---|---|---|---|
Prudent-Active (ref.: NotPrudent-notWestern-lowActive) | 0.57 ** (0.34; 0.88) | 0.52 ** (0.23; 0.82) | 0.59 *** (0.28; 0.95) | 0.71 *** (0.36; 0.89) | 0.62 ** (0.31; 0.97) |
Western-Sedentary (ref.: NotPrudent-notWestern-lowActive) | 1.08 (0.68; 1.78) | 0.91 (0.21; 0.99) | 0.98 (0.56; 1.35) | 1.17 * (0.86; 1.42) | 0.83 (0.67; 1.04) |
Western-Sedentary (ref.: Prudent-Active) | 2.09 ** (1.27; 3.25) | 1.76 ** (1.23; 2.38) | 2.16 *** (1.85; 2.58) | 2.21 *** (2.03; 2.59) | 1.34 ** (1.07; 1.61) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godala, M.; Krzyżak, M.; Maślach, D.; Gaszyńska, E. Relationship between Dietary Behaviors and Physical Activity and the Components of Metabolic Syndrome: A Case-Control Study. Int. J. Environ. Res. Public Health 2022, 19, 6562. https://doi.org/10.3390/ijerph19116562
Godala M, Krzyżak M, Maślach D, Gaszyńska E. Relationship between Dietary Behaviors and Physical Activity and the Components of Metabolic Syndrome: A Case-Control Study. International Journal of Environmental Research and Public Health. 2022; 19(11):6562. https://doi.org/10.3390/ijerph19116562
Chicago/Turabian StyleGodala, Małgorzata, Michalina Krzyżak, Dominik Maślach, and Ewelina Gaszyńska. 2022. "Relationship between Dietary Behaviors and Physical Activity and the Components of Metabolic Syndrome: A Case-Control Study" International Journal of Environmental Research and Public Health 19, no. 11: 6562. https://doi.org/10.3390/ijerph19116562
APA StyleGodala, M., Krzyżak, M., Maślach, D., & Gaszyńska, E. (2022). Relationship between Dietary Behaviors and Physical Activity and the Components of Metabolic Syndrome: A Case-Control Study. International Journal of Environmental Research and Public Health, 19(11), 6562. https://doi.org/10.3390/ijerph19116562