Bioleaching of Typical Electronic Waste—Printed Circuit Boards (WPCBs): A Short Review
Abstract
:1. Introduction
2. Microorganisms
2.1. Autotrophic Bioleaching
2.2. Heterotrophic Bioleaching
2.2.1. Heterotrophic Bacteria
2.2.2. Fungi
3. Bioleaching Mechanisms
3.1. Contact Bioleaching
3.2. Non-Contact Bioleaching
4. Biochemical Process
4.1. Biosorption
4.2. Bioprecipitation
4.3. Parameter Optimization
4.3.1. pH
4.3.2. Inoculum Volume
4.3.3. Fe2+ Concentration
4.3.4. Pulp Density
4.3.5. Particle Size
4.3.6. Catalyst
4.3.7. Bioreactor
4.3.8. Hybrid Bioleaching
Microorganisms | WPCB | R | Leaching Efficiencies | References |
---|---|---|---|---|
A. ferrooxidans | Mobile phone PCB with size of 37–150 µm | Stirring rate of 170 rpm, temperature of 30 °C, initial pH of 1, pulp density of 9.25 g/L, Fe3+ concentration of 4.17 g/L | Up to 99% Cu and Ni after 55 days | [88] |
Small pieces with size of <15 mm) | Ambient temperature (20–35 °C), WPCB concentration of 5.0% (w/w), inoculation volume of 5% (v/v). | 95.92% of Cu, 93.53% of Al, 92.58% of Zn, 65.27% of Ni, and 95.33% of Sn | [77] | |
A. niger | Less than 300 mm | Pulp densities of 0.5–20 g/L, stirring rate of 120 rpm and ambient temperature | 100% of Zn, 80.39% of Ni and 85.88% of Cu in 30 days. | [89] |
A. Ferrooxidans and A. acidophilum | Particle size of 0.075–1 mm | Pulp density of 7.5 g/L, pH of 2.5, stirring rate of 170 rpm, temperature of 30 °C | 96% Cu, 94.5% Zn, 75% Ni, and 74.5% Pb in 18 days | [90] |
A. Ferrooxidans and A. Thiooxidans | Particle size of less than 100 µm | Stirring rate of 180 rpm, temperature of 30 °C, pulp density of 15 g/L | Cu of 86%, Zn of 100% and Ni of 100% after leaching in 25 days | [62] |
A. Ferrooxidans, F. acidiphilum, and L. ferriphilum | Desktop-computer motherboards | Stirring rate of 170 rpm, temperature of 45 °C, pH of 1.6, pulp density of 5% (w/v), concentration of Fe3+ of 9 g/L | 100% after adding 2.5 g/L graphite in 5 days | [83] |
A. ferrooxidans, L. ferrooxidans and A. thiooxidans | Mobile phone PCB with size of 2 × 2 cm2 | Initial Fe2+ concentration of 9 g/L, pulp density of 10% (w/v), inoculum of 10% (v/v) and initial pH of1.8 | 97.3% Cu, 55.8% Al, 79.3% Ni and 66.8% Zn in bench-scale reactor. | [76] |
5. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiu, R.; Lin, M.; Ruan, J.; Fu, Y.; Hu, J.; Deng, M.; Tang, Y.; Qiu, R. Recovering full metallic resources from waste printed circuit boards: A refined review. J. Clean. Prod. 2020, 244, 118690. [Google Scholar] [CrossRef]
- Yao, Z.; Ling, T.; Sarker, P.K.; Su, W.; Liu, J.; Wu, W.; Tang, J. Recycling difficult-to-treat e-waste cathode-ray-tube glass as construction and building materials: A critical review. Renew. Sustain. Energy Rev. 2018, 81, 595–604. [Google Scholar] [CrossRef]
- Baldé, C.P.; Forti, V.; Gray, V.; Kuehr, R.; Stegmann, P. The Global E-Waste Monitor—2017: Quantities, Flows and Resources; United Nations University (UNU): Bonn, Germany; International Telecommunication Union (ITU): Geneva, Switzerland; International Solid Waste Association (ISWA): Vienna, Austria, 2017. [Google Scholar]
- Wang, Q.; Zhang, B.; Yu, S.; Xiong, J.; Yao, Z.; Hu, B.; Yan, J. Waste-printed circuit board recycling: Focusing on preparing polymer composites and geopolymers. ACS Omega 2020, 5, 17850–17856. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Lin, M.; Yao, Z.; Zhu, J.; Ruan, J.; Tang, Y.; Qiu, R. A novel approach of accurately rationing adsorbent for capturing pollutants via chemistry calculation: Rationing the mass of CaCO3 to capture Br-containing substances in the pyrolysis of nonmetallic particles of waste printed circuit boards. J. Hazard. Mater. 2020, 393, 122410. [Google Scholar] [CrossRef]
- Korf, N.; Løvik, A.N.; Figi, R.; Schreiner, C.; Kuntz, C.; Mählitz, P.M.; Rösslein, M.; Wäger, P.; Rotter, V.S. Multi-element chemical analysis of printed circuit boards–challenges and pitfalls. Waste Manag. 2019, 92, 124–136. [Google Scholar] [CrossRef]
- Kaya, M. Waste printed circuit board (WPCB) recycling: Conventional and emerging technology approach. Encycl. Renew. Sustain. Mater. 2020, 4, 677–694. [Google Scholar]
- Li, Y.; Lin, M.; Ni, Z.; Yuan, Z.; Liu, W.; Ruan, J.; Tang, Y.; Qiu, R. Ecological influences of the migration of micro resin particles from crushed waste printed circuit boards on the dumping soil. J. Hazard. Mater. 2020, 386, 121020. [Google Scholar] [CrossRef]
- Han, J.; Duan, C.; Lu, Q.; Jiang, H.; Fan, X.; Wen, P.; Ju, Y. Improvement of the crushing effect of waste printed circuit boards by co-heating swelling with organic solvent. J. Clean. Prod. 2019, 214, 70–78. [Google Scholar] [CrossRef]
- Oguchi, M.; Murakami, S.; Sakanakura, H.; Kida, A.; Kameya, T. A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources. Waste Manag. 2011, 31, 2150–2160. [Google Scholar] [CrossRef]
- Adamo, I.D.; Ferella, F.; Gastaldi, M.; Maggiore, F.; Rosa, P.; Terzi, S. Towards sustainable recycling processes: Wasted printed circuit boards as a source of economic opportunities. Resour. Conserv. Recycl. 2019, 149, 455–467. [Google Scholar]
- Işıldar, A.; Rene, E.R.; van Hullebusch, E.D.; Lens, P.N. Electronic waste as a secondary source of critical metals: Management and recovery technologies. Resour. Conserv. Recycl. 2018, 135, 296–312. [Google Scholar] [CrossRef]
- Oloruntoba, K.; Sindiku, O.; Osibanjo, O.; Weber, R. Polybrominated diphenyl ethers (PBDEs) concentrations in soil, sediment and water samples around electronic wastes dumpsites in Lagos, Nigeria. Emerg. Contam. 2022, 8, 206–215. [Google Scholar] [CrossRef]
- Abubakar, A.; Zangina, A.S.; Maigari, A.I.; Badamasi, M.M.; Ishak, M.Y.; Abdullahi, A.S.; Haruna, J.A. Pollution of heavy metal threat posed by e-waste burning and its assessment of human health risk. Environ. Sci. Pollut. Res. 2022, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Becci, A.; Amato, A.; Fonti, V.; Karaj, D.; Beolchini, F. An innovative biotechnology for metal recovery from printed circuit boards. Resour. Conserv. Recycl. 2020, 153, 104549. [Google Scholar] [CrossRef]
- Yu, S.; Su, W.; Wu, D.; Yao, Z.; Liu, J.; Tang, J.; Wu, W. Thermal treatment of flame retardant plastics: A case study on a waste TV plastic shell sample. Sci. Total Environ. 2019, 675, 651–657. [Google Scholar] [CrossRef]
- Xia, M.; Bao, P.; Liu, A.; Wang, M.; Shen, L.; Yu, R.; Liu, Y.; Chen, M.; Li, J.; Wu, X. Bioleaching of low-grade waste printed circuit boards by mixed fungal culture and its community structure analysis. Resour. Conserv. Recycl. 2018, 136, 267–275. [Google Scholar] [CrossRef]
- Li, J.; Wen, J.; Guo, Y.; An, N.; Liang, C.; Ge, Z. Bioleaching of gold from waste printed circuit boards by alkali-tolerant Pseudomonas fluorescens. Hydrometallurgy 2020, 194, 105260. [Google Scholar] [CrossRef]
- Ogunniyi, I.O.; Vermaak, M.K.G.; Groot, D.R. Chemical composition and liberation characterization of printed circuit board comminution fines for beneficiation investigations. Waste Manag. 2009, 29, 2140–2146. [Google Scholar] [CrossRef] [Green Version]
- Dinç, N.İ.; Tosun, A.U.; Baştürkcü, E.; Özer, M.; Burat, F. Recovery of valuable metals from WPCB fines by centrifugal gravity separation and froth flotation. J. Mater. Cycles Waste Manag. 2022, 24, 224–236. [Google Scholar] [CrossRef]
- Bilesan, M.R.; Makarova, I.; Wickman, B.; Repo, E. Efficient separation of precious metals from computer waste printed circuit boards by hydrocyclone and dilution-gravity methods. J. Clean. Prod. 2021, 286, 125505. [Google Scholar] [CrossRef]
- Li, J.; Gao, B.; Xu, Z. New technology for separating resin powder and fiberglass powder from fiberglass–resin powder of waste printed circuit boards. Environ. Sci. Technol. 2014, 48, 5171–5178. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Xiong, J.; Yu, S.; Su, W.; Wu, W.; Tang, J.; Wu, D. Kinetic study on the slow pyrolysis of nonmetal fraction of waste printed circuit boards (NMF-WPCBs). Waste Manag. Res. 2020, 38, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Yu, S.; Wu, D.; Lü, X.; Tang, J.; Wu, W.; Yao, Z. Pyrolysis treatment of nonmetal fraction of waste printed circuit boards: Focusing on the fate of bromine. Waste Manag. Res. 2020, 38, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Gurgul, A.; Szczepaniak, W.; Zabłocka-Malicka, M. Incineration and pyrolysis vs. steam gasification of electronic waste. Sci. Total Environ. 2018, 624, 1119–1124. [Google Scholar] [CrossRef]
- Liu, K.; Huang, S.; Jin, Y.; Ma, L.; Wang, W.; Lam, J.C. A green slurry electrolysis to recover valuable metals from waste printed circuit board (WPCB) in recyclable pH-neutral ethylene glycol. J. Hazard. Mater. 2022, 433, 128702. [Google Scholar] [CrossRef]
- Qi, Y.; Yi, X.; Zhang, Y.; Meng, F.; Shu, J.; Xiu, F.; Sun, Z.; Sun, S.; Chen, M. Effect of ionic liquid [MIm] HSO4 on WPCB metal-enriched scraps refined by slurry electrolysis. Environ. Sci. Pollut. Res. 2019, 26, 33260–33268. [Google Scholar] [CrossRef]
- Chu, Y.; Chen, M.; Chen, S.; Wang, B.; Fu, K.; Chen, H. Micro-copper powders recovered from waste printed circuit boards by electrolysis. Hydrometallurgy 2015, 156, 152–157. [Google Scholar] [CrossRef]
- Zhihui, W.; Shuqi, Y.; Jinghao, L.; Yufeng, W.U.; Jiamei, Y.U. Research progress of hydrometallurgy technology for leaching precious metals in waste printed circuit board. Environ. Chem. 2021, 40, 886–895. [Google Scholar]
- Birloaga, I.; Vegliò, F. Hydrometallurgical Processing of Waste Printed Circuit Boards; Elsevier: Amsterdam, The Netherlands, 2018; pp. 95–113. [Google Scholar]
- Zhu, P.; Tang, J.; Tao, Q.; Wang, Y.; Wang, J.; Li, Z.; Cao, Z.; Qian, G.; Theiss, F.; Frost, R.L. The kinetics study of dissolving SnPb solder by hydrometallurgy. Environ. Eng. Sci. 2019, 36, 1236–1243. [Google Scholar] [CrossRef]
- Li, K.; Xu, Z. A review of current progress of supercritical fluid technologies for e-waste treatment. J. Clean. Prod. 2019, 227, 794–809. [Google Scholar] [CrossRef]
- Chen, J.; Meng, T.; Leng, E.; Jiaqiang, E. Review on metal dissolution characteristics and harmful metals recovery from electronic wastes by supercritical water. J. Hazard. Mater. 2022, 424, 127693. [Google Scholar] [CrossRef] [PubMed]
- Xing, M.; Zhang, F. Degradation of brominated epoxy resin and metal recovery from waste printed circuit boards through batch sub/supercritical water treatments. Chem. Eng. J. 2013, 219, 131–136. [Google Scholar] [CrossRef]
- Gu, W.; Bai, J.; Dong, B.; Zhuang, X.; Zhao, J.; Zhang, C.; Wang, J.; Shih, K. Catalytic effect of graphene in bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy 2017, 171, 172–178. [Google Scholar] [CrossRef]
- Trivedi, A.; Hait, S. Bioleaching of Selected Metals from E-Waste Using Pure and Mixed Cultures of Aspergillus Species; Springer: Berlin/Heidelberg, Germany, 2020; pp. 271–280. [Google Scholar]
- Huang, H.; Jia, Q.; Jing, W.; Dahms, H.; Wang, L. Screening strains for microbial biosorption technology of cadmium. Chemosphere 2020, 251, 126428. [Google Scholar] [CrossRef] [PubMed]
- Asghari, I.; Mousavi, S.M.; Amiri, F.; Tavassoli, S. Bioleaching of spent refinery catalysts: A review. J. Ind. Eng. Chem. 2013, 19, 1069–1081. [Google Scholar] [CrossRef]
- Awasthi, A.K.; Hasan, M.; Mishra, Y.K.; Pandey, A.K.; Tiwary, B.N.; Kuhad, R.C.; Gupta, V.K.; Thakur, V.K. Environmentally sound system for E-waste: Biotechnological perspectives. Curr. Res. Biotechnol. 2019, 1, 58–64. [Google Scholar] [CrossRef]
- Bosecker, K. Bioleaching: Metal solubilization by microorganisms. FEMS Microbiol. Rev. 1997, 20, 591–604. [Google Scholar] [CrossRef]
- Kumar, A.; Saini, H.S.; Kumar, S. Bioleaching of gold and silver from waste printed circuit boards by Pseudomonas balearica SAE1 isolated from an e-waste recycling facility. Curr. Microbiol. 2018, 75, 194–201. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, Y.; Cheng, H.; Liu, X.; Tian, Z.; Zhang, L.; Kang, X.; Ge, Y.; Peng, J.; Sun, J. A novel process for the biological detoxification of non-metal residue from waste copper clad laminate treatment: From lab to pilot scale. J. Clean. Prod. 2020, 255, 120116. [Google Scholar] [CrossRef]
- Islam, A.; Ahmed, T.; Awual, M.R.; Rahman, A.; Sultana, M.; Abd Aziz, A.; Monir, M.U.; Teo, S.H.; Hasan, M. Advances in sustainable approaches to recover metals from e-waste-A review. J. Clean. Prod. 2020, 244, 118815. [Google Scholar] [CrossRef]
- Becci, A.; Amato, A.; Rodríguez-Maroto, J.M.; Beolchini, F. Bioleaching of End-of-Life Printed Circuit Boards: Mathematical Modeling and Kinetic Analysis. Ind. Eng. Chem. Res. 2021, 60, 4261–4268. [Google Scholar] [CrossRef]
- Işıldar, A.; van Hullebusch, E.D.; Lenz, M.; Du Laing, G.; Marra, A.; Cesaro, A.; Panda, S.; Akcil, A.; Kucuker, M.A.; Kuchta, K. Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE)—A review. J. Hazard. Mater. 2019, 362, 467–481. [Google Scholar] [CrossRef] [PubMed]
- Potysz, A.; Pędziwiatr, A.; Hedwig, S.; Lenz, M. Bioleaching and toxicity of metallurgical wastes. J. Environ. Chem. Eng. 2020, 8, 104450. [Google Scholar] [CrossRef]
- Srichandan, H.; Mohapatra, R.K.; Parhi, P.K.; Mishra, S. Bioleaching approach for extraction of metal values from secondary solid wastes: A critical review. Hydrometallurgy 2019, 189, 105122. [Google Scholar] [CrossRef]
- Bai, J.; Weihua, G.; Changzhong, L.; Wenyi, Y.; Chenglong, Z.; Jingwei, W.; Bin, D.; Kaimin, S. Bioleaching for Extracting Heavy Metals from Electronic Waste Sludge; Elsevier: Amsterdam, The Netherlands, 2019; pp. 525–551. [Google Scholar]
- Johnson, D.B. Biomining—biotechnologies for extracting and recovering metals from ores and waste materials. Curr. Opin. Biotechnol. 2014, 30, 24–31. [Google Scholar] [CrossRef]
- Ilyas, S.; Ruan, C.; Bhatti, H.N.; Ghauri, M.A.; Anwar, M.A. Column bioleaching of metals from electronic scrap. Hydrometallurgy 2010, 101, 135–140. [Google Scholar] [CrossRef]
- Gu, T.; Rastegar, S.O.; Mousavi, S.M.; Li, M.; Zhou, M. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bioresour. Technol. 2018, 261, 428–440. [Google Scholar] [CrossRef]
- Natarajan, G.; Ramanathan, T.; Bharadwaj, A.; Ting, Y. Bioleaching of metals from major hazardous solid wastes. Microbiol. Miner. Met. Mater. Environ. 2015, 2025, 229–262. [Google Scholar]
- Johnson, D.B.; Roberto, F.F. Heterotrophic Acidophiles and Their Roles in the Bioleaching of Sulfide Minerals; Springer: Berlin/Heidelberg, Germany, 1997; pp. 259–279. [Google Scholar]
- Chi, T.D.; Lee, J.; Pandey, B.D.; Yoo, K.; Jeong, J. Bioleaching of gold and copper from waste mobile phone PCBs by using a cyanogenic bacterium. Miner. Eng. 2011, 24, 1219–1222. [Google Scholar] [CrossRef]
- Işıldar, A.; Vossenberg, J.V.D.; Rene, E.R.; Hullebusch, E.D.V.; Lens, P.N. Biorecovery of Metals from Electronic Waste; Springer: Berlin/Heidelberg, Germany, 2017; pp. 241–278. [Google Scholar]
- Brandl, H.; Bosshard, R.; Wegmann, M. Computer-munching microbes: Metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 2001, 59, 319–326. [Google Scholar] [CrossRef]
- Mishra, D.; Rhee, Y.H. Microbial leaching of metals from solid industrial wastes. J. Microbiol. 2014, 52, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, S.; Chi, R.; Lee, J. Fungal bioleaching of metals from mine tailing. Min. Proc. Ext. Met. Rev. 2013, 34, 185–194. [Google Scholar] [CrossRef]
- Wu, H.; Ting, Y. Metal extraction from municipal solid waste (MSW) incinerator fly ash—Chemical leaching and fungal bioleaching. Enzym. Microb. Technol. 2006, 38, 839–847. [Google Scholar] [CrossRef]
- Yuan, J.; Ma, J.; Sun, Y.; Zhou, T.; Zhao, Y.; Yu, F. Microbial degradation and other environmental aspects of microplastics/plastics. Sci. Total Environ. 2020, 715, 136968. [Google Scholar] [CrossRef] [PubMed]
- Senophiyah-Mary, J.; Loganath, R.; Shameer, P.M. Deterioration of cross linked polymers of thermoset plastics of e-waste as a side part of bioleaching process. J. Environ. Chem. Eng. 2018, 6, 3185–3191. [Google Scholar] [CrossRef]
- Mostafavi, M.; Mirazimi, S.; Rashchi, F.; Faraji, F.; Mostoufi, N. Bioleaching and kinetic investigation of WPCBs by A. ferrooxidans, A. thiooxidans and their mixtures. J. Chem. Pet. Eng. 2018, 52, 81–91. [Google Scholar]
- Silva, R.A.; Park, J.; Lee, E.; Park, J.; Choi, S.Q.; Kim, H. Influence of bacterial adhesion on copper extraction from printed circuit boards. Sep. Purif. Technol. 2015, 143, 169–176. [Google Scholar] [CrossRef]
- Feng, S.; Li, K.; Huang, Z.; Tong, Y.; Yang, H. Specific mechanism of Acidithiobacillus caldus extracellular polymeric substances in the bioleaching of copper-bearing sulfide ore. PLoS ONE 2019, 14, e213945. [Google Scholar] [CrossRef]
- Gu, W.; Bai, J.; Dong, B.; Zhuang, X.; Zhao, J.; Zhang, C.; Wang, J.; Shih, K. Enhanced bioleaching efficiency of copper from waste printed circuit board driven by nitrogen-doped carbon nanotubes modified electrode. Chem. Eng. J. 2017, 324, 122–129. [Google Scholar] [CrossRef]
- Dong, Y.; Lin, H.; Liu, Y.; Zhao, Y. Blank roasting and bioleaching of stone coal for vanadium recycling. J. Clean. Prod. 2020, 243, 118625. [Google Scholar] [CrossRef]
- Gadd, G.M. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 2010, 156, 609–643. [Google Scholar] [CrossRef] [PubMed]
- Rathna, R.; Nakkeeran, E. Biological Treatment for the Recovery of Minerals from Low-Grade Ores; Elsevier: Amsterdam, The Netherlands, 2020; pp. 437–458. [Google Scholar]
- Marra, A.; Cesaro, A.; Rene, E.R.; Belgiorno, V.; Lens, P.N. Bioleaching of metals from WEEE shredding dust. J. Environ. Manag. 2018, 210, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Beni, A.A.; Esmaeili, A. Biosorption, an efficient method for removing heavy metals from industrial effluents: A review. Environ. Technol. Innov. 2020, 17, 100503. [Google Scholar] [CrossRef]
- Di Piazza, S.; Cecchi, G.; Cardinale, A.M.; Carbone, C.; Mariotti, M.G.; Giovine, M.; Zotti, M. Penicillium expansum Link strain for a biometallurgical method to recover REEs from WEEE. Waste Manag. 2017, 60, 596–600. [Google Scholar] [CrossRef] [PubMed]
- Ramírez Calderón, O.A.; Abdeldayem, O.M.; Pugazhendhi, A.; Rene, E.R. Current updates and perspectives of biosorption technology: An alternative for the removal of heavy metals from wastewater. Curr. Pollut. Rep. 2020, 6, 8–27. [Google Scholar] [CrossRef]
- Rene, E.R.; Sahinkaya, E.; Lewis, A.; Lens, P.N. Sustainable Heavy Metal Remediation: Volume 1: Principles and Processes; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Saitoh, N.; Fujimori, R.; Nakatani, M.; Yoshihara, D.; Nomura, T.; Konishi, Y. Microbial recovery of gold from neutral and acidic solutions by the baker’s yeast Saccharomyces cerevisiae. Hydrometallurgy 2018, 181, 29–34. [Google Scholar] [CrossRef]
- Janyasuthiwong, S.; Rene, E.R.; Esposito, G.; Lens, P.N. Effect of pH on Cu, Ni and Zn removal by biogenic sulfide precipitation in an inversed fluidized bed bioreactor. Hydrometallurgy 2015, 158, 94–100. [Google Scholar] [CrossRef]
- Erust, C.; Akcil, A.; Tuncuk, A.; Panda, S. Intensified acidophilic bioleaching of multi-metals from waste printed circuit boards (WPCBs) of spent mobile phones. J. Chem. Technol. Biotechnol. 2020, 95, 2272–2285. [Google Scholar] [CrossRef]
- Fu, K.; Tian, L.; Hou, P.; Long, M.; Chen, S.; Lin, H. Stirred-tank leaching of coarse-grained waste, printed circuit boards with Acidithiobacillus ferrooxidans. Physicochem. Probl. Miner. Process. 2021, 57, 153–163. [Google Scholar] [CrossRef]
- Garg, H.; Nagar, N.; Ellamparuthy, G.; Angadi, S.I.; Gahan, C.S. Bench scale microbial catalysed leaching of mobile phone PCBs with an increasing pulp density. Heliyon 2019, 5, e2883. [Google Scholar] [CrossRef]
- Gu, W.; Bai, J.; Lu, L.; Zhuang, X.; Zhao, J.; Yuan, W.; Zhang, C.; Wang, J. Improved bioleaching efficiency of metals from waste printed circuit boards by mechanical activation. Waste Manag. 2019, 98, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Guo, J.; Zhu, G.; Zhang, Z.; Zhao, P.; Xiangnan, Z.; Zhang, B. Liberation enhancement and copper enrichment improvement for waste printed circuit boards by heating pretreatment. Waste Manag. 2020, 106, 145–154. [Google Scholar] [CrossRef]
- Chen, J.; Tang, D.; Zhong, S.; Zhong, W.; Li, B. The influence of micro-cracks on copper extraction by bioleaching. Hydrometallurgy 2020, 191, 105243. [Google Scholar] [CrossRef]
- Mehrabani, J.V.; Shafaei, S.Z.; Noaparast, M.; Mousavi, S.M. Bioleaching of different pyrites and sphalerite in the presence of graphite. Geomicrobiol. J. 2017, 34, 97–108. [Google Scholar] [CrossRef]
- Tong, L.; Zhao, Q.; Kamali, A.R.; Sand, W.; Yang, H. Effect of graphite on copper bioleaching from waste printed circuit boards. Minerals 2020, 10, 79. [Google Scholar] [CrossRef] [Green Version]
- Sheel, A.; Pant, D. Recovery of gold from electronic waste using chemical assisted microbial biosorption (hybrid) technique. Bioresour. Technol. 2018, 247, 1189–1192. [Google Scholar] [CrossRef]
- Sinha, R.; Chauhan, G.; Singh, A.; Kumar, A.; Acharya, S. A novel eco-friendly hybrid approach for recovery and reuse of copper from electronic waste. J. Environ. Chem. Eng. 2018, 6, 1053–1061. [Google Scholar] [CrossRef]
- Dolker, T.; Pant, D. Chemical-biological hybrid systems for the metal recovery from waste lithium ion battery. J. Environ. Manag. 2019, 248, 109270. [Google Scholar] [CrossRef]
- Gomes, H.I.; Funari, V.; Dinelli, E.; Soavi, F. Enhanced electrodialytic bioleaching of fly ashes of municipal solid waste incineration for metal recovery. Electrochim. Acta 2020, 345, 136188. [Google Scholar] [CrossRef]
- Arshadi, M.; Mousavi, S.M. Multi-objective optimization of heavy metals bioleaching from discarded mobile phone PCBs: Simultaneous Cu and Ni recovery using Acidithiobacillus ferrooxidans. Sep. Purif. Technol. 2015, 147, 210–219. [Google Scholar] [CrossRef]
- Faraji, F.; Golmohammadzadeh, R.; Rashchi, F.; Alimardani, N. Fungal bioleaching of WPCBs using Aspergillus niger: Observation, optimization and kinetics. J. Environ. Manag. 2018, 217, 775–787. [Google Scholar] [CrossRef] [PubMed]
- Priya, A.; Hait, S. Biometallurgical recovery of metals from waste printed circuit boards using pure and mixed strains of Acidithiobacillus ferrooxidans and Acidiphilium acidophilum. Process Saf. Environ. Prot. 2020, 143, 262–272. [Google Scholar] [CrossRef]
- Sahu, M.; Hajra, S.; Kim, H.; Rubahn, H.; Kumar Mishra, Y.; Kim, H.J. Additive manufacturing-based recycling of laboratory waste into energy harvesting device for self-powered applications. Nano Energy 2021, 88, 106255. [Google Scholar] [CrossRef]
- Sahu, M.; Hajra, S.; Panda, S.; Rajaitha, M.; Panigrahi, B.K.; Rubahn, H.; Mishra, Y.K.; Kim, H.J. Waste textiles as the versatile triboelectric energy-harvesting platform for self-powered applications in sports and athletics. Nano Energy 2022, 97, 107208. [Google Scholar] [CrossRef]
Technologies | Advantages | Disadvantages | References |
---|---|---|---|
Physico-mechanical separation | Simple operation, good economic benefit, and small environmental pollution. | Recovered metals need to be refined. Non-metallic fractions are generated, and volume reduction is not significant. | [20,21,22] |
Pyrometallurgy | Significant volume reduction, high treatment efficiency. | High energy consumption and expensive capital investment. | [23,24,25] |
Electrolysis | Simple flow sheet, low energy consumption, high output and low environmental pollution. | WPCB must be pretreated, i.e., pre-leaching or supercritical water oxidation. | [26,27,28] |
Hydrometallurgy | Short process, high efficiency. | Consumes large amounts of chemical reagents and produces a large volume of effluents. | [29,30,31] |
Supercritical fluid | Short process, high efficiency. | High energy consumption and small treatment capacity. | [32,33,34] |
Bioleaching | Benefits in terms of low-cost and environmental friendliness | Having a relatively low efficiency and time-consuming. | [35,36,37] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, X.; Yang, M.; Wan, A.; Yu, S.; Yao, Z. Bioleaching of Typical Electronic Waste—Printed Circuit Boards (WPCBs): A Short Review. Int. J. Environ. Res. Public Health 2022, 19, 7508. https://doi.org/10.3390/ijerph19127508
Ji X, Yang M, Wan A, Yu S, Yao Z. Bioleaching of Typical Electronic Waste—Printed Circuit Boards (WPCBs): A Short Review. International Journal of Environmental Research and Public Health. 2022; 19(12):7508. https://doi.org/10.3390/ijerph19127508
Chicago/Turabian StyleJi, Xiaosheng, Mindong Yang, Anping Wan, Shaoqi Yu, and Zhitong Yao. 2022. "Bioleaching of Typical Electronic Waste—Printed Circuit Boards (WPCBs): A Short Review" International Journal of Environmental Research and Public Health 19, no. 12: 7508. https://doi.org/10.3390/ijerph19127508
APA StyleJi, X., Yang, M., Wan, A., Yu, S., & Yao, Z. (2022). Bioleaching of Typical Electronic Waste—Printed Circuit Boards (WPCBs): A Short Review. International Journal of Environmental Research and Public Health, 19(12), 7508. https://doi.org/10.3390/ijerph19127508