Antioxidative Defense and Gut Microbial Changes under Pollution Stress in Carassius gibelio from Bucharest Lakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Test Organisms and Experimental Procedure
2.3. Determination of Metal Concentrations
2.4. Determination of Pesticide Residues
GC-MS Analysis
2.5. Determination of Antibiotics Residues
LC-MS Analysis
2.6. Biochemical Analyses
2.6.1. Preparation of the Total Protein Extracts
2.6.2. Assessment of Antioxidant Enzyme Activities
2.6.3. GSH Level Measurement
2.6.4. Lipid Peroxidation
2.7. Molecular Biology Assays
2.7.1. Quantification of 5-Methylcytosine
2.7.2. Microbiome Sequencing
2.8. Statistical Analysis
3. Results and Discussion
3.1. Analysis of Metals, Pesticides and Antibiotics Presence in the Gut Tissue of Fish
3.2. Evaluation of Antioxidative Status
3.3. Evaluation of 5-mC Level in DNA of Fish Gut
3.4. Analysis of Gut Microbiome in Fish
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, B.; Wang, G.; Wu, J.; Fu, Q.; Liu, C. Sources of heavy metals in surface sediments and an ecological risk assessment from two adjacent plateau reservoirs. PLoS ONE 2014, 9, e1202101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, W.; Wang, R.; Zhu, B.; Rudstam, L.G.; Liu, Y.; Xu, Y.; Xin, W.; Chen, Y. Heavy metal gradients from rural to urban lakes in central China. Ecol. Process. 2020, 9, 47. [Google Scholar] [CrossRef]
- Meftaul, I.M.; Venkateswarlae, P.; Megharaj, M. Pesticides in the urban environment: A potential threat that knocks at the door. Sci. Total Environ. 2020, 711, 134612. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.T.; Santos, I. Antibiotics in the aquatic environments: A review of European scenario. Environ. Int. 2016, 94, 736–757. [Google Scholar] [CrossRef] [PubMed]
- Lenart-Borón, A.; Prajsnar, J.; Guzil, M.; Borón, P.; Chmiel, M. How much of antibiotics can enter surface water with treated wastewater and how it affects the resistance of waterborne bacteria: A case study in the Bialka river sewage treatment plant. Environ. Res. 2020, 191, 110037. [Google Scholar] [CrossRef]
- Swiacka, K.; Maculewicz, J.; Kowalska, D.; Caban, M.; Smolarz, K.; Swiezak, J. Presence of pharmaceuticals and their metabolites in wild-living aquatic organisms—Current state of knowledge. J. Hazard. Mater. 2022, 424, 127350. [Google Scholar] [CrossRef] [PubMed]
- Dinu, D.; Marinescu, D.; Munteanu, M.C.; Staicu, A.C.; Costache, M.; Dinischiotu, A. Modulatory effects of deltamethrin on antioxidant defence mechanisms and lipid peroxidation in Carassius auratus gibelio liver and intestine. Arch. Environ. Contam. Toxicol. 2010, 58, 757–764. [Google Scholar] [CrossRef]
- Akinsanya, B.; Ayanda, I.O.; Fadipe, A.O.; Onwuka, B.; Saliu, J.K. Heavy metals, parasitologic and oxidative stress biomarker investigations in Heterolis niloticus from Lekki Lagoon, Lagos, Nigeria. Toxicol. Rep. 2020, 7, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, H.; Liu, Y.; Li, J.; Nie, X.; Huang, P.; Xing, M. Environmentally relevant concentration of sulfameth-oxazole-induced oxidative stress-cascaded damages in the intestine of grass carp and the therapeutic application of exogenous lycopene. Environ. Pollut. 2021, 274, 116597. [Google Scholar] [CrossRef] [PubMed]
- Nolorle-Payahua, C.D.; de Freitas, A.S.; Roesch, L.F.W.; Zanette, Y. Environmental contamination alters the intestinal microbial community of livebearer killifish Palloceros caudimaculatus. Helyon 2020, 6, e04190. [Google Scholar] [CrossRef]
- Lusková, V.; Lusk, S.; Halačka, K.; Vetešník, L. Carassius auratus gibelio—The most successful invasive fish in waters of the Czech Republic. Russ. J. Biol. Invasions 2010, 1, 176–180. [Google Scholar] [CrossRef]
- Stanescu, S.V. Aspects concerning the Colentina river water quality in Bucharest city (Romania). Ecoterra 2011, 27, 53–56. [Google Scholar]
- Gheorghe, S.; Mitroi, D.N.; Stan, M.S.; Staicu, C.A.; Cicirma, M.; Lucaciu, I.E.; Nita-Lazar, M.; Dinischiotu, A. Evaluation of sub-lethal toxicity of benzethonium chloride in Cyprinus carpio liver. Appl. Sci. 2020, 10, 8485. [Google Scholar] [CrossRef]
- Paoletti, F.; Mocali, A. Determination of superoxide dismutase activity by purely chemical system based on NADP(H) oxidation. Methods Enzymol. 1990, 186, 209–221. [Google Scholar] [PubMed]
- Aebi, H. Catalase. In Methods of Enzymatic Analysis; Bergmeyer, H.V., Ed.; Academic Press: New York, NY, USA, 1984; pp. 673–677. [Google Scholar]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef]
- Beutler, E. Red Cell Metabolism: A Manual of Biochemical Method, 3rd ed.; Grune and Stratton: Orlando, FL, USA, 1984; pp. 68–73. [Google Scholar]
- Goldberg, D.M.; Spooner, R.J. Glutathione reductase. In Methods of Enzymatic Analysis, 3rd ed.; Bergmeyer, H.V., Ed.; Verlag Chemie: Weinheim, Germany, 1983; pp. 258–265. [Google Scholar]
- Laurin, E.; Thakur, K.; Mohr, P.G.; Hick, P.; Crane, M.S.J.; Gardner, I.A.; Moody, N.J.G.; Colling, A.; Ernst, I. To pool or not to pool? Guidelines for pooling samples for use in surveillance testing of infectious diseases in aquatic animals. J. Fish. Dis. 2019, 42, 1471–1491. [Google Scholar] [CrossRef] [PubMed]
- Staniskiene, B.; Matusevicius, P.; Budreckiene, R.; Skibniewska, K.A. Distribution of heavy metals in tissues of freshwater fish in Lithuania. Pol. J. Environ. Stud. 2006, 5, 585–591. [Google Scholar]
- Rajeshkumar, S.; Li, X. Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicol. Rep. 2018, 5, 288–2952. [Google Scholar] [CrossRef] [PubMed]
- Gheorghe, S.; Vasile, G.G.; Gligor, C.; Lucaciu, I.E.; Lazar, M.N. Metallic elements (Cu, Zn, Ni and Mn) toxicity effects determination on a fresh water fish Cyprinus Carpio (Common Carp) laboratory acclimatized. Rev. Chim. 2017, 68, 1711–1715. [Google Scholar] [CrossRef]
- Abrantes, N.; Pereira, R.; Goncalves, F. Occurrence of pesticides in water, sediments, and fish tissues in a lake surrounded by agricultural lands: Concerning risks to humans and ecological receptors. Water Air Soil Pollut. 2010, 212, 77–88. [Google Scholar] [CrossRef]
- Larson, S.J.; Capel, P.D.; Majewski, M.S. Pesticides in Surface Waters: Distributions, Trends, and Governing Factors; Ann Arbor Press: Chelsea, UK, 1997. [Google Scholar]
- Rahman, M.; Hoque, M.S.; Bhowmik, S.; Ferdousi, S.; Kabiraz, M.P.; van Brakel, M.L. Monitoring of pesticide residues from fish feed, fish and vegetables in Bangladesh by GC-MS using the QuEChERS method. Heliyon 2021, 7, e06390. [Google Scholar] [CrossRef] [PubMed]
- Molina-Ruiz, J.M.; Cieslik, E.; Cieslik, I.; Walkowska, I. Determination of pesticide residues in fish tissues by modified QuEChERS method and dual-d-SPE clean-up coupled to gas chromatography-mass spectrometry. Environ. Sci. Pollut. Res. 2015, 22, 369–378. [Google Scholar] [CrossRef]
- European Commission; Joint Research Centre. Technical Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances. Directive 98/8/EC of the European Parliament and of the Council Concerning the Placing of Biocidal Products on the Market; Part II. Ispra; European Commission: Rome, Italy, 2003. [Google Scholar]
- Buah-Kwofie, A.; Humphries, M.S. Organochlorine pesticide accumulation in fish and catchment sediments of Lake St Lucia: Risks for Africa’s largest estuary. Chemosphere 2021, 274, 129712. [Google Scholar] [CrossRef]
- Canada-Canada, F.; de la Pena, A.M.; Espinosa-Mansilla, A. Analysis of antibiotics in fish samples. Anal. Bioanal. Chem. 2009, 395, 987–1008. [Google Scholar] [CrossRef]
- Yipel, M.; Kurekci, C.; Tekeli, I.O.; Metli, M.; Sakin, F. Determination of selected antibiotics in farmed fish species using LC-MS/MS. Aquac. Res. 2017, 48, 3829–3836. [Google Scholar] [CrossRef]
- Cheng, Y.; Lu, J.R.; Fu, S.S.; Wang, S.J.; Senehi, N.; Yuan, Q.B. Enhanced propagation of intracellular and extracellular antibiotic resistance genes in municipal wastewater by microplastics. Environ. Pollut. 2022, 292, 118284. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Yuan, L.; Wang, L.; Liu, Q.H.; Sheng, G.P. Coexistence of silver ion and tetracycline at environmentally relevant concentrations greatly enhanced antibiotic resistance gene development in activated sludge bioreactor. J. Hazard. Mater. 2022, 423, 127088. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Q.; Wen, Q.X.; Chen, Z.Q.; Fu, Q.Q.; Bao, H.Y. Response of antibiotic resistance to the co-exposure of sulfamethoxazole and copper during swine manure composting. Sci. Total Environ. 2022, 805, 150086. [Google Scholar] [CrossRef]
- Miao, L.Z.; Guo, S.; Wu, J.; Adyel, T.M.; Liu, Z.L.; Liu, S.Q.; Hou, J. Polystyrene nanoplastics change the functional traits of biofilm communities in freshwater environment revealed by GeoChip 5.0. J. Hazard. Mater. 2022, 423, 127117. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Sinha, A.K.; Egnew, N.; Romano, N.; Kumar, V. Potential amelioration of waterborne iron toxicity in channel catfish (Ictalurus punctatus) through dietary supplementation of vitamin C. Ecotoxicol. Environ. Saf. 2020, 205, 111337. [Google Scholar] [CrossRef]
- Leteliér, M.E.; Martinez, M.; González-Lira, V.; Fáundez, M.; Aracena-Parks, P. Inhibition of cytosolic glutathione-S-transferase activity from rat liver by copper. Chem. Biol. Interact. 2006, 164, 39–48. [Google Scholar] [CrossRef]
- Dobritzsch, D.; Grancharov, K.; Hermsen, C.; Krauss, G.-J.; Schaumlöffel, D. Inhibitory effect of metals on animal and plant glutathione transferases. J. Trace Elem. Med. Biol. 2020, 57, 48–56. [Google Scholar] [CrossRef]
- Bouwmeester, M.C.; Ruiter, S.; Lommelaars, T.; Sippel, J.; Hodemaekers, H.M.; van den Brandhof, E.J.; Pennings, J.L.; Kamstra, J.H.; Jelinek, J.; Issa, J.P.; et al. Zebrafsh embryos as a screen for DNA methylation modifications after compound exposure. Toxicol. Appl. Pharmacol. 2016, 291, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wallace, A.D.; Du, P.; Kibbe, W.A.; Jafari, N.; Xie, H.; Lin, S.; Baccarelli, A.; Soares, M.B.; Hou, L. DNA methylation alterations in response to pesticide exposure in vitro. Environ. Mol. Mutagen. 2012, 53, 542–549. [Google Scholar] [CrossRef] [Green Version]
- Fargione, J.E.; Tilman, D. Diversity decreases invasion via both sampling and complementarity effects. Ecol. Lett. 2005, 8, 604–611. [Google Scholar] [CrossRef]
- Ehrlich, M. DNA hypermethylation in disease: Mechanisms and clinical relevance. Epigenetics 2019, 14, 1141–1163. [Google Scholar] [CrossRef] [Green Version]
- Lind, L.; Penell, J.; Luttropp, K.; Nordfors, L.; Syvänen, A.C.; Axelsson, T.; Salihovic, S.; van Bavel, B.; FALL, T.; Ingelsson, E.; et al. Global DNA hypermethylation is associated with high serum levels of persistent organic pollutants in an elderly population. Environ. Int. 2013, 59, 456–461. [Google Scholar] [CrossRef]
- Chen, W.; Liu, F.; Ling, Z.; Tong, X.; Xiang, C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS ONE 2012, 7, e39743. [Google Scholar] [CrossRef]
- Garrett, W.S.; Gallini, C.A.; Yatsunenko, T.; Michaud, M.; DuBois, A.; Delaney, M.L.; Punit, S.; Karlsson, M.; Bry, L.; Glickman, J.N.; et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 2010, 8, 292–300. [Google Scholar] [CrossRef] [Green Version]
- Sovran, B.; Planchais, J.; Jegou, S.; Straube, M.; Lamas, B.; Natividad, J.M.; Agus, A.; Dupraz, L.; Glodt, J.; Da Costa, G.; et al. Enterobacteriaceae are essential for the modulation of colitis severity by fungi. Microbiome 2018, 6, 152. [Google Scholar] [CrossRef]
Lake | Geographical Coordinates 1 (Latitude/Longitude) | Body Weight (g) | Body Length (cm) |
---|---|---|---|
Chitila | 44.499861/25.998267 | 65.14 ± 18.38 | 14.93 ± 1.64 |
Floreasca | 44.473304/26.105442 | 82.99 ± 11.66 | 16.29 ± 1.04 |
Tei | 44.465912/26.123475 | 77.05 ± 9.74 | 16.13 ± 0.97 |
Vacaresti | 44.399918/26.133721 | 86.73 ± 7.56 | 14.50 ± 5.50 |
Metal (mg/kg of Dry Tissue) | Chitila Lake | Floreasca Lake | Tei Lake | Vacaresti Lake |
---|---|---|---|---|
Cd | 0.08 ± 0.007 a | 0.08 ± 0.007 a | <0.08 b | <0.08 b |
Cr | 1.16 ± 0.151 | 1.42 ± 0.184 | 0.20 ± 0.260 | 0.20 ± 0.026 |
Cu | 6.65 ± 0.778 | 6.84 ± 0.800 | 1.7 ± 0.198 | 3.12 ± 0.366 |
Fe | 414 ± 52.2 | 974 ± 122.8 | 151.4 ± 19.08 | 72.4 ± 9.12 |
Mn | 37.1 ± 2.82 | 75.6 ± 5.74 | 16.18 ± 1.23 | 84.9 ± 4.30 |
Ni | 3.43 ± 0.401 | 1.58 ± 0.184 | 0.76 ± 0.088 | 0.3 ± 0.036 |
Pb | 2.30 ± 0.216 | 2.78 ± 0.262 | <0.33 b | <0.33 b |
Zn | 1052 ± 105 | 166.6 ± 16.66 | 556 ± 55.6 | 642 ± 6.4 |
Ca | 3836 ± 445 | 7704 ± 894 | 1220 ± 140.16 | 4600 ± 534 |
Mg | 1144 ± 166 | 408 ± 59.2 | 322 ± 46.6 | 480 ± 69.6 |
Na | 6283 ± 660 | 2892 ± 304 | 2372 ± 250 | 1832 ± 192.4 |
K | 5928 ± 889 | 2602 ± 390 | 3592 ± 538 | 5806 ± 870 |
Pesticide (µg/g of Dry Tissue) | Chitila Lake | Floreasca Lake | Tei Lake | Vacaresti Lake |
---|---|---|---|---|
| 0.020 ± 0.0015 | 0.018 ± 0.0084 | 0.054 ± 0.0029 | 0.016 ± 0.0181 |
| ND | ND | ND | ND |
| 0.0025 ± 0.0004 | ND | 0.0047 ± 0.0015 | 0.0013 ± 0.0025 |
| ND | ND | ND | ND |
| ND | ND | ND | ND |
| 0.0025 ± 0.0003 | ND | 0.0022 ± 0.0006 | 0.0021 ± 0.0019 |
| 0.0027 ± 0.0003 | ND | ND | ND |
| 0.017 ± 0.0025 | 0.169 ± 0.0331 | 0.194 ± 0.0277 | 0.121 ± 0.0344 |
| 0.0042 ± 0.0116 | 0.0014 ± 0.0014 | 0.0033 ± 0.0009 | 0.0081 ± 0.0016 |
| 0.029 ± 0.0038 | 0.0031 ± 0.0009 | 0.021 ± 0.0087 | 0.0029 ± 0.0019 |
| 0.019 ± 0.0061 | 0.0082 ± 0.0006 | 0.012 ± 0.0044 | 0.012 ± 0.0159 |
| 0.020 ± 0.0045 | 0.068 ± 0.0041 | 0.315 ± 0.0320 | 0.039 ± 0.0092 |
| ND | ND | 0.0055 ± 0.0014 | 0.0010 ± 0.0026 |
| 3.429 ± 0.0188 | 0.018 ± 0.0031 | 0.058 ± 0.0169 | 0.012 ± 0.0138 |
| 0.049 ± 0.0031 | 0.0056 ± 0.0013 | 0.011 ± 0.0060 | 0.0078 ± 0.0032 |
| 0.019 ± 0.0036 | 0.0078 ± 0.0012 | 0.013 ± 0.0075 | 0.0195 ± 0.0029 |
| 0.0076 ± 0.0006 | 0.0014 ± 0.0003 | 0.0035 ± 0.0015 | 0.0072 ± 0.0023 |
| 0.026 ± 0.0047 | ND | 0.0097 ± 0.0020 | ND |
| ND | ND | ND | ND |
| 0.019 ± 0.0019 | 0.567 ± 0.0520 | 1.465 ± 0.0565 | 0.635 ± 0.0503 |
| ND | ND | ND | ND |
| 0.005 ± 0.0011 | 0.0021 ± 0.0004 | 0.0047 ± 0.0012 | 0.006 ± 0.0023 |
| 0.402 ± 0.0050 | 0.004 ± 0.0003 | ND | ND |
| 20.456 ± 0.0475 | 0.090 ± 0.0104 | 0.293 ± 0.0404 | 0.056 ± 0.0244 |
| 0.016 ± 0.0024 | 0.010 ± 0.0064 | 0.730 ± 0.0485 | 0.096 ± 0.0137 |
| 0.017 ± 0.0046 | 0.019 ± 0.0027 | 0.101 ± 0.0111 | 0.018 ± 0.0061 |
| 0.0011 ± 0.0004 | ND | 0.0022 ± 0.0006 | ND |
| 0.0072 ± 0.0006 | ND | 0.047 ± 0.0106 | 0.0046 ± 0.0009 |
| ND0.0365 | ND | ND | ND |
| 0.229 ± 0.0045 | 0.043 ± 0.0060 | 0.163 ± 0.0280 | 0.099 ± 0.0121 |
| 0.052 ± 0.0052 | 0.017 ± 0.0066 | 0.028 ± 0.0046 | 0.013 ± 0.0075 |
| 0.108 ± | 2.705 ± 0.0080 | 6.926 ± 0.1252 | 1.406 ± 0.0748 |
| ND | ND | ND | ND |
| ND | ND | ND | ND |
Cumulative Pesticide Level | 24.9598 ± 0.0157 | 3.7576 ± 0.0549 | 10.4668 ± 0.0626 | 2.5835 ± 0.1371 |
Antibiotic (µg/g of Dry Tissue) | Chitila Lake | Floreasca Lake | Tei Lake | Vacaresti Lake |
---|---|---|---|---|
Imipenem | ND | ND | ND | ND |
Vancomycin | ND | ND | ND | ND |
Meropenem | 0.027 ± 0.0201 | 0.021 ± 0.0271 | ND | 0.031 ± 0.0101 |
Tetracycline | 0.182 ± 0.0271 | 0.096 ± 0.0264 | 0.218 ± 0.0861 | 0.311 ± 0.0323 |
Colistin sulphate | 0.022 ± 0.0195 | ND | ND | ND |
Clindamycin | 0.0058 ± 0.0015 | 0.0031 ± 0.0019 | 0.0069 ± 0.0023 | 0.0099 ± 0.0030 |
Erythromycin | 0.01 ± 0.0157 | 0.005 ± 0.0298 | 0.012 ± 0.0215 | 0.017 ± 0.0188 |
Cumulative drug level | 0.227 ± 0.0517 | 0.1251 ± 0.0781 | 0.2369 ± 0.0976 | 0.3689 ± 0.0337 |
Specific Activity of Enzyme | Chitila Lake | Floreasca Lake | Tei Lake | Vacaresti Lake |
---|---|---|---|---|
Catalase (Kat/mg of total protein) | 0.061 ± 0.190 *** | 0.083 ± 0.025 *** | 0.074 ± 0.025 *** | 0.180 ± 0.025 |
Superoxide dismutase (U/mg of total protein) | 0.077 ± 0.020 *** | 0.065 ± 0.022 *** | 0.091 ± 0.031 *** | 0.158 ± 0.032 |
Glutathione reductase (U/mg of total protein) | 0.017 ± 0.005 *** | 0.014 ± 0.004 *** | 0.024 ± 0.006 *** | 0.034 ± 0.007 |
Glutathione peroxidase (U/mg of total protein) | 93.675 ± 20.173 *** | 130.161 ± 13.930 - | 105.766 ± 21.316 - | 119.491 ± 17.101 |
Glutathione S-transferase (U/mg of total protein) | 0.019 ± 0.003 *** | 0.025 ± 0.005 *** | 0.015 ± 0.002 *** | 0.116 ± 0.021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alistar, C.F.; Nica, I.C.; Nita-Lazar, M.; Vasile, G.G.; Gheorghe, S.; Croitoru, A.-M.; Dolete, G.; Mihaiescu, D.E.; Ficai, A.; Craciun, N.; et al. Antioxidative Defense and Gut Microbial Changes under Pollution Stress in Carassius gibelio from Bucharest Lakes. Int. J. Environ. Res. Public Health 2022, 19, 7510. https://doi.org/10.3390/ijerph19127510
Alistar CF, Nica IC, Nita-Lazar M, Vasile GG, Gheorghe S, Croitoru A-M, Dolete G, Mihaiescu DE, Ficai A, Craciun N, et al. Antioxidative Defense and Gut Microbial Changes under Pollution Stress in Carassius gibelio from Bucharest Lakes. International Journal of Environmental Research and Public Health. 2022; 19(12):7510. https://doi.org/10.3390/ijerph19127510
Chicago/Turabian StyleAlistar, Cristina F., Ionela C. Nica, Mihai Nita-Lazar, Gabriela Geanina Vasile, Stefania Gheorghe, Alexa-Maria Croitoru, Georgiana Dolete, Dan Eduard Mihaiescu, Anton Ficai, Nicolai Craciun, and et al. 2022. "Antioxidative Defense and Gut Microbial Changes under Pollution Stress in Carassius gibelio from Bucharest Lakes" International Journal of Environmental Research and Public Health 19, no. 12: 7510. https://doi.org/10.3390/ijerph19127510
APA StyleAlistar, C. F., Nica, I. C., Nita-Lazar, M., Vasile, G. G., Gheorghe, S., Croitoru, A. -M., Dolete, G., Mihaiescu, D. E., Ficai, A., Craciun, N., Gradisteanu Pircalabioru, G., Chifiriuc, M. C., Stan, M. S., & Dinischiotu, A. (2022). Antioxidative Defense and Gut Microbial Changes under Pollution Stress in Carassius gibelio from Bucharest Lakes. International Journal of Environmental Research and Public Health, 19(12), 7510. https://doi.org/10.3390/ijerph19127510