Socioeconomic Differences in Lifetime and Past 30-Day E-Cigarette, Cigarette, and Dual Use: A State-Level Analysis of Utah Youth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Measures
2.2.1. Lifetime and Past 30-Day E-Cigarette, Cigarette, and Dual Use
2.2.2. Neighborhood Characteristics
2.2.3. Demographics
2.3. Analytic Plan
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnston, L.D.; Miech, R.A.; O’Malley, P.M.; Bachman, J.G.; Schulenberg, J.E.; Patrick, M.E. Monitoring the Future National Survey Results on Drug Use, 1975–2019; Education Resources Information Center: Columbus, OH, USA, 2020.
- US Department of Health and Human Services. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2014.
- Chetty, R.; Stepner, M.; Abraham, S.; Lin, S.; Scuderi, B.; Turner, N.; Bergeron, A.; Cutler, D. The Association between Income and Life Expectancy in the United States, 2001–2014. JAMA 2016, 315, 1750–1766. [Google Scholar] [CrossRef]
- Friedman, A.S.; Horn, S.J.L. Socioeconomic Disparities in Electronic Cigarette Use and Transitions from Smoking. Nicotine Tob. Res. 2019, 21, 1363–1370. [Google Scholar] [CrossRef] [PubMed]
- Office on Smoking and Health and NCCDPHP. Surgeon General’s Advisory on E-Cigarette Use among Youth. 2018. Available online: https://www.cdc.gov/tobacco/basic_information/e-cigarettes/surgeon-general-advisory/index.html (accessed on 2 May 2022).
- Balfour, D.J.K.; Benowitz, N.L.; Colby, S.M.; Hatsukami, D.K.; Lando, H.A.; Leischow, S.J.; Lerman, C.; Mermelstein, R.J.; Niaura, R.; Perkins, K.A.; et al. Balancing Consideration of the Risks and Benefits of E-Cigarettes. Am. J. Public Health 2021, 111, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
- Hair, E.C.; Barton, A.A.; Perks, S.N.; Kreslake, J.; Xiao, H.; Pitzer, L.; Leventhal, A.M.; Vallone, D.M. Association between e-cigarette use and future combustible cigarette use: Evidence from a prospective cohort of youth and young adults, 2017–2019. Addict. Behav. 2021, 112, 106593. [Google Scholar] [CrossRef]
- Moss, S.L.; Keyes, K.M. Commentary on Foxon & Selya (2020): Social gradients in long-term health consequences of cigarette use—Will adolescent e-cigarette use follow the same trajectory? Addiction 2020, 115, 2379–2381. [Google Scholar]
- Simon, P.; Camenga, D.R.; Morean, M.E.; Kong, G.; Bold, K.W.; Cavallo, D.A.; Krishnan-Sarin, S. Socioeconomic status and adolescent e-cigarette use: The mediating role of e-cigarette advertisement exposure. Prev. Med. 2018, 112, 193–198. [Google Scholar] [CrossRef]
- Kinnunen, J.M.; Ollila, H.; Minkkinen, J.; Lindfors, P.L.; Rimpelä, A.H. A Longitudinal Study of Predictors for Adolescent Electronic Cigarette Experimentation and Comparison with Conventional Smoking. Int. J. Environ. Res. Public Health 2018, 15, 305. [Google Scholar] [CrossRef] [Green Version]
- Cambron, C.; Kosterman, R.; Rhew, I.C.; Catalano, R.F.; Guttmannova, K.; Hawkins, J.D. Neighborhood Structural Factors and Proximal Risk for Youth Substance Use. Prev. Sci. 2020, 21, 508–518. [Google Scholar] [CrossRef]
- Cambron, C.; Catalano, R.F.; Hawkins, J.D. The social development model. In The Oxford Handbook of Developmental and Life-Course Criminology; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Cambron, C.; Kosterman, R.; Catalano, R.F.; Guttmannova, K.; Hawkins, J.D. Neighborhood, Family, and Peer Factors Associated with Early Adolescent Smoking and Alcohol Use. J. Youth Adolesc. 2018, 47, 369–382. [Google Scholar] [CrossRef]
- Bronfenbrenner, U. Toward an experimental ecology of human development. Am. Psychol. 1977, 32, 513. [Google Scholar] [CrossRef]
- Diez Roux, A.V.; Mair, C. Neighborhoods and health. Ann. N. Y. Acad. Sci. 2010, 1186, 125–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shih, R.A.; Parast, L.; Pedersen, E.R.; Troxel, W.M.; Tucker, J.S.; Miles, J.N.; Kraus, L.; D’Amico, E.J. Individual, peer, and family factor modification of neighborhood-level effects on adolescent alcohol, cigarette, e-cigarette, and marijuana use. Drug Alcohol Depend. 2017, 180, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Springer, A.E.; Davis, C.; Van Dusen, D.; Grayless, M.; Case, K.R.; Craft, M.; Kelder, S.H. School socioeconomic disparities in e-cigarette susceptibility and use among central Texas middle school students. Prev. Med. Rep. 2018, 11, 105–108. [Google Scholar] [CrossRef]
- Utah Deparment of Human Services. SHARP Survey; Utah Deparment of Human Services: Salt Lake City, UT, USA, 2021.
- Arthur, M.W.; Hawkins, J.D.; Pollard, J.A.; Catalano, R.F.; Baglioni, A.J., Jr. Measuring Risk and Protective Factors for Substance Use, Delinquency, and Other Adolescent Problem Behaviors: The Communities That Care Youth Survey. Eval. Rev. 2002, 26, 575–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control Prevention. Youth Risk Behavior Surveillance System (YRBSS). 2019. Available online: https://www.cdc.gov/healthyyouth/data/yrbs/index.htm (accessed on 2 May 2022).
- Walker, K.; Eberwein, K.; Herman, M. Tidycensus. 2020. Available online: https://walker-data.com/tidycensus/ (accessed on 2 May 2022).
- Cambron, C.; Kosterman, R.; Hawkins, J.D. Neighborhood Poverty Increases Risk for Cigarette Smoking from Age 30 to 39. Ann. Behav. Med. 2019, 53, 858–864. [Google Scholar] [CrossRef]
- Dai, H.; Chaney, L.; Ellerbeck, E.; Friggeri, R.; White, N.; Catley, D. Rural-Urban Differences in Changes and Effects of Tobacco 21 in Youth E-cigarette Use. Pediatrics 2021, 147, e2020020651. [Google Scholar] [CrossRef] [PubMed]
- Karriker-Jaffe, K.J. Areas of disadvantage: A systematic review of effects of area-level socioeconomic status on substance use outcomes. Drug Alcohol Rev. 2011, 30, 84–95. [Google Scholar] [CrossRef]
- Henriksen, L.; Feighery, E.C.; Schleicher, N.C.; Cowling, D.W.; Kline, R.S.; Fortmann, S.P. Is adolescent smoking related to the density and proximity of tobacco outlets and retail cigarette advertising near schools? Prev. Med. 2008, 47, 210–214. [Google Scholar] [CrossRef]
- Henriksen, L.; Schleicher, N.C.; Feighery, E.C.; Fortmann, S.P. A Longitudinal Study of Exposure to Retail Cigarette Advertising and Smoking Initiation. Pediatrics 2010, 126, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Bailey, J.A.; Hill, K.G.; Oesterle, S.; Hawkins, J.D. Linking Substance Use and Problem Behavior across Three Generations. J. Abnorm. Child Psychol. 2006, 34, 263–282. [Google Scholar] [CrossRef]
- Agaku, I.T.; Perks, S.N.; Odani, S.; Glover-Kudon, R. Associations between public e-cigarette use and tobacco-related social norms among youth. Tob. Control 2020, 29, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Burrow-Sánchez, J.J.; Ratcliff, B.R. Adolescent Risk and Protective Factors for the Use of Electronic Cigarettes. J. Prev. Health Promot. 2021, 2, 100–134. [Google Scholar] [CrossRef]
Variables | N | Unweighted M (SD), % | Weighted M (SD), % | |
---|---|---|---|---|
Age | 85,363 | 14.0 (2.2) | 14.5 (2.9) | |
Grade | ||||
6 | 27,657 | 32.0% | 26.7% | |
8 | 25,581 | 29.6% | 25.4% | |
10 | 20,376 | 23.6% | 24.8% | |
12 | 12,732 | 14.7% | 23.1% | |
Gender | ||||
Female | 44,382 | 51.7% | 51.1% | |
Male | 40,776 | 47.5% | 48.5% | |
Transgender | 299 | 0.3% | 0.2% | |
Other | 470 | 0.5% | 0.3% | |
Race/ethnicity | ||||
AI/AN | 3247 | 3.8% | 1.7% | |
Asian | 2951 | 3.4% | 2.3% | |
Black/AA | 2357 | 2.7% | 1.8% | |
Hispanic/Latino | 14,203 | 16.4% | 18.8% | |
NH/PI | 2284 | 2.6% | 2.0% | |
White | 69,019 | 79.9% | 75.5% | |
Highest educated household member | ||||
High school or less | 13,186 | 18.2% | 19.7% | |
Some college | 10,376 | 14.3% | 14.4% | |
College degree | 33,168 | 38.4% | 44.6% | |
Graduate degree | 15,760 | 21.7% | 21.3% | |
Lifetime e-cigarette use | 15,215 | 18.5% | 20.9% | |
Past 30-day e-cigarette use | 7044 | 8.5% | 9.7% | |
Lifetime cigarette use | 5882 | 7.2% | 7.9% | |
Past 30-day cigarette use | 897 | 1.1% | 1.2% | |
Lifetime dual use | 5150 | 7.2% | 8.2% | |
Past 30-day dual use | 723 | 1.0% | 1.1% |
Variables | NH Poverty | M | SD | Min | Max |
---|---|---|---|---|---|
Percent of families below the poverty line | 0.58 | 10.63 | 9.29 | 0.00 | 47.56 |
Percent of individuals receiving public assistance | 0.53 | 15.50 | 17.22 | 0.00 | 100.00 |
Percent of individuals 25+ without high school diploma | 0.49 | 8.23 | 7.23 | 0.00 | 45.68 |
Percent of individuals unemployed and in workforce | 0.38 | 4.14 | 5.50 | 0.00 | 50.00 |
Eigenvalue | 2.10 | ||||
Percent of variance | 52% |
Variables | Est. | SE | p | OR | 95% CI | Est. | SE | p | OR | 95% CI | |
---|---|---|---|---|---|---|---|---|---|---|---|
Lifetime e-cigarette use | Past 30-day e-cigarette use | ||||||||||
Neighborhood level | |||||||||||
NH poverty | 0.12 | 0.03 | <0.001 | 1.12 | 1.06, 1.19 | 0.04 | 0.03 | 0.212 | 1.04 | 0.98, 1.11 | |
Rural NH | −0.13 | 0.09 | 0.127 | 0.88 | 0.74, 1.04 | −0.17 | 0.10 | 0.104 | 0.84 | 0.69, 1.04 | |
Individual level | |||||||||||
HH education | −0.52 | 0.02 | <0.001 | 0.60 | 0.57, 0.62 | −0.50 | 0.03 | <0.001 | 0.61 | 0.57, 0.64 | |
Grade | 0.18 | 0.04 | <0.001 | 1.20 | 1.10, 1.30 | 0.19 | 0.04 | <0.001 | 1.21 | 1.11, 1.31 | |
Age | 0.35 | 0.10 | <0.001 | 1.42 | 1.17, 1.71 | 0.24 | 0.10 | 0.015 | 1.27 | 1.05, 1.53 | |
Male | 0.12 | 0.02 | <0.001 | 1.12 | 1.07, 1.18 | −0.07 | 0.03 | 0.039 | 0.94 | 0.88, 0.99 | |
Non-White | 0.42 | 0.07 | <0.001 | 1.52 | 1.33, 1.73 | 0.32 | 0.08 | <0.001 | 1.38 | 1.19, 1.60 | |
Hispanic/Latino | 0.15 | 0.07 | 0.017 | 1.17 | 1.03, 1.32 | −0.12 | 0.08 | 0.133 | 0.89 | 0.77, 1.04 | |
Intercept | −2.50 | 0.38 | <0.001 | - | - | −3.40 | 0.38 | <0.001 | - | - | |
Lifetime cigarette use | Past 30-day cigarette use | ||||||||||
Neighborhood level | |||||||||||
NH poverty | 0.13 | 0.03 | <0.001 | 1.14 | 1.08, 1.21 | 0.10 | 0.06 | 0.083 | 1.10 | 0.99, 1.23 | |
Rural NH | 0.09 | 0.09 | 0.275 | 1.10 | 0.93, 1.30 | 0.24 | 0.20 | 0.226 | 1.28 | 0.86, 1.89 | |
Individual level | |||||||||||
HH education | −0.56 | 0.03 | <0.001 | 0.57 | 0.54, 0.61 | −0.67 | 0.08 | <0.001 | 0.51 | 0.44, 0.59 | |
Grade | 0.12 | 0.04 | 0.005 | 1.13 | 1.04, 1.23 | 0.29 | 0.11 | 0.007 | 1.33 | 1.08, 1.64 | |
Age | 0.32 | 0.10 | 0.001 | 1.37 | 1.14, 1.66 | 0.08 | 0.23 | 0.738 | 1.08 | 0.69, 1.70 | |
Male | 0.17 | 0.04 | <0.001 | 1.19 | 1.11, 1.27 | 0.08 | 0.11 | 0.456 | 1.08 | 0.88, 1.33 | |
Non-White | −0.12 | 0.08 | 0.108 | 0.89 | 0.77, 1.03 | −0.62 | 0.19 | 0.001 | 0.54 | 0.37, 0.79 | |
Hispanic/Latino | 0.34 | 0.07 | <0.001 | 1.40 | 1.22, 1.60 | 0.06 | 0.15 | 0.683 | 1.06 | 0.79, 1.42 | |
Intercept | −3.14 | 0.41 | <0.001 | - | - | −6.30 | 0.97 | <0.001 | - | - | |
Lifetime dual use | Past 30-day dual use | ||||||||||
Neighborhood level | |||||||||||
NH poverty | 0.15 | 0.04 | <0.001 | 1.16 | 1.08, 1.24 | 0.08 | 0.07 | 0.276 | 1.08 | 0.94, 1.23 | |
Rural NH | 0.00 | 0.11 | 0.974 | 1.00 | 0.81, 1.24 | 0.08 | 0.23 | 0.723 | 1.08 | 0.69, 1.70 | |
Individual level | |||||||||||
HH education | −0.70 | 0.04 | <0.001 | 0.50 | 0.46, 0.53 | −0.82 | 0.09 | <0.001 | 0.44 | 0.37, 0.52 | |
Grade | 0.19 | 0.05 | <0.001 | 1.21 | 1.09, 1.34 | 0.31 | 0.12 | 0.009 | 1.36 | 1.08, 1.72 | |
Age | 0.36 | 0.11 | 0.001 | 1.44 | 1.15, 1.79 | 0.12 | 0.26 | 0.649 | 1.12 | 0.68, 1.86 | |
Male | 0.17 | 0.04 | <0.001 | 1.19 | 1.10, 1.28 | 0.08 | 0.12 | 0.521 | 1.08 | 0.86, 1.36 | |
Non-White | 0.14 | 0.09 | 0.124 | 1.15 | 0.96, 1.38 | −0.48 | 0.21 | 0.018 | 0.62 | 0.41, 0.92 | |
Hispanic/Latino | 0.20 | 0.08 | 0.016 | 1.22 | 1.04, 1.43 | −0.14 | 0.17 | 0.409 | 0.87 | 0.62, 1.22 | |
Intercept | −3.51 | 0.49 | <0.001 | - | - | −6.37 | 1.08 | <0.001 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cambron, C.; Thackeray, K.J. Socioeconomic Differences in Lifetime and Past 30-Day E-Cigarette, Cigarette, and Dual Use: A State-Level Analysis of Utah Youth. Int. J. Environ. Res. Public Health 2022, 19, 7557. https://doi.org/10.3390/ijerph19137557
Cambron C, Thackeray KJ. Socioeconomic Differences in Lifetime and Past 30-Day E-Cigarette, Cigarette, and Dual Use: A State-Level Analysis of Utah Youth. International Journal of Environmental Research and Public Health. 2022; 19(13):7557. https://doi.org/10.3390/ijerph19137557
Chicago/Turabian StyleCambron, Christopher, and Kaitlyn J. Thackeray. 2022. "Socioeconomic Differences in Lifetime and Past 30-Day E-Cigarette, Cigarette, and Dual Use: A State-Level Analysis of Utah Youth" International Journal of Environmental Research and Public Health 19, no. 13: 7557. https://doi.org/10.3390/ijerph19137557
APA StyleCambron, C., & Thackeray, K. J. (2022). Socioeconomic Differences in Lifetime and Past 30-Day E-Cigarette, Cigarette, and Dual Use: A State-Level Analysis of Utah Youth. International Journal of Environmental Research and Public Health, 19(13), 7557. https://doi.org/10.3390/ijerph19137557