The Influence of Gender and the Specificity of Sports Activities on the Performance of Body Balance for Students of the Faculty of Physical Education and Sports
Abstract
:1. Introduction
1.1. Factors Influencing the Manifestation of Balance
1.2. Gender Differences in the Manifestation of Balance
1.3. The Relationship between Physical Activity and Balance
2. Materials and Methods
2.1. Participants
2.2. Procedure
- One-leg standing balance test: Standing on one leg, the other leg is raised with the knee bent, the forearms crossed on the chest (There is also the option of fixing the raised leg behind the knee of the lower support member/popliteal space). The time maintaining balance with eyes closed is timed (s).
- Stork test: Sitting on one leg with palms on hips and eyes open, raise their other leg and rest their toes on the opposite knee. Then move on to the tip of the foot remaining on the ground, and the time maintaining the balance is timed (s). The stopwatch is stopped when unbalanced, moving the supporting leg, contact with the whole sole, the lack of contact with the knee, the movement of the arms.
- Flamingo test (Eurofit test): The assessor tries to maintain balance on one leg (on a beam 50 cm long, 4 cm high, and 3 cm wide), the arm on the same side is raised, the other lower limb is flexed, raised back and caught by the hand on the same side. We record the number of attempts/failures required to accumulate 60 s of holding the position.
- Functional reach test: The performer is standing sideways against the wall, with the same arm outstretched forward and parallel to the ground, and the examiner draws a mark on the wall at the end of the middle finger. The performer then bends their torso forward to the point where the balance can be maintained and marks the place where the middle finger reaches. The difference between the two drawn marks is recorded in cm.
- Bass test: It involves performing 10 consecutive jumps from one foot to the other, landing on the forefoot and maintaining the position for 5 s, treading signs measuring 2.54 × 2 cm. For each correct landing, 5 points are awarded, plus 1 point for each second of holding, so the maximum score is 100.
- Walk and Turn Field Sobriety test: Evaluates the balance while walking along a straight line drawn on the ground. Take 9 steps with the heel of the foot placed in front, touching the toes of the back foot. After taking the steps, the subject must turn on one leg and return in the same way in the opposite direction. Note: The following errors are identified: “Can’t keep balance during instructions, Starts too soon, Stops walking, Misses heel-to-toe, Steps off line, Uses arms for balance, Improper turn, Incorrect number of steps.”
- Fukuda test: The subject moves on the spot/50 steps with the alternative lifting of the knees, with the arms outstretched forward and being blindfolded/with eyes closed. At the end, the angle of deviation from the initial direction (left or right) is measured; values > 30 degrees indicate problems of balance/labyrinthine damage on the side where the deviation occurred.
2.3. The Statistical Analysis of Data
3. Results
4. Discussion
4.1. Comparison of Results with Similar Studies on Balance Values According to the Gender
4.2. Comparison of Results with Similar Studies Related to Balance Values Depending on the Specifics of the Sports Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Feletti, F.; Mucci, V.; Aliverti, A. Chapter 62—Posture Analysis in Extreme Sports. In DHM and Posturography; Scataglini, S., Paul, G., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 791–798. ISBN 978-0-12-816713-7. [Google Scholar]
- Cicchella, A. Static Body Balance in Children and Expert Adults Ballroom Dancers: Insights from Spectral Analysis of Shifts. Biology 2021, 10, 1291. [Google Scholar] [CrossRef] [PubMed]
- Majcen Rosker, Z.; Kristjansson, E.; Vodicar, M.; Rosker, J. Postural Balance and Oculomotor Control Are Influenced by Neck Kinaesthetic Functions in Elite Ice Hockey Players. Gait Posture 2021, 85, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Majcen Rosker, Z.; Vodicar, M. Sport-Specific Habitual Adaptations in Neck Kinesthetic Functions Are Related to Balance Controlling Mechanisms. Appl. Sci. 2020, 10, 8965. [Google Scholar] [CrossRef]
- Vos, L.A.; Prins, M.R.; Kingma, I. Training Potential of Visual Feedback to Improve Dynamic Postural Stability. Gait Posture 2022, 92, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Fronczek–Wojciechowska, M.; Padula, G.; Kowalska, J.; Galli, M.; Livatino, S.; Kopacz, K. Static Balance and Dynamic Balance Related to Rotational Movement in Ballet Dance Students. Int. J. Perform. Anal. Sport 2016, 16, 801–816. [Google Scholar] [CrossRef] [Green Version]
- Truszczyńska, A.; Trzaskoma, Z.; Stypińska, Z.; Drzał-Grabiec, J.; Tarnowski, A. Is Static Balance Affected by Using Shoes of Different Height? Biomed. Hum. Kinet. 2016, 8, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Moein, E.; Movaseghi, F. Relationship between Some Anthropometric Indices with Dynamic and Static Balance in Sedentary Female College Students. Turk. J. Sport Exerc. 2016, 18, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Barati, A.; SafarCherati, A.; Aghayari, A.; Azizi, F.; Abbasi, H. Evaluation of Relationship between Trunk Muscle Endurance and Static Balance in Male Students. Asian J. Sports Med. 2013, 4, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Yamauchi, J.; Koyama, K. Toe Flexor Strength Is Not Related to Postural Stability during Static Upright Standing in Healthy Young Individuals. Gait Posture 2019, 73, 323–327. [Google Scholar] [CrossRef]
- Krawczyk-Suszek, M.; Martowska, B.; Sapuła, R. Analysis of the Stability of the Body in a Standing Position When Shooting at a Stationary Target―A Randomized Controlled Trial. Sensors 2022, 22, 368. [Google Scholar] [CrossRef]
- Baghbani, F.; Woodhouse, L.J.; Gaeini, A.A. Dynamic Postural Control in Female Athletes and Nonathletes After a Whole-Body Fatigue Protocol. J. Strength Cond. Res. 2016, 30, 1942–1947. [Google Scholar] [CrossRef] [PubMed]
- Kadri, M.A.; Noé, F.; Maitre, J.; Maffulli, N.; Paillard, T. Effects of Limb Dominance on Postural Balance in Sportsmen Practicing Symmetric and Asymmetric Sports: A Pilot Study. Symmetry 2021, 13, 2199. [Google Scholar] [CrossRef]
- Johnston, W.; Dolan, K.; Reid, N.; Coughlan, G.F.; Caulfield, B. Investigating the Effects of Maximal Anaerobic Fatigue on Dynamic Postural Control Using the Y-Balance Test. J. Sci. Med. Sport 2018, 21, 103–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zorko, M.; Hirsch, K.; Šarabon, N.; Supej, M. The Influence of Ski Waist-Width and Fatigue on Knee-Joint Stability and Skier’s Balance. Appl. Sci. 2020, 10, 7766. [Google Scholar] [CrossRef]
- Silva, F.M.; Duarte-Mendes, P.; Rusenhack, M.C.; Furmann, M.; Nobre, P.R.; Fachada, M.Â.; Soares, C.M.; Teixeira, A.; Ferreira, J.P. Objectively Measured Sedentary Behavior and Physical Fitness in Adults: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 8660. [Google Scholar] [CrossRef]
- Kirshner, D.; Spiegelhalder, K.; Shahar, R.T.; Shochat, T.; Agmon, M. The Association between Objective Measurements of Sleep Quality and Postural Control in Adults: A Systematic Review. Sleep Med. Rev. 2022, 63, 101633. [Google Scholar] [CrossRef]
- Chaari, F.; Rebai, H.; Boyas, S.; Rahmani, A.; Fendri, T.; Harrabi, M.A.; Sahli, S. Postural Balance Impairment in Tunisian Second Division Soccer Players with Groin Pain: A Case-Control Study. Phys. Ther. Sport 2021, 51, 85–91. [Google Scholar] [CrossRef]
- Dean, C.J.; Sell, T.C.; Robertson, A.M. Sex-Based Differences in Postural Stability: A Systematic Review. Duke Orthop. J. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Ołpińska-Lischka, M.; Kujawa, K.; Maciaszek, J. Differences in the Effect of Sleep Deprivation on the Postural Stability among Men and Women. Int. J. Environ. Res. Public Health 2021, 18, 3796. [Google Scholar] [CrossRef]
- Brophy, R.H.; Staples, J.R.; Motley, J.; Blalock, R.; Steger-May, K.; Halstead, M. Young Females Exhibit Decreased Coronal Plane Postural Stability Compared to Young Males. HSS J. 2016, 12, 26–31. [Google Scholar] [CrossRef]
- Błaszczyk, J.W.; Beck, M.; Sadowska, D. Assessment of Postural Stability in Young Healthy Subjects Based on Directional Features of Posturographic Data: Vision and Gender Effects. Acta Neurobiol. Exp. 2014, 74, 433–442. [Google Scholar]
- Gribble, P.A.; Robinson, R.H.; Hertel, J.; Denegar, C.R. The Effects of Gender and Fatigue on Dynamic Postural Control. J. Sport Rehabil. 2009, 18, 240–257. [Google Scholar] [CrossRef] [PubMed]
- Sell, T.C.; Lephart, S.M. Neuromuscular Differences Between Men and Women. In ACL Injuries in the Female Athlete: Causes, Impacts, and Conditioning Programs; Noyes, F.R., Barber-Westin, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 133–152. ISBN 978-3-662-56558-2. [Google Scholar]
- Čular, D.; Miletić, A.; Miletić, Đ. Unicycling and balance improvement. Acta Kinesiol. 2010, 4, 75–81. [Google Scholar]
- McLeod, B.; Hansen, E. Effects of the Eyerobics Visual Skills Training Program on Static Balance Performance of Male and Female Subjects. Percept Mot Ski. 1989, 69, 1123–1126. [Google Scholar] [CrossRef]
- Šarabon, N.; Kozinc, Ž.; Marković, G. Effects of Age, Sex and Task on Postural Sway during Quiet Stance. Gait Posture 2022, 92, 60–64. [Google Scholar] [CrossRef]
- Brighenti, A.; Noé, F.; Stella, F.; Schena, F.; Mourot, L. Warm-Up Improves Balance Control Differently in the Dominant and Non-Dominant Leg in Young Sportsmen According to Their Experience in Asymmetric or Symmetric Sports. Int. J. Environ. Res. Public Health 2022, 19, 4562. [Google Scholar] [CrossRef]
- Ingle, D. Postural Stability and Flexibility in Young Adults. Ursidae Undergrad. Res. J. Univ. North. Colo. 2016, 2, 5. [Google Scholar]
- Mon-López, D.; Moreira da Silva, F.; Calero Morales, S.; López-Torres, O.; Lorenzo Calvo, J. What Do Olympic Shooters Think about Physical Training Factors and Their Performance? Int. J. Environ. Res. Public Health 2019, 16, 4629. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Córcoles, V.; Nieto-Gil, P.; Ramos-Petersen, L.; Ferrer-Torregrosa, J. Balance Performance Analysis after the COVID-19 Quarantine in Children Aged between 8 and 12 Years Old: Longitudinal Study. Gait Posture 2022, 94, 203–209. [Google Scholar] [CrossRef]
- Gökdemir, K.; Cigerci, A.E.; Er, F.; Suveren Erdoğan, C.; Sever, O. The Comparison of Dynamic and Static Balance Performance of Sedentary and Different Branches Athletes. World Appl. Sci. J. 2012, 17, 1079–1082. [Google Scholar]
- Sekulic, D.; Spasic, M.; Mirkov, D.; Cavar, M.; Sattler, T. Gender-Specific Influences of Balance, Speed, and Power on Agility Performance. J. Strength Cond. Res. 2013, 27, 802–811. [Google Scholar] [CrossRef] [PubMed]
- Marinkovic, D.; Belic, A.; Marijanac, A.; Martin-Wylie, E.; Madic, D.; Obradovic, B. Static and Dynamic Postural Stability of Children Girls Engaged in Modern Dance. Eur. J. Sport Sci. 2022, 22, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yu, H.; Kim, Y.H.; Kan, W. Comparison of the Effect of Resistance and Balance Training on Isokinetic Eversion Strength, Dynamic Balance, Hop Test, and Ankle Score in Ankle Sprain. Life 2021, 11, 307. [Google Scholar] [CrossRef] [PubMed]
- Göktepe, M.M.; Günay, M. The Effects of Proprioceptive Exercise Programme given to Female Footballers Their on Balance, Proprioceptive Sense and Functional Performance: Kadın Futbolculara Uygulanan Proprioseptif Egzersiz Programının, Denge, Proprioseptif Duyu ve Fonksiyonel Performans Üzerine Etkisi. J. Hum. Sci. 2019, 16, 1051–1070. [Google Scholar] [CrossRef] [Green Version]
- Eylen, M.A.; Daglioglu, O.; Gucenmez, E. The Effects of Different Strength Training on Static and Dynamic Balance Ability of Volleyball Players. J. Educ. Train. Stud. 2017, 5, 13–18. [Google Scholar] [CrossRef]
- Dallas, G.; Mavvidis, A.; Kirialanis, P.; Papouliakos, S. The Effect of 8 Weeks of Whole Body Vibration Training on Static Balance and Explosive Strength of Lower Limbs in Physical Education Students. Acta Gymnica 2017, 47, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Wilczyński, B.; Hinca, J.; Ślęzak, D.; Zorena, K. The Relationship between Dynamic Balance and Jumping Tests among Adolescent Amateur Rugby Players. A Preliminary Study. Int. J. Environ. Res. Public Health 2021, 18, 312. [Google Scholar] [CrossRef]
- Balance Fitness Tests. Available online: https://www.topendsports.com/testing/balance.htm (accessed on 27 January 2022).
- Functional Reach Test (FRT). Available online: https://www.physio-pedia.com/Functional_Reach_Test_(FRT) (accessed on 27 January 2022).
- Curnow, D.; Cobbin, D.; Wyndham, J. Reliability of the Stork Test: Is Starting Stance Important? Chiropr. J. Aust. 2010, 40, 137–141. [Google Scholar] [CrossRef]
- Muehlbauer, T.; Roth, R.; Mueller, S.; Granacher, U. Intra and Intersession Reliability of Balance Measures During One-Leg Standing in Young Adults. J. Strength Cond. Res. 2011, 25, 2228–2234. [Google Scholar] [CrossRef]
- Panta, K. A Study to Associate the Flamingo Test and the Stork Test in Measuring Static Balance on Healthy Adults. Foot Ankle Online J. 2015, 8, 4. [Google Scholar]
- Springer, B.A.; Marin, R.; Cyhan, T.; Roberts, H.; Gill, N.W. Normative Values for the Unipedal Stance Test with Eyes Open and Closed. J. Geriatr. Phys. 2007, 30, 8–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsigilis, N.; Douda, H.; Tokmakidis, S.P. Test-Retest Reliability of the Eurofit Test Battery Administered to University Students. Percept Mot Ski. 2002, 95, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Walden, T. Standardized Field Sobriety Testing: Learning from Our Mistakes; U.S. Department of Justice: Washington, DC, USA, 1987.
- Zhang, Y.; Wang, W. Reliability of the Fukuda Stepping Test to Determine the Side of Vestibular Dysfunction. J. Int. Med. Res. 2011, 39, 1432–1437. [Google Scholar] [CrossRef] [Green Version]
- Amir, D.; Amir, H.S.; Saeed, G.; Amir, G.R. The Effect of Diurnal Rhythms on Static and ProQuest. Biomed. Hum. Kinet. 2021, 13, 205–211. [Google Scholar] [CrossRef]
- Karagul, O.; Nalcakan, G.R.; Dogru, Y.; Tas, M. Effects of circadian rhythm on balance performance. Pol. J. Sport Tour. 2017, 24, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Zouabi, A.; Quarck, G.; Martin, T.; Grespinet, M.; Gauthier, A. Is There a Circadian Rhythm of Postural Control and Perception of the Vertical? Chronobiol. Int. 2016, 33, 1320–1330. [Google Scholar] [CrossRef]
- di Cagno, A.; Fiorilli, G.; Iuliano, E.; Aquino, G.; Giombini, A.; Battaglia, C.; Piazza, M.; Tsopani, D.; Calcagno, G. Time-of-Day Effects on Static and Dynamic Balance in Elite Junior Athletes and Untrained Adolescents. Int. J. Sports Sci. Coach. 2014, 9, 615–625. [Google Scholar] [CrossRef]
- Munnings, A.; Chisnall, B.; Oji, S.; Whittaker, M.; Kanegaonkar, R. Environmental Factors That Affect the Fukuda Stepping Test in Normal Participants. J. Laryngol. Otol. 2015, 129, 450–453. [Google Scholar] [CrossRef]
- Sandu, A.S. Etica si Deontologie Profesionala; Lumen: Iasi, Moldavia, 2012; ISBN 978-973-166-302-9. [Google Scholar]
- World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191. [CrossRef] [Green Version]
- Sarma, K.V.S.; Vardhan, R.V. Multivariate Statistics Made Simple: A Practical Approach; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-0-429-87787-2. [Google Scholar]
- Grice, J.W.; Iwasaki, M. A Truly Multivariate Approach to MANOVA. Appl. Multivar. Res. 2009, 12, 199. [Google Scholar] [CrossRef]
- Armstrong, R.A. When to Use the Bonferroni Correction. Ophthalmic Physiol. Opt. 2014, 34, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Murariu, G. Fizică Statistică Și Computațională—Aspecte Contemporane Si Aplicații; Galați University Press: Galati, Romania, 2018. [Google Scholar]
- Murariu, G.; Munteanu, D. Lucrări Practice de Identificare, Modelare Şi Simulare a Proceselor Fizice; Galați University Press: Galati, Romania, 2018. [Google Scholar]
- Opariuc-Dan, C. Statistică Aplicată În Științele Socio-Umane. Analiza Asocierilor Și a Diferențelor Statistice; Arhip Art: Constanța, Romania, 2011. [Google Scholar]
- Iverson, G.L.; Koehle, M.S. Normative Data for the Balance Error Scoring System in Adults. Rehabil. Res. Pract. 2013, 2013, e846418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.; Li, Y.; Wang, B.; Zhao, C.; Wu, T.; Liu, T.; Sun, F. Objectively Measured Physical Activity Is Associated with Static Balance in Young Adults. Int. J. Environ. Res. Public Health 2021, 18, 10787. [Google Scholar] [CrossRef] [PubMed]
- Sell, T.C.; Lovalekar, M.T.; Nagai, T.; Wirt, M.D.; Abt, J.P.; Lephart, S.M. Gender Differences in Static and Dynamic Postural Stability of Soldiers in the Army’s 101st Airborne Division (Air Assault). J. Sport Rehabil. 2018, 27, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Wikstrom, E.A.; Tillman, M.D.; Kline, K.J.; Borsa, P.A. Gender and Limb Differences in Dynamic Postural Stability During Landing. Clin. J. Sport Med. 2006, 16, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Jastrzębska, A.D. Gender Differences in Postural Stability among 13-Year-Old Alpine Skiers. Int. J. Environ. Res. Public Health 2020, 17, 3859. [Google Scholar] [CrossRef]
- Whyte, E.; Burke, A.; White, E.; Moran, K. A High-Intensity, Intermittent Exercise Protocol and Dynamic Postural Control in Men and Women. J. Athl. Train. 2015, 50, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Onofrei, R.R.; Amaricai, E. Postural Balance in Relation with Vision and Physical Activity in Healthy Young Adults. Int. J. Environ. Res. Public Health 2022, 19, 5021. [Google Scholar] [CrossRef]
- Trajković, N.; Smajla, D.; Kozinc, Ž.; Šarabon, N. Postural Stability in Single-Leg Quiet Stance in Highly Trained Athletes: Sex and Sport Differences. J. Clin. Med. 2022, 11, 1009. [Google Scholar] [CrossRef]
- Hahn, T.; Foldspang, A.; Vestergaard, E.; Ingemann-Hansen, T. One-Leg Standing Balance and Sports Activity. Scand. J. Med. Sci. Sports 1999, 9, 15–18. [Google Scholar] [CrossRef]
- Bednarczuk, G.; Molik, B.; Morgulec-Adamowicz, N.; Kosmol, A.; Wiszomirska, I.; Rutkowska, I.; Perkowski, K. Static Balance of Visually Impaired Paralympic Goalball Players. Int. J. Sports Sci. Coach. 2017, 12, 611–617. [Google Scholar] [CrossRef]
- Burfeind, K.; Hong, J.; Stavrianeas, S. Gender Differences in the Neuromuscular Fitness Profiles of NCAA Division III Soccer Players. Isokinet. Exerc. Sci. 2012, 20, 115–120. [Google Scholar] [CrossRef]
- Wasiluk, A.; Saczuk, J. Changes in the Somatic Build and Physical Fitness of Physical Education Students in the Years 2004 and 2014. Bibl. Akad. Wych. Fiz. W. Pozn. 2020, 27, 29–34. [Google Scholar]
- Dallinga, J.M.; van der Does, H.T.D.; Benjaminse, A.; Lemmink, K.A.P.M. Dynamic Postural Stability Differences between Male and Female Players with and without Ankle Sprain. Phys. Ther. Sport 2016, 17, 69–75. [Google Scholar] [CrossRef]
- Dallas, G.; Mavidis, A.; Dallas, C.; Papouliakos, S. Gender differences of high level gymnasts on postural stability: The effect of ankle sprain injuries. Sci. Gymnast. J. 2017, 9, 13. [Google Scholar]
- Polechonski, J.; Blaszczyk, J. The Effect of Acoustic Noise on Postural Sway in Male and Female Subjects. J. Hum. Kinet. 2006, 15, 17. [Google Scholar]
- Çelenk, Ç.; Arslan, H.; Aktuğ, Z.B.; Şimşek, E. The comparison between static and dynamic balance performances of team and individual athletes. Eur. J. Phys. Educ. Sport Sci. 2018, 4. [Google Scholar] [CrossRef]
- Aloui, G.; Hermassi, S.; Hayes, L.D.; Sanal Hayes, N.E.M.; Bouhafs, E.G.; Chelly, M.S.; Schwesig, R. Effects of Plyometric and Short Sprint with Change-of-Direction Training in Male U17 Soccer Players. Appl. Sci. 2021, 11, 4767. [Google Scholar] [CrossRef]
- Olchowik, G.; Czwalik, A. Effects of Soccer Training on Body Balance in Young Female Athletes Assessed Using Computerized Dynamic Posturography. Appl. Sci. 2020, 10, 1003. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, S.; Demura, S.; Uchiyama, M. Centre of Pressure Sway Characteristics during Static One-Legged Stance of Athletes from Different Sports. J. Sports Sci. 2008, 26, 775–779. [Google Scholar] [CrossRef]
- Didier, H.; Assandri, F.; Gaffuri, F.; Cavagnetto, D.; Abate, A.; Villanova, M.; Maiorana, C. The Role of Dental Occlusion and Neuromuscular Behavior in Professional Ballet Dancers’ Performance: A Pilot Study. Healthcare 2021, 9, 251. [Google Scholar] [CrossRef] [PubMed]
- Krištofič, J.; Malý, T.; Zahálka, F. The Effect of Intervention Balance Program on Postural Stability. Sci. Gymnast. J. 2018, 10, 13. [Google Scholar]
- Özer, Ö.; Soslu, R. Comparison of the Static Balance, Strength and Flexibility Characteristics of the University Students Who Taken Artistic Gymnastic Lesson. Turk. J. Sport Exerc. 2019, 21, 229–233. [Google Scholar] [CrossRef]
- Kartal, A. Comparison of Static Balance in Different Athletes. Anthropol. 2014, 18, 811–815. [Google Scholar] [CrossRef]
- Koide, Y.; Ueki, Y.; Asai, Y.; Morimoto, H.; Asai, H.; Johnson, E.G.; Lohman, E.B.; Sakuma, E.; Mizutani, J.; Ueki, T.; et al. Differences in Postural Stability and Dynamic Visual Acuity among Healthy Young Adults in Relation to Sports Activity: A Cross Sectional Study. J. Phys. Ther. Sci. 2019, 31, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Andreeva, A.; Melnikov, A.; Skvortsov, D.; Akhmerova, K.; Vavaev, A.; Golov, A.; Draugelite, V.; Nikolaev, R.; Chechelnickaia, S.; Zhuk, D.; et al. Postural Stability in Athletes: The Role of Age, Sex, Performance Level, and Athlete Shoe Features. Sports 2020, 8, 89. [Google Scholar] [CrossRef]
- Andreeva, A.; Melnikov, A.; Skvortsov, D.; Akhmerova, K.; Vavaev, A.; Golov, A.; Draugelite, V.; Nikolaev, R.; Chechelnickaia, S.; Zhuk, D.; et al. Postural Stability in Athletes: The Role of Sport Direction. Gait Posture 2021, 89, 120–125. [Google Scholar] [CrossRef]
- Feizolahi, F.; Azarbayjani, M.-A. Comparison of Static and Dynamic Balance in Amateur Male Athletes. Sci. J. Rehabil. Med. 2014, 3, 89–98. [Google Scholar] [CrossRef]
- Marinkovic, D.; Pavlovic, S.; Madic, d.; Obradovic, B.; Németh, Z.; Belic, A. Postural Stability—A Comparison between Rowers and Field Sport Athletes. JPES 2021, 21, 1525–1532. [Google Scholar] [CrossRef]
- Čeklić, U.; Šarabon, N.; Kozinc, Ž. Postural Control in Unipedal Quiet Stance in Young Female Gymnasts and the Effects of Training with Consideration of Transient Behavior of Postural Sway. Int. J. Environ. Res. Public Health 2022, 19, 982. [Google Scholar] [CrossRef]
- Omorczyk, J.; Bujas, P.; Puszczałowska-Lizis, E.; Biskup, L. Balance in Handstand and Postural Stability in Standing Position in Athletes Practicing Gymnastics. Acta Bioeng. Biomech. 2018, 20, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Lauenroth, A.; Reinhardt, L.; Schulze, S.; Laudner, K.G.; Delank, K.-S.; Schwesig, R. Comparison of Postural Stability and Regulation among Female Athletes from Different Sports. Appl. Sci. 2021, 11, 3277. [Google Scholar] [CrossRef]
- Rogério de Oliveira, M.; Albuquerque de Souza, P.E.; Primo, S.H.; Carvalho, C.E.; Stella da Silva, R.; Alexandre da Silva, R. Postural Control Responses during One-Leg Stance Balance Tasks Can Be Dependent of Sports Modality? Phys. Ther. Sport 2016, 18, e3. [Google Scholar] [CrossRef]
- Roh, H.-T.; Cho, S.-Y.; So, W.-Y. Taekwondo Training Improves Mood and Sociability in Children from Multicultural Families in South Korea: A Randomized Controlled Pilot Study. Int. J. Environ. Res. Public Health 2018, 15, 757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrin, P.; Deviterne, D.; Hugel, F.; Perrot, C. Judo, Better than Dance, Develops Sensorimotor Adaptabilities Involved in Balance Control. Gait Posture 2002, 15, 187–194. [Google Scholar] [CrossRef]
- Stawicki, P.; Wareńczak, A.; Lisiński, P. Does Regular Dancing Improve Static Balance? Int. J. Environ. Res. Public Health 2021, 18, 5056. [Google Scholar] [CrossRef]
- Kilroy, E.A.; Crabtree, O.M.; Crosby, B.; Parker, A.; Barfield, W.R. The Effect of Single-Leg Stance on Dancer and Control Group Static Balance. Int J Exerc Sci 2016, 9, 110–120. [Google Scholar]
- Harmon, B.V.; Reed, A.N.; Rogers, R.R.; Marshall, M.R.; Pederson, J.A.; Williams, T.D.; Ballmann, C.G. Differences in Balance Ability and Motor Control between Dancers and Non-Dancers with Varying Foot Positions. J. Funct. Morphol. Kinesiol. 2020, 5, 54. [Google Scholar] [CrossRef]
- Bojanowska, M.; Trybulec, B.; Zyznawska, J.; Barłowska-Trybulec, M.; Mańko, G. Assessment of the Level of Static and Dynamic Balance in Healthy People, Practicing Selected Latin American Dances. Acta Bioeng. Biomech. 2021, 23, 61–68. [Google Scholar] [CrossRef]
- Belluscio, V.; Bergamini, E.; Tramontano, M.; Orejel Bustos, A.; Allevi, G.; Formisano, R.; Vannozzi, G.; Buzzi, M.G. Gait Quality Assessment in Survivors from Severe Traumatic Brain Injury: An Instrumented Approach Based on Inertial Sensors. Sensors 2019, 19, 5315. [Google Scholar] [CrossRef] [Green Version]
- Lou, C.; Pang, C.; Jing, C.; Wang, S.; He, X.; Liu, X.; Huang, L.; Lin, F.; Liu, X.; Wang, H. Dynamic Balance Measurement and Quantitative Assessment Using Wearable Plantar-Pressure Insoles in a Pose-Sensed Virtual Environment. Sensors 2018, 18, 4193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Rubio, P.R.; Bagur-Calafat, C.; López-de-Celis, C.; Bueno-Gracía, E.; Cabanas-Valdés, R.; Herrera-Pedroviejo, E.; Girabent-Farrés, M. Validity and Reliability of the Satel 40 Hz Stabilometric Force Platform for Measuring Quiet Stance and Dynamic Standing Balance in Healthy Subjects. Int. J. Environ. Res. Public Health 2020, 17, 7733. [Google Scholar] [CrossRef] [PubMed]
Gender | Participants | Non-Athletes | Team Sports Games | Individual Sports |
---|---|---|---|---|
Male | 109 (69.42%) | 42 (26.75%) | 36 (22.93%) | 31 (19.74%) |
Female | 48 (30.58%) | 27 (17.20%) | 7 (4.46%) | 14 (8.92%) |
Total lot | 157 (100%) | 69 (43.95%) | 43 (27.39%) | 45 (28.66%) |
Effect | λ | F | Hypothesis df | Error df | Sig. | Ƞ2p | Observed Power |
---|---|---|---|---|---|---|---|
Gender | 0.892 | 2.508 b | 7.000 | 145.000 | 0.018 | 0.108 | 0.867 |
Sport activity | 0.804 | 2.386 b | 14.000 | 290.000 | 0.004 | 0.103 | 0.979 |
Gender * Sport activity | 0.957 | 0.465 b | 14.000 | 290.000 | 0.950 | 0.022 | 0.288 |
Dependent Variable | Sum of Squares | Mean Square | F (1, 155) | Sig. | Partial Eta Squared | Noncent Parameter | Observed Power |
---|---|---|---|---|---|---|---|
One-leg standing balance test | 531.578 | 531.578 | 3.007 | 0.085 | 0.019 | 3.007 | 0.407 |
Functional reach test | 67.071 | 67.071 | 1.574 | 0.211 | 0.010 | 1.574 | 0.239 |
Stork test | 2.356 | 2.356 | 0.028 | 0.868 | 0.000 | 0.028 | 0.053 |
Flamingo test | 50.365 | 50.365 | 4.803 | 0.030 | 0.030 | 4.803 | 0.586 |
Bass test | 806.835 | 806.835 | 4.499 | 0.036 | 0.028 | 4.499 | 0.559 |
Walk and turn field sobriety test | 0.043 | 0.043 | 0.390 | 0.533 | 0.003 | 0.390 | 0.095 |
Fukuda test | 311.226 | 311.226 | 1.606 | 0.207 | 0.010 | 1.606 | 0.242 |
Dependent Variable | Sum of Squares | Mean Square | F (2, 154) | Sig. | Partial Eta Squared | Noncent Parameter | Observed Power |
---|---|---|---|---|---|---|---|
One-leg standing balance test | 1522.142 | 761.071 | 4.438 | 0.013 | 0.054 | 8.875 | 0.756 |
Functional reach test | 138.250 | 69.125 | 1.630 | 0.199 | 0.021 | 3.259 | 0.340 |
Stork test | 882.374 | 441.187 | 5.500 | 0.005 | 0.067 | 11.000 | 0.845 |
Flamingo test | 65.282 | 32.641 | 3.122 | 0.047 | 0.039 | 6.243 | 0.593 |
Bass test | 928.811 | 464.406 | 2.584 | 0.079 | 0.032 | 5.168 | 0.509 |
Walk and turn field sobriety test | 0.832 | 0.416 | 3.923 | 0.022 | 0.048 | 7.845 | 0.700 |
Fukuda test | 2930.903 | 1465.452 | 8.234 | 0.000 | 0.097 | 16.467 | 0.958 |
Test/Dependent Variables | Group | Minimum | Maximum | Mean | Std. Deviation | Std. Error | a–b | Sig. b |
---|---|---|---|---|---|---|---|---|
One-leg standing balance test | a. Male | 1.85 | 89.18 | 12.0264 | 15.47649 | 1.274 | 3.994 | 0.085 |
b. Female | 2.39 | 26.62 | 8.0325 | 5.71390 | 1.919 | |||
Functional reach test | a. Male | 21.00 | 59.00 | 42.9417 | 7.34700 | 0.625 | −1.419 | 0.211 |
b. Female | 37.00 | 53.00 | 44.3604 | 4.05787 | 0.942 | |||
Stork test | a. Male | 1.00 | 82.84 | 6.6308 | 10.47051 | 0.885 | −0.266 | 0.868 |
b. Female | 1.22 | 24.79 | 6.8967 | 5.44521 | 1.334 | |||
Flamingo test | a. Male | 1.00 | 14.00 | 5.2294 | 3.46579 | 0.310 | 1.229 * | 0.030 |
b. Female | 1.00 | 12.00 | 4.0000 | 2.64173 | 0.467 | |||
Bass test | a. Male | 34.00 | 100.00 | 75.4128 | 14.10884 | 1.283 | −4.920 * | 0.036 |
b. Female | 46.00 | 97.00 | 80.3333 | 11.57645 | 1.933 | |||
Walk and turn field sobriety test | a. Male | .00 | 2.00 | 0.1193 | 0.35289 | 0.032 | 0.036 | 0.533 |
b. Female | .00 | 1.00 | 0.0833 | 0.27931 | 0.048 | |||
Fukuda test | a. Male | .00 | 65.00 | 13.7982 | 13.81276 | 1.333 | −3.056 | 0.207 |
b. Female | .00 | 60.00 | 16.8542 | 14.16016 | 2.009 |
Test | Group | Minimum | Maximum | Mean | Std. Deviation | Std. Error | a–b | Sig. b | a–c | Sig. b | b–c | Sig. b |
---|---|---|---|---|---|---|---|---|---|---|---|---|
One-leg standing balance test | a. NA | 1.85 | 34.57 | 7.370 | 6.758 | 1.577 | −7.039 * | 0.019 | −5.257 | 0.113 | 1.782 | 1.000 |
b. TSG | 2.55 | 57.50 | 14.409 | 16.120 | 1.997 | |||||||
c. IS | 1.91 | 89.18 | 12.627 | 16.781 | 1.952 | |||||||
Functional reach test | a. NA | 22.00 | 54.00 | 42.410 | 5.879 | 0.784 | −2.252 | 0.231 | −1.214 | 0.997 | 1.038 | 1.000 |
b. TSG | 21.00 | 59.00 | 44.662 | 7.656 | 0.993 | |||||||
c. IS | 29.00 | 57.00 | 43.624 | 6.250 | 0.971 | |||||||
Stork test | a. NA | 1.00 | 26.00 | 4.042 | 4.378 | 1.078 | −5.006 * | 0.014 | −4.531 * | 0.027 | 0.474 | 1.000 |
b. TSG | 1.00 | 41.72 | 9.047 | 8.469 | 1.366 | |||||||
c. IS | 1.12 | 82.84 | 8.573 | 13.515 | 1.335 | |||||||
Flamingo test | a. NA | 1.00 | 14.00 | 5.492 | 3.432 | 0.389 | 1.563 * | 0.042 | 0.737 | 0.708 | −0.825 | 0.700 |
b. TSG | 1.00 | 11.00 | 3.930 | 2.501 | 0.493 | |||||||
c. IS | 1.00 | 13.00 | 4.755 | 3.523 | 0.482 | |||||||
Bass test | a. NA | 46.00 | 100.00 | 74.405 | 12.234 | 1.614 | −5.827 | 0.080 | −3.194 | 0.647 | 2.633 | 1.000 |
b. TSG | 46.00 | 100.00 | 80.232 | 14.430 | 2.044 | |||||||
c. IS | 34.00 | 95.00 | 77.600 | 14.102 | 1.998 | |||||||
Walk and turn field sobriety test | a. NA | 0.00 | 2.00 | 0.188 | 0.429 | 0.039 | 0.165 * | 0.030 | 0.122 | 0.159 | −0.043 | 1.000 |
b. TSG | 0.00 | 1.00 | 0.023 | 0.152 | 0.050 | |||||||
c. IS | 0.00 | 1.00 | 0.066 | 0.252 | 0.049 | |||||||
Fukuda test | a. NA | 0.00 | 65.00 | 19.536 | 15.221 | 1.606 | 9.606 * | 0.001 | 7.581 * | 0.011 | −2.025 | 1.000 |
b. TSG | 0.00 | 50.00 | 9.930 | 11.187 | 2.035 | |||||||
c. IS | 0.00 | 60.00 | 11.955 | 12.058 | 1.989 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mocanu, G.D.; Murariu, G.; Onu, I.; Badicu, G. The Influence of Gender and the Specificity of Sports Activities on the Performance of Body Balance for Students of the Faculty of Physical Education and Sports. Int. J. Environ. Res. Public Health 2022, 19, 7672. https://doi.org/10.3390/ijerph19137672
Mocanu GD, Murariu G, Onu I, Badicu G. The Influence of Gender and the Specificity of Sports Activities on the Performance of Body Balance for Students of the Faculty of Physical Education and Sports. International Journal of Environmental Research and Public Health. 2022; 19(13):7672. https://doi.org/10.3390/ijerph19137672
Chicago/Turabian StyleMocanu, George Danut, Gabriel Murariu, Ilie Onu, and Georgian Badicu. 2022. "The Influence of Gender and the Specificity of Sports Activities on the Performance of Body Balance for Students of the Faculty of Physical Education and Sports" International Journal of Environmental Research and Public Health 19, no. 13: 7672. https://doi.org/10.3390/ijerph19137672
APA StyleMocanu, G. D., Murariu, G., Onu, I., & Badicu, G. (2022). The Influence of Gender and the Specificity of Sports Activities on the Performance of Body Balance for Students of the Faculty of Physical Education and Sports. International Journal of Environmental Research and Public Health, 19(13), 7672. https://doi.org/10.3390/ijerph19137672