Antifouling Effects of Superhydrophobic Coating on Sessile Marine Invertebrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Fabrication and Characterization of the Superhydrophobic Coating
2.3. Data Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Phillippi, A.L.; O’Connor, N.J.; Lewis, A.F.; Kim, Y.K. Surface Flocking as a Possible Anti-Biofoulant. Aquaculture 2001, 195, 225–238. [Google Scholar] [CrossRef]
- Bae, S.; Ubagan, M.D.; Shin, S.; Kim, D.G. Comparison of Recruitment Patterns of Sessile Marine Invertebrates According to Substrate Characteristics. Int. J. Environ. Res. Public Health 2022, 19, 1083. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, T.; Kim, D.; Kim, P.; Kim, D.G.; Shin, S. Monitoring and Impact of Marine Ecological Disturbance Causing Organisms on an Oyster and Sea Squirt Farm. Env. Biol. Res. 2017, 35, 677–683. [Google Scholar] [CrossRef]
- Schultz, M.P.; Bendick, J.A.; Holm, E.R.; Hertel, W.M. Economic Impact of Biofouling on a Naval Surface Ship. Biofouling 2011, 27, 87–98. [Google Scholar] [CrossRef]
- Choi, C.-H.; Kwak, Y.; Kim, M.K.; Kim, D.G. Effective Harmful Organism Management I: Fabrication of Facile and Robust Superhydrophobic Coating on Fabric. Sustainability 2020, 12, 5876. [Google Scholar] [CrossRef]
- Vallee-Rehel, K.; Mariette, B.; Hoarau, P.A.; Guerin, P.; Langlois, V.; Langlois, J.Y. A New Approach in the Development and Testing of Antifouling Paints without Organotin Derivatives. J. Coat. Technol. 1998, 70, 55–63. [Google Scholar] [CrossRef]
- IMO. International Convention on the Control of Harmful Antifouling Systems on Ships; IMO: London, UK, 2001. [Google Scholar]
- Yebra, D.M.; Kiil, S.; Dam-Johansen, K. Antifouling Technology—Past, Present and Future Steps towards Efficient and Environmentally Friendly Antifouling Coatings. Prog. Org. Coat. 2004, 50, 75–104. [Google Scholar] [CrossRef]
- Chambers, L.D.; Stokes, K.R.; Walsh, F.C.; Wood, R.J.K. Modern Approaches to Marine Antifouling Coatings. Surf. Coat. Technol. 2006, 201, 3642–3652. [Google Scholar] [CrossRef] [Green Version]
- Thomas, K.V.; Brooks, S. The Environmental Fate and Effects of Antifouling Paint Biocides. Biofouling 2010, 26, 73–88. [Google Scholar] [CrossRef]
- Arai, T.; Harino, H.; Ohji, M.; Langston, W.J. Ecotoxicology of Antifouling Biocides; Springer: Tokyo, Japan, 2009; ISBN 9784431857082. [Google Scholar]
- Cima, F.; Varello, R. Potential Disruptive Effects of Copper-Based Antifouling Paints on the Biodiversity of Coastal Macrofouling Communities. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef]
- Castro, K.A.D.F.; Moura, N.M.M.; Fernandes, A.; Faustino, M.A.F.; Simões, M.M.Q.; Cavaleiro, J.A.S.; Nakagaki, S.; Almeida, A.; Cunha, Â.; Silvestre, A.J.D.; et al. Control of Listeria Innocua Biofilms by Biocompatible Photodynamic Antifouling Chitosan Based Materials. Dye. Pigment. 2017, 137, 265–276. [Google Scholar] [CrossRef]
- MacKenzie, A.F.; Maltby, E.A.; Harper, N.; Bueley, C.; Olender, D.; Wyeth, R.C. Periodic Ultraviolet-C Illumination for Marine Sensor Antifouling. Biofouling 2019, 35, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Omae, I. General Aspects of Tin-Free Antifouling Paints. Chem. Rev. 2003, 103, 3431–3448. [Google Scholar] [CrossRef] [PubMed]
- Epstein, A.K.; Wong, T.-S.; Belisle, R.A.; Boggs, E.M.; Aizenberg, J. Liquid-Infused Structured Surfaces with Exceptional Anti-Biofouling Performance. Proc. Natl. Acad. Sci. USA 2012, 109, 13182–13187. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Guo, Z. Bioinspired Surfaces with Wettability for Antifouling Application. Nanoscale 2019, 11, 22636–22663. [Google Scholar] [CrossRef]
- Kietzig, A.-M.; Hatzikiriakos, S.G.; Englezos, P. Patterned Superhydrophobic Metallic Surfaces. Langmuir 2009, 25, 4821–4827. [Google Scholar] [CrossRef]
- Darmanin, T.; Guittard, F. Recent Advances in the Potential Applications of Bioinspired Superhydrophobic Materials. J. Mater. Chem. A 2014, 2, 16319–16359. [Google Scholar] [CrossRef]
- Wang, N.; Xiong, D.; Deng, Y.; Shi, Y.; Wang, K. Mechanically Robust Superhydrophobic Steel Surface with Anti-Icing, UV-Durability, and Corrosion Resistance Properties. Acs Appl. Mater. Inter. 2015, 7, 6260–6272. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, C.; Tu, J. Robust Slippery Coating with Superior Corrosion Resistance and Anti-Icing Performance for AZ31B Mg Alloy Protection. Acs. Appl. Mater. Inter. 2017, 9, 11247–11257. [Google Scholar] [CrossRef]
- Pechook, S.; Kornblum, N.; Pokroy, B. Bio-Inspired Superoleophobic Fluorinated Wax Crystalline Surfaces. Adv. Funct. Mater. 2013, 23, 4572–4576. [Google Scholar] [CrossRef]
- Pechook, S.; Pokroy, B. Self-Assembling, Bioinspired Wax Crystalline Surfaces with Time-Dependent Wettability. Adv. Funct. Mater. 2012, 22, 745–750. [Google Scholar] [CrossRef]
- Zheng, J.; Song, W.; Huang, H.; Chen, H. Protein Adsorption and Cell Adhesion on Polyurethane/Pluronic Surface with Lotus Leaf-like Topography. Colloids Surf. B Biointerfaces 2009, 77, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Guo, Z.; Liu, W. Biomimetic Multi-Functional Superamphiphobic FOTS-TiO2 Particles beyond Lotus Leaf. Acs Appl. Mater. Inter. 2016, 8, 27188–27198. [Google Scholar] [CrossRef] [PubMed]
- Ogihara, H.; Xie, J.; Saji, T. Controlling Surface Energy of Glass Substrates to Prepare Superhydrophobic and Transparent Films from Silica Nanoparticle Suspensions. J. Colloid Interf. Sci. 2015, 437, 24–27. [Google Scholar] [CrossRef]
- Choe, B.L. Illustrated Encyclopedia of Fauna and Flora of Korea. Mollusca (II); Ministry of Education: Seoul, Korea, 1992; Volume 33. [Google Scholar]
- Song, J.I. Illustrated Encyclopedia of Fauna and Flora of Korea (Anthozoa); Ministry of Education & Human Resources Development: Seoul, Korea, 2004; Volume 39. [Google Scholar]
- Seo, J.E. Illustrated Encyclopedia of Fauna and Flora of Korea (Bryozoa); Ministry of Education and Human Resources: Seoul, Korea, 2005; Volume 40. [Google Scholar]
- Park, J.H. Invertebrate Fauna of Korea: Thecates; National Institute of Biological Resources, Ministry of Environment: Seoul, Korea, 2010; Volume 4. [Google Scholar]
- Kim, I.-H. Invertebrate Fauna of Korea: Barnacles; National Institute of Biological Resources, Ministry of Environment: Seoul, Korea, 2011; Volume 21. [Google Scholar]
- Bone, Y.; James, N.P. Bryozoans as Carbonate Sediment Producers on the Cool-Water Lacepede Shelf, Southern Australia. Sediment. Geol. 1993, 86, 247–271. [Google Scholar] [CrossRef]
- Amini, Z.Z.; Adabi, M.H.; Burrett, C.F.; Quilty, P.G. Bryozoan Distribution and Growth Form Associations as a Tool in Environmental Interpretation, Tasmania, Australia. Sediment. Geol. 2004, 167, 1–15. [Google Scholar] [CrossRef]
- Seo, J.; Kil, H.-J. Bryozoa of Korea Cheilostomata; National Institute of Biological Resources (NIBR): Seoul, Korea, 2019; ISBN 978-89-6811-394-9. [Google Scholar]
- Wada, H.; Makabe, K.W.; Nakauchi, M.; Satoh, N. Phylogenetic Relationships between Solitary and Colonial Ascidians, as Inferred from the Sequence of the Central Region of Their Respective 18S RDNAs. Biol. Bull. 1992, 183, 448–455. [Google Scholar] [CrossRef]
- Hiebert, L.S.; Vieira, E.A.; Dias, G.M.; Tiozzo, S.; Brown, F.D. Colonial Ascidians Strongly Preyed upon, yet Dominate the Substrate in a Subtropical Fouling Community. Proc. R. Soc. B 2019, 286, 20190396. [Google Scholar] [CrossRef] [Green Version]
- Trygonis, V.; Sini, M. PhotoQuad: A Dedicated Seabed Image Processing Software, and a Comparative Error Analysis of Four Photoquadrat Methods. J. Exp. Mar. Biol. Ecol. 2012, 424, 99–108. [Google Scholar] [CrossRef]
- Clarke, K.; Ainsworth, M. A Method of Linking Multivariate Community Structure to Environmental Variables. Mar. Ecol. Prog. Ser. 1993, 92, 205–219. [Google Scholar] [CrossRef]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods; PRIMER-E Plymouth Marine Laboratory: Plymouth, UK, 2008. [Google Scholar]
- Clarke, K.R.; Gorley, R. PRIMER v7: User Manual/Tutorial; PRIMER-E: Plymouth, UK, 2015. [Google Scholar]
- McCune, B.; Grace, J. Analysis of Ecological Communities; MjM Software Design: Gleneden Beach, OR, USA, 2002; Volume 28. [Google Scholar]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Community Ecology Package. R Package Version 2013, 2, 321–326. [Google Scholar]
- Lejars, M.; Margaillan, A.; Bressy, C. Fouling Release Coatings: A Nontoxic Alternative to Biocidal Antifouling Coatings. Chem. Rev. 2012, 112, 4347–4390. [Google Scholar] [CrossRef] [PubMed]
- Walters, L.J.; Wethey, D.S. Settlement, Refuges, and Adult Body Form in Colonial Marine Invertebrates: A Field Experiment. Biol. Bull. 1991, 180, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Ke, C.; Lu, C.; Li, S. The Influence of Temperature and Light on Larval Pre-Settlement Metamorphosis: A Study of the Effects of Environmental Factors on Pre-Settlement Metamorphosis of the Solitary Ascidian Styela Canopus. Mar. Freshw. Behav. Physiol. 2010, 43, 11–24. [Google Scholar] [CrossRef]
- Scardino, A.J.; Zhang, H.; Cookson, D.J.; Lamb, R.N.; Nys, R. de The Role of Nano-Roughness in Antifouling. Biofouling 2009, 25, 757–767. [Google Scholar] [CrossRef]
- Chabot, R.; Bourget, E. Influence of Substratum Heterogeneity and Settled Barnacle Density on the Settlement of Cypris Larvae. Mar. Biol. 1988, 97, 45–56. [Google Scholar] [CrossRef]
- Hadfield, M.G.; Paul, V.J. Natural Chemical Cues for Settlement and Metamorphosis of Marine-Invertebrate Larvae. Mar. Chem. Ecol. 2001, 13, 431–461. [Google Scholar]
- Gerhart, D.J.; Rittschof, D.; Hooper, I.R.; Eisenman, K.; Meyer, A.E.; Baier, R.E.; Young, C. Rapid and Inexpensive Quantification of the Combined Polar Components of Surface Wettability: Application to Biofouling. Biofouling 1992, 5, 251–259. [Google Scholar] [CrossRef]
- Zeng, F.; Wunderer, J.; Salvenmoser, W.; Ederth, T.; Rothbächer, U. Identifying Adhesive Components in a Model Tunicate. Philos. Trans. R. Soc. B 2019, 374, 20190197. [Google Scholar] [CrossRef]
- Mihm, J.W.; Banta, W.C.; Loeb, G.I. Effects of Adsorbed Organic and Primary Fouling Films on Bryozoan Settlement. J. Exp. Mar. Biol. Ecol. 1981, 54, 167–179. [Google Scholar] [CrossRef]
- Das, S.; Kumar, S.; Samal, S.K.; Mohanty, S.; Nayak, S.K. A Review on Superhydrophobic Polymer Nanocoatings: Recent Development and Applications. Ind. Eng. Chem. Res. 2018, 57, 2727–2745. [Google Scholar] [CrossRef]
- Hirose, E.; Sensui, N. Substrate Selection of Ascidian Larva: Wettability and Nano-Structures. J. Mar. Sci. Eng. 2021, 9, 634. [Google Scholar] [CrossRef]
- Miller, R.J.; Adeleye, A.S.; Page, H.M.; Kui, L.; Lenihan, H.S.; Keller, A.A. Nano and Traditional Copper and Zinc Antifouling Coatings: Metal Release and Impact on Marine Sessile Invertebrate Communities. J. Nanopart. Res. 2020, 22, 129. [Google Scholar] [CrossRef]
- Dalawai, S.P.; Aly, M.A.S.; Latthe, S.S.; Xing, R.; Sutar, R.S.; Nagappan, S.; Ha, C.-S.; Sadasivuni, K.K.; Liu, S. Recent Advances in Durability of Superhydrophobic Self-Cleaning Technology: A Critical Review. Prog. Org. Coat. 2020, 138, 105381. [Google Scholar] [CrossRef]
- Tian, L.; Yin, Y.; Bing, W.; Jin, E. Antifouling Technology Trends in Marine Environmental Protection. J. Bionic Eng. 2021, 18, 239–263. [Google Scholar] [CrossRef] [PubMed]
- Yoo, Y.; You, J.B.; Choi, W.; Im, S.G. A Stacked Polymer Film for Robust Superhydrophobic Fabrics. Polym. Chem. 2012, 4, 1664–1671. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, H.; Niu, H.; Gestos, A.; Wang, X.; Lin, T. Fluoroalkyl Silane Modified Silicone Rubber/Nanoparticle Composite: A Super Durable, Robust Superhydrophobic Fabric Coating. Adv. Mater. 2012, 24, 2409–2412. [Google Scholar] [CrossRef]
- Zou, H.; Lin, S.; Tu, Y.; Liu, G.; Hu, J.; Li, F.; Miao, L.; Zhang, G.; Luo, H.; Liu, F.; et al. Simple Approach towards Fabrication of Highly Durable and Robust Superhydrophobic Cotton Fabric from Functional Diblock Copolymer. J. Mater. Chem. A 2013, 1, 11246–11260. [Google Scholar] [CrossRef]
- Feng, L.; Yang, M.; Shi, X.; Liu, Y.; Wang, Y.; Qiang, X. Copper-Based Superhydrophobic Materials with Long-Term Durability, Stability, Regenerability, and Self-Cleaning Property. Colloids Surf. Physicochem. Eng Asp. 2016, 508, 39–47. [Google Scholar] [CrossRef]
- Sakhuja, M.; Son, J.; Yang, H.; Bhatia, C.S.; Danner, A.J. Outdoor Performance and Durability Testing of Antireflecting and Self-Cleaning Glass for Photovoltaic Applications. Sol. Energy 2014, 110, 231–238. [Google Scholar] [CrossRef]
Group | Variable | Mean Coverage (%) | ||||
---|---|---|---|---|---|---|
df | SS | MS | Pseudo-F | p (perm) | ||
A | Month | 5 | 51783 | 10,357 | 14.0300 | 0.0001 |
Coat | 1 | 1601.3 | 1601.3 | 2.1693 | 0.0721 | |
Month × coat | 4 | 10,150 | 2537.5 | 3.4376 | 0.0004 | |
Residual | 19 | 14,025 | 738.16 | |||
B | Month | 3 | 17,513 | 5837.7 | 4.6959 | 0.0002 |
Coat | 1 | 8152.7 | 8152.7 | 6.5581 | 0.0002 | |
Month × coat | 3 | 11,921 | 3973.6 | 3.1964 | 0.0005 | |
Residual | 13 | 16,161 | 1243.1 | |||
Total | Month | 5 | 52,205 | 10,441 | 5.5328 | 0.0001 |
Coat | 1 | 6217.5 | 6217.5 | 3.2948 | 0.0058 | |
Month × coat | 4 | 10,588 | 2647 | 1.4027 | 0.1014 | |
Residual | 40 | 75,483 | 1887.1 |
Group | Species | Average Group Abundances | Average Contribution | SD of Contribution | Average to SD Ratio | |
---|---|---|---|---|---|---|
Coated | Non-Coated | |||||
A | Ascidiella aspersa | 26.376 | 26.311 | 0.431 | 0.261 | 1.651 |
Ciona robusta | 3.692 | 3.300 | 0.065 | 0.068 | 0.955 | |
Bugula neritina | 0.730 | 2.852 | 0.033 | 0.055 | 0.607 | |
Tubularia mesembryanthemum | 0.392 | 0.158 | 0.029 | 0.108 | 0.272 | |
Watersipora cucullata | 1.615 | 1.411 | 0.027 | 0.029 | 0.939 | |
Schizoporella unicornis | 0.853 | 0.682 | 0.024 | 0.064 | 0.376 | |
B | Ascidiella aspersa | 2.800 | 12.200 | 0.341 | 0.167 | 2.035 |
Bugula neritina | 1.040 | 4.727 | 0.122 | 0.101 | 1.202 | |
Watersipora subtorquata | 1.850 | 2.772 | 0.098 | 0.093 | 1.056 | |
Ciona robusta | 0.800 | 1.709 | 0.059 | 0.082 | 0.727 | |
Schizoporella unicornis | 0.630 | 0.427 | 0.038 | 0.067 | 0.567 | |
Botrylloides violaceus | 0.050 | 0.645 | 0.027 | 0.054 | 0.499 |
Comparison Factor | Group | Test Statistic (T) | Chance-Corrected within-Group Agreement (A) | p-Value |
---|---|---|---|---|
Coated × non-coated | A | −1.13686 | 0.02043 | 0.12522 |
B | −2.61232 | 0.07362 | 0.01623 | |
Total | −1.13916 | 0.01152 | 0.12232 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, S.; Lee, Y.J.; Kim, M.K.; Kwak, Y.; Choi, C.-H.; Kim, D.G. Antifouling Effects of Superhydrophobic Coating on Sessile Marine Invertebrates. Int. J. Environ. Res. Public Health 2022, 19, 7973. https://doi.org/10.3390/ijerph19137973
Bae S, Lee YJ, Kim MK, Kwak Y, Choi C-H, Kim DG. Antifouling Effects of Superhydrophobic Coating on Sessile Marine Invertebrates. International Journal of Environmental Research and Public Health. 2022; 19(13):7973. https://doi.org/10.3390/ijerph19137973
Chicago/Turabian StyleBae, Seongjun, Ye Ju Lee, Min Kyung Kim, Yeongwon Kwak, Chang-Ho Choi, and Dong Gun Kim. 2022. "Antifouling Effects of Superhydrophobic Coating on Sessile Marine Invertebrates" International Journal of Environmental Research and Public Health 19, no. 13: 7973. https://doi.org/10.3390/ijerph19137973
APA StyleBae, S., Lee, Y. J., Kim, M. K., Kwak, Y., Choi, C. -H., & Kim, D. G. (2022). Antifouling Effects of Superhydrophobic Coating on Sessile Marine Invertebrates. International Journal of Environmental Research and Public Health, 19(13), 7973. https://doi.org/10.3390/ijerph19137973