Gaseous Mercury Exchange from Water–Air Interface in Differently Impacted Freshwater Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Environmental Settings
2.2. Sampling and Analyses
3. Results
3.1. Summer
3.2. Autumn
3.3. Spring
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ariya, P.A.; Amyot, M.; Dastoor, A.; Deeds, D.; Feinberg, A.; Kos, G.; Poulain, A.; Ryjkov, A.; Semeniuk, K.; Subir, M.; et al. Mercury Physicochemical and Biogeochemical Transformation in the Atmosphere and at Atmospheric Interfaces: A Review and Future Directions. Chem. Rev. 2015, 115, 3760–3802. [Google Scholar] [CrossRef] [PubMed]
- Amos, H.M.; Jacob, D.J.; Holmes, C.D.; Fisher, J.A.; Wang, Q.; Yantosca, R.M.; Corbitt, E.S.; Galarneau, E.; Rutter, A.P.; Gustin, M.S.; et al. Gas-Particle Partitioning of Atmospheric Hg (II) and Its Effect on Global Mercury Deposition. Atmos. Chem. Phys. 2012, 12, 591–603. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, W.H.; Munthe, J. Atmospheric Mercury—An Overview. Atmos. Environ. 1998, 32, 809–822. [Google Scholar] [CrossRef]
- Fitzgerald, W.F.; Engstrom, D.R.; Mason, R.P.; Nater, E.A. The Case for Atmospheric Mercury Contamination in Remote Areas. Environ. Sci. Technol. 1998, 32, 1–7. [Google Scholar] [CrossRef]
- Hines, N.A.; Brezonik, P.L. Mercury Inputs and Outputs at a Small Lake in Northern Minnesota. Biogeochemistry 2007, 84, 265–284. [Google Scholar] [CrossRef]
- Brigham, M.E.; Wentz, D.A.; Aiken, G.R.; Krabbenhoft, D.P. Mercury Cycling in Stream Ecosystems. 1. Water Column Chemistry and Transport. Environ. Sci. Technol. 2009, 43, 2720–2725. [Google Scholar] [CrossRef]
- Chen, J.; Hintelmann, H.; Zheng, W.; Feng, X.; Cai, H.; Wang, Z.; Yuan, S.; Wang, Z. Isotopic Evidence for Distinct Sources of Mercury in Lake Waters and Sediments. Chem. Geol. 2016, 426, 33–44. [Google Scholar] [CrossRef]
- Kocman, D.; Wilson, S.J.; Amos, H.M.; Telmer, K.H.; Steenhuisen, F.; Sunderland, E.M.; Mason, R.P.; Outridge, P.; Horvat, M. Toward an Assessment of the Global Inventory of Present-Day Mercury Releases to Freshwater Environments. Int. J. Environ. Res. Public Health 2017, 14, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullrich, S.M.; Tanton, T.W.; Abdrashitova, S.A. Mercury in the Aquatic Environment: A Review of Factors Affecting Methylation. Crit. Rev. Environ. Sci. Technol. 2001, 31, 241–293. [Google Scholar] [CrossRef]
- Fitzgerald, W.F.; Lamborg, C.H.; Hammerschmidt, C.R. Marine Biogeochemical Cycling of Mercury. Chem. Rev. 2007, 107, 641–662. [Google Scholar] [CrossRef] [PubMed]
- Strode, S.A.; Jaeglé, L.; Selin, N.E.; Jacob, D.J.; Park, R.J.; Yantosca, R.M.; Mason, R.P.; Slemr, F. Air-Sea Exchange in the Global Mercury Cycle. Glob. Biogeochem. Cycles 2007, 21, 1–12. [Google Scholar] [CrossRef]
- Poulain, A.J.; Orihel, D.M.; Amyot, M.; Paterson, M.J.; Hintelmann, H.; Southworth, G.R. Relationship between the Loading Rate of Inorganic Mercury to Aquatic Ecosystems and Dissolved Gaseous Mercury Production and Evasion. Chemosphere 2006, 65, 2199–2207. [Google Scholar] [CrossRef] [PubMed]
- Amos, H.M.; Jacob, D.J.; Streets, D.G.; Sunderland, E.M. Legacy Impacts of All-Time Anthropogenic Emissions on the Global Mercury Cycle. Glob. Biogeochem. Cycles 2013, 27, 410–421. [Google Scholar] [CrossRef] [Green Version]
- Morel, F.M.M.; Kraepiel, A.M.L.; Amyot, M. The Chemical Cycle and Bioaccumulation of Mercury. Annu. Rev. Ecol. Syst. 1998, 29, 543–566. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, W.F.; Clarkson, T.W. Mercury and Monomethylmercury: Present and Future Concerns. Environ. Health Perspect. 1991, 96, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Rice, K.M.; Walker, E.M.; Wu, M.; Gillette, C.; Blough, E.R. Environmental Mercury and Its Toxic Effects. J. Prev. Med. Public Health 2014, 47, 74–83. [Google Scholar] [CrossRef]
- O’Driscoll, N.J.; Beauchamp, S.; Siciliano, S.D.; Rencz, A.N.; Lean, D.R.S. Continuous Analysis of Dissolved Gaseous Mercury (DGM) and Mercury Flux in Two Freshwater Lakes in Kejimkujik Park, Nova Scotia: Evaluating Mercury Flux Models with Quantitative Data. Environ. Sci. Technol. 2003, 37, 2226–2235. [Google Scholar] [CrossRef] [PubMed]
- Muresan, B.; Cossa, D.; Richard, S.; Burban, B. Mercury Speciation and Exchanges at the Air-Water Interface of a Tropical Artificial Reservoir, French Guiana. Sci. Total Environ. 2007, 385, 132–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, X.; Feng, X.; Guo, Y.; Meng, B.; Yin, R.; Yao, H. Distribution and Production of Reactive Mercury and Dissolved Gaseous Mercury in Surface Waters and Water/Air Mercury Flux in Reservoirs on Wujiang River, Southwest China. J. Geophys. Res. Atmos. 2013, 118, 3905–3917. [Google Scholar] [CrossRef] [Green Version]
- Poulain, A.J.; Amyot, M.; Findlay, D.; Telor, S.; Barkay, T.; Hintelmann, H. Biological and Photochemical Production of Dissolved Gaseous Mercury in a Boreal Lake. Limnol. Oceanogr. 2004, 49, 2265–2275. [Google Scholar] [CrossRef]
- Ahn, M.C.; Kim, B.; Holsen, T.M.; Yi, S.M.; Han, Y.J. Factors Influencing Concentrations of Dissolved Gaseous Mercury (DGM) and Total Mercury (TM) in an Artificial Reservoir. Environ. Pollut. 2010, 158, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Lepak, R.F.; Tate, M.T.; Ogorek, J.M.; DeWild, J.F.; Peterson, B.D.; Hurley, J.P.; Krabbenhoft, D.P. Aqueous Elemental Mercury Production versus Mercury Inventories in the Lake Michigan Airshed: Deciphering the Spatial and Diel Controls of Mercury Gradients in Air and Water. ACS EST Water 2021, 1, 719–727. [Google Scholar] [CrossRef]
- Amyot, M.; Gill, G.A.; Morel, F.M.M. Production and Loss of Dissolved Gaseous Mercury in Coastal Seawater. Environ. Sci. Technol. 1997, 31, 3606–3611. [Google Scholar] [CrossRef]
- Oh, S.; Kim, M.K.; Lee, Y.M.; Zoh, K.D. Effect of Abiotic and Biotic Factors on the Photo-Induced Production of Dissolved Gaseous Mercury. Water Air Soil Pollut. 2011, 220, 353–363. [Google Scholar] [CrossRef]
- Bonzongo, J.C.J.; Donkor, A.K. Increasing UV-B Radiation at the Earth’s Surface and Potential Effects on Aqueous Mercury Cycling and Toxicity. Chemosphere 2003, 52, 1263–1273. [Google Scholar] [CrossRef]
- Amyot, M.; Mierle, G.; Lean, D.; Mcqueen, D.J. Effect of Solar Radiation on the Formation of Dissolved Gaseous Mercury in Temperate Lakes. Geochim. Cosmochim. Acta 1997, 61, 975–987. [Google Scholar] [CrossRef]
- Haverstock, S.; Sizmur, T.; Murimboh, J.; O’Driscoll, N.J. Modeling the Photo-Oxidation of Dissolved Organic Matter by Ultraviolet Radiation in Freshwater Lakes: Implications for Mercury Bioavailability. Chemosphere 2012, 88, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Cheng, Q.; Pan, X. Photochemical Behaviors of Mercury (Hg) Species in Aquatic Systems: A Systematic Review on Reaction Process, Mechanism, and Influencing Factor. Sci. Total Environ. 2020, 720, 137540. [Google Scholar] [CrossRef] [PubMed]
- Jeremiason, J.D.; Portner, J.C.; Aiken, G.R.; Hiranaka, A.J.; Dvorak, M.T.; Tran, K.T.; Latch, D.E. Photoreduction of Hg(II) and Photodemethylation of Methylmercury: The Key Role of Thiol Sites on Dissolved Organic Matter. Environ. Sci. Process. Impacts 2015, 17, 1892–1903. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, M. Interactions between Mercury and Dissolved Organic Matter—A Review. Chemosphere 2004, 55, 319–331. [Google Scholar] [CrossRef] [PubMed]
- O’Driscoll, N.J.; Vost, E.; Mann, E.; Klapstein, S.; Tordon, R.; Lukeman, M. Mercury Photoreduction and Photooxidation in Lakes: Effects of Filtration and Dissolved Organic Carbon Concentration. J. Environ. Sci. 2018, 68, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Whalin, L.; Kim, E.H.; Mason, R. Factors Influencing the Oxidation, Reduction, Methylation and Demethylation of Mercury Species in Coastal Waters. Mar. Chem. 2007, 107, 278–294. [Google Scholar] [CrossRef]
- He, F.; Zhao, W.; Liang, L.; Gu, B. Photochemical Oxidation of Dissolved Elemental Mercury by Carbonate Radicals in Water. Environ. Sci. Technol. Lett. 2014, 1, 499–503. [Google Scholar] [CrossRef]
- Vette, A.F.; Landis, M.S.; Keeler, G.J. Deposition and Emission of Gaseous Mercury to and from Lake Michigan during the Lake Michigan Mass Balance Study (July 1994–October 1995). Environ. Sci. Technol. 2002, 36, 4525–4532. [Google Scholar] [CrossRef] [PubMed]
- Southworth, G.; Lindberg, S.; Hintelmann, H.; Amyot, M.; Poulain, A.; Bogle, M.A.; Peterson, M.; Rudd, J.; Harris, R.; Sandilands, K.; et al. Evasion of Added Isotopic Mercury from a Northern Temperate Lake. Environ. Toxicol. Chem. 2007, 26, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, S.I.S.; Meyers, T.P. Evasion of Mercury Vapor from the Surface of a Recently Limed Acid Lake Forest in Sweden. Water Air Soil Pollut. 1995, 85, 725–730. [Google Scholar] [CrossRef]
- Poissant, L.; Amyot, M.; Pilote, M.; Lean, D. Mercury Water—Air Exchange over the Upper St. Lawrence River and Lake Ontario. Environ. Sci. Technol. 2000, 34, 3069–3078. [Google Scholar] [CrossRef]
- Kuss, J.; Holzmann, J.; Ludwig, R. An Elemental Mercury Diffusion Coefficient for Natural Waters Determined by Molecular Dynamics Simulation. Environ. Sci. Technol. 2009, 43, 3183–3186. [Google Scholar] [CrossRef]
- Obrist, D.; Kirk, J.L.; Zhang, L.; Sunderland, E.M.; Jiskra, M.; Selin, N.E. A Review of Global Environmental Mercury Processes in Response to Human and Natural Perturbations: Changes of Emissions, Climate, and Land Use. Ambio 2018, 47, 116–140. [Google Scholar] [CrossRef] [Green Version]
- Selin, H.; Keane, S.E.; Wang, S.; Selin, N.E.; Davis, K.; Bally, D. Linking Science and Policy to Support the Implementation of the Minamata Convention on Mercury. Ambio 2018, 47, 198–215. [Google Scholar] [CrossRef] [Green Version]
- Stefani, C.; Fellin, M.G.; Zattin, M.; Zuffa, G.G.; Dalmonte, C.; Mancin, N.; Zanferrari, A. Provenance and Paleogeographic Evolution in a Multi-Source Foreland: The Cenozoic Venetian-Friulian Basin (NE Italy). J. Sediment. Res. 2007, 77, 867–887. [Google Scholar] [CrossRef]
- Fontana, A.; Mozzi, P.; Bondesan, A. Alluvial Megafans in the Venetian-Friulian Plain (North-Eastern Italy): Evidence of Sedimentary and Erosive Phases during Late Pleistocene and Holocene. Quat. Int. 2008, 189, 71–90. [Google Scholar] [CrossRef]
- Covelli, S.; Acquavita, A.; Piani, R.; Predonzani, S.; De Vittor, C. Recent Contamination of Mercury in an Estuarine Environment (Marano Lagoon, Northern Adriatic, Italy). Estuar. Coast. Shelf Sci. 2009, 82, 273–284. [Google Scholar] [CrossRef]
- Regione Autonoma Friuli Venezia Giulia. Piano Regionale di Tutela Delle Acque. 2012. Available online: https://www.regione.fvg.it/rafvg/cms/RAFVG/ambiente-territorio/pianificazione-gestione-territorio/FOGLIA20/ (accessed on 6 May 2022).
- Ramieri, E.; Barbanti, A.; Picone, M.; Menchini, G.; Bressan, E.; Dal Forno, E. Integrated Plan for the Sustainable Management of the Lagoon of Marano and Grado. Littoral 2011, 05008. [Google Scholar] [CrossRef]
- Piani, R.; Covelli, S.; Biester, H. Mercury Contamination in Marano Lagoon (Northern Adriatic Sea, Italy): Source Identification by Analyses of Hg Phases. Appl. Geochem. 2005, 20, 1546–1559. [Google Scholar] [CrossRef]
- Acquavita, A.; Biasiol, S.; Lizzi, D.; Mattassi, G.; Pasquon, M.; Skert, N.; Marchiol, L. Gaseous Elemental Mercury Level and Distribution in a Heavily Contaminated Site: The Ex-Chlor Alkali Plant in Torviscosa (Northern Italy). Water Air Soil Pollut. 2017, 228, 62. [Google Scholar] [CrossRef]
- Cozzi, S.; Falconi, C.; Comici, C.; Čermelj, B.; Kovac, N.; Turk, V.; Giani, M. Recent Evolution of River Discharges in the Gulf of Trieste and Their Potential Response to Climate Changes and Anthropogenic Pressure. Estuar. Coast. Shelf Sci. 2012, 115, 14–24. [Google Scholar] [CrossRef]
- Comici, C.; Bussani, A. Analysis of the River Isonzo Discharge (1998–2005). Boll. Geofis. Teor. Appl. 2007, 48, 435–454. [Google Scholar]
- Hines, M.E.; Faganeli, J.; Adatto, I.; Horvat, M. Microbial Mercury Transformations in Marine, Estuarine and Freshwater Sediment Downstream of the Idrija Mercury Mine, Slovenia. Appl. Geochem. 2006, 21, 1924–1939. [Google Scholar] [CrossRef]
- Smolar-Žvanut, N.; Mikoš, M. The Impact of Flow Regulation by Hydropower Dams on the Periphyton Community in the Soča River, Slovenia. Hydrol. Sci. J. 2014, 59, 1032–1045. [Google Scholar] [CrossRef]
- Siché, I.; Arnaud-Fassetta, G. Anthropogenic Activities since the End of the Little Ice Age: A Critical Factor Driving Fuvial Changes on the Isonzo River (Italy, Slovenia). Mediterranee 2014, 122, 183–199. [Google Scholar] [CrossRef] [Green Version]
- Covelli, S.; Faganeli, J.; Horvat, M.; Brambati, A. Mercury Contamination of Coastal Sediments as the Result of Long-Term Cinnabar Mining Activity (Gulf of Trieste, Northern Adriatic Sea). Appl. Geochem. 2001, 16, 541–558. [Google Scholar] [CrossRef]
- Gosar, M.; Pirc, S.; Bidovec, M. Mercury in the Idrijca River Sediments as a Reflection of Mining and Smelting Activities of the Idrija Mercury Mine. J. Geochem. Explor. 1997, 58, 125–131. [Google Scholar] [CrossRef]
- Covelli, S.; Piani, R.; Kotnik, J.; Horvat, M.; Faganeli, J.; Brambati, A. Behaviour of Hg Species in a Microtidal Deltaic System: The Isonzo River Mouth (Northern Adriatic Sea). Sci. Total Environ. 2006, 368, 210–223. [Google Scholar] [CrossRef] [PubMed]
- Kocman, D.; Kanduč, T.; Ogrinc, N.; Horvat, M. Distribution and Partitioning of Mercury in a River Catchment Impacted by Former Mercury Mining Activity. Biogeochemistry 2011, 104, 183–201. [Google Scholar] [CrossRef]
- Covelli, S.; Piani, R.; Acquavita, A.; Predonzani, S.; Faganeli, J. Transport and Dispersion of Particulate Hg Associated with a River Plume in Coastal Northern Adriatic Environments. Mar. Pollut. Bull. 2007, 55, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Baptista-Salazar, C.; Biester, H. The Role of Hydrological Conditions for Riverine Hg Species Transport in the Idrija Mining Area. Environ. Pollut. 2019, 247, 716–724. [Google Scholar] [CrossRef]
- Baptista-Salazar, C.; Richard, J.H.; Horf, M.; Rejc, M.; Gosar, M.; Biester, H. Grain-Size Dependence of Mercury Speciation in River Suspended Matter, Sediments and Soils in a Mercury Mining Area at Varying Hydrological Conditions. Appl. Geochem. 2017, 81, 132–142. [Google Scholar] [CrossRef]
- Majerová, L.; Bábek, O.; Navrátil, T.; Nováková, T.; Štojdl, J.; Elznicová, J.; Hron, K.; Matys Grygar, T. Dam Reservoirs as an Efficient Trap for Historical Pollution: The Passage of Hg and Pb through the Ohře River, Czech Republic. Environ. Earth Sci. 2018, 77, 574. [Google Scholar] [CrossRef]
- Colizza, E.; Fanzutti, G.P.; Melis, R.; Polano, S.; Pugliese, N.; Andreetto, G.; Bavdaz, R.; Bitsikas, H.; Cabras, C.; Carta, A.; et al. Primi Risultati Sui Sedimenti e Sulle Ostracofaune Del Lago Di Cavazzo o Dei Tre Comuni (Udine). In Proceedings of the Atti Tavola Rotonda “Ecologia e Paleontologia”, Gradisca d’Isonzo, Italy, 12 December 1988; pp. 51–80. [Google Scholar]
- Polonia, A.; Albertazzi, S.; Bellucci, L.G.; Bonetti, C.; Bonetti, J.; Giorgetti, G.; Giuliani, S.; Correa, M.L.; Mayr, C.; Peruzza, L.; et al. Decoding a Complex Record of Anthropogenic and Natural Impacts in the Lake of Cavazzo Sediments, NE Italy. Sci. Total Environ. 2021, 787, 147659. [Google Scholar] [CrossRef]
- Marinelli, O. Studi Sul Lago Di Cavazzo. Boll. Soc. Geogr. It. 1894, 43, 174–214. [Google Scholar]
- Venturini, C.; Discenza, K. Stratigrafia e Paleo-Idrografia Del Friuli Centrale (Prealpi Carniche) Miocene Superiore-Pliocene Inferiore. Gortania Udine 2010, 30, 31–52. [Google Scholar]
- Pironio, P.; Dri, G.; Rabassi, V. Condizioni Fisiche Del Lago Di Cavazzo o Dei Tre Comuni: Un Patrimonio Da Salvare e Valorizzare. In Proceedings of the Convegno Tecnico Scientifico, Alesso di Trasaghis, Italy, 12–13 September 1987. [Google Scholar]
- Bagnato, E.; Sproveri, M.; Barra, M.; Bitetto, M.; Bonsignore, M.; Calabrese, S.; Di Stefano, V.; Oliveri, E.; Parello, F.; Mazzola, S. The Sea-Air Exchange of Mercury (Hg) in the Marine Boundary Layer of the Augusta Basin (Southern Italy): Concentrations and Evasion Flux. Chemosphere 2013, 93, 2024–2032. [Google Scholar] [CrossRef] [PubMed]
- Floreani, F.; Acquavita, A.; Petranich, E.; Covelli, S. Diurnal Fluxes of Gaseous Elemental Mercury from the Water-Air Interface in Coastal Environments of the Northern Adriatic Sea. Sci. Total Environ. 2019, 668, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Kalinchuk, V.V.; Lopatnikov, E.A.; Astakhov, A.S.; Ivanov, M.V.; Hu, L. Distribution of Atmospheric Gaseous Elemental Mercury (Hg(0)) from the Sea of Japan to the Arctic, and Hg(0) Evasion Fluxes in the Eastern Arctic Seas: Results from a Joint Russian-Chinese Cruise in Fall 2018. Sci. Total Environ. 2021, 753, 142003. [Google Scholar] [CrossRef] [PubMed]
- Sholupov, S.E.; Ganeyev, A.A. Zeeman Atomic Absorption Spectrometry Using High Frequency Modulated Light Polarization. Spectrochim. Acta Part B At. Spectrosc. 1995, 50, 1227–1236. [Google Scholar] [CrossRef]
- Engle, M.A.; Gustin, M.S.; Goff, F.; Counce, D.A.; Janik, C.J.; Bergfeld, D.; Rytuba, J.J. Atmospheric Mercury Emissions from Substrates and Fumaroles Associated with Three Hydrothermal Systems in the Western United States. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Eckley, C.S.; Gustin, M.; Lin, C.J.; Li, X.; Miller, M.B. The Influence of Dynamic Chamber Design and Operating Parameters on Calculated Surface-to-Air Mercury Fluxes. Atmos. Environ. 2010, 44, 194–203. [Google Scholar] [CrossRef]
- Carpi, A.; Lindberg, S.E. Application of a Teflon® Dynamic Flux Chamber for Quantifying Soil Mercury Flux: Tests and Results over Background Soil. Atmos. Environ. 1998, 32, 873–882. [Google Scholar] [CrossRef]
- EPA/600/R-96/084; U. S. Environmental Protection Agency Office of Environmental Information Guidance for Data Quality Assessment: Practical Methods for Data Analysis EPA QA/G-9 QA00 UPDATE. U. S. Environmental Protection Agency Office: Washington, DC, USA, 2000.
- Sugimura, Y.; Suzuki, Y. A High-Temperature Catalytic Oxidation Method for the Determination of Non-Volatile Dissolved Organic Carbon in Seawater by Direct Injection of a Liquid Sample. Mar. Chem. 1988, 24, 105–131. [Google Scholar] [CrossRef]
- O’Driscoll, N.J.; Covelli, S.; Petranich, E.; Floreani, F.; Klapstein, S.; Acquavita, A. Dissolved Gaseous Mercury Production at a Marine Aquaculture Site in the Mercury-Contaminated Marano and Grado Lagoon, Italy. Bull. Environ. Contam. Toxicol. 2019, 103, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.E.; Gårdfeldt, K.; Wängberg, I.; Strömberg, D. Determination of Henry’s Law Constant for Elemental Mercury. Chemosphere 2008, 73, 587–592. [Google Scholar] [CrossRef] [PubMed]
- RCoreTeam R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.r-project.org/ (accessed on 21 April 2022).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Shapiro, S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). In Biometrika; Oxford University Press: Oxford, UK, 1965; Volume 52, pp. 591–611. Available online: http://www.jstor.org/stable/2333709 (accessed on 1 March 2022).
- Zar, J.H. Biostatistical Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1996; ISBN 0130845426 9780130845429. [Google Scholar]
- Dunn, O.J. Multiple Comparisons Using Rank Sums. Technometrics 1964, 6, 241–252. [Google Scholar] [CrossRef]
- Ogle, D.H.; Doll, J.C.; Wheeler, P.; Dinno, A. FSA: Fisheries Stock Analysis Package, Version 0.9.3; 2022. Available online: https://github.com/fishR-Core-Team/FSA (accessed on 1 March 2022).
- OSMER-ARPA FVG, “OMNIA” database. Available online: http://www.meteo.fvg.it/ (accessed on 16 June 2022).
- Bratkič, A.; Ogrinc, N.; Kotnik, J.; Faganeli, J.; Žagar, D.; Yano, S.; Tada, A.; Horvat, M. Mercury Speciation Driven by Seasonal Changes in a Contaminated Estuarine Environment. Environ. Res. 2013, 125, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Oh, S.; Shin, M.Y.; Kim, M.K.; Yi, S.M.; Zoh, K.D. Seasonal Variation in Dissolved Gaseous Mercury and Total Mercury Concentrations in Juam Reservoir, Korea. Environ. Pollut. 2008, 154, 12–20. [Google Scholar] [CrossRef]
- Guédron, S.; Amouroux, D.; Sabatier, P.; Desplanque, C.; Develle, A.L.; Barre, J.; Feng, C.; Guiter, F.; Arnaud, F.; Reyss, J.L.; et al. A Hundred Year Record of Industrial and Urban Development in French Alps Combining Hg Accumulation Rates and Isotope Composition in Sediment Archives from Lake Luitel. Chem. Geol. 2016, 431, 10–19. [Google Scholar] [CrossRef]
- Roberts, S.; Kirk, J.L.; Wiklund, J.A.; Muir, D.C.G.; Yang, F.; Gleason, A.; Lawson, G. Mercury and Metal(Loid) Deposition to Remote Nova Scotia Lakes from Both Local and Distant Sources. Sci. Total Environ. 2019, 675, 192–202. [Google Scholar] [CrossRef]
- Feng, X.; Wang, S.; Qiu, G.; He, T.; Li, G.; Li, Z.; Shang, L. Total Gaseous Mercury Exchange between Water and Air during Cloudy Weather Conditions over Hongfeng Reservoir, Guizhou, China. J. Geophys. Res. Atmos. 2008, 113, D15309. [Google Scholar] [CrossRef] [Green Version]
- Dill, C.; Kuiken, T.; Zhang, H.; Ensor, M. Diurnal Variation of Dissolved Gaseous Mercury (DGM) Levels in a Southern Reservoir Lake (Tennessee, USA) in Relation to Solar Radiation. Sci. Total Environ. 2006, 357, 176–193. [Google Scholar] [CrossRef]
- O’Driscoll, N.J.; Poissant, L.; Canário, J.; Ridal, J.; Lean, D.R.S. Continuous Analysis of Dissolved Gaseous Mercury and Mercury Volatilization in the Upper St. Lawrence River: Exploring Temporal Relationships and UV Attenuation. Environ. Sci. Technol. 2007, 41, 5342–5348. [Google Scholar] [CrossRef]
- Selvendiran, P.; Driscoll, C.T.; Montesdeoca, M.R.; Choi, H.D.; Holsen, T.M. Mercury Dynamics and Transport in Two Adirondack Lakes. Limnol. Oceanogr. 2009, 54, 413–427. [Google Scholar] [CrossRef] [Green Version]
- Carulli, G.B. Note Illustrative Carta Geologica del Friuli Venezia Giulia 1:150.000. 2006. Available online: https://www.regione.fvg.it/rafvg/cms/RAFVG/ambiente-territorio/geologia/FOGLIA01/ (accessed on 1 March 2022).
- Dell’Oste, G.; Gemo, G.; Tacus, N.; Dell’Oste, D.; Tacus, S. Il Carbone Di Creta d’Oro. Storia Della Miniera Di Cludinico; Forum Editrice: Udine, Italy, 2012. [Google Scholar]
- Ponton, M. Dolomie Bituminose Nella Dolomia Principale: La Miniera Del Rio Resartico (Prealpi Giulie—Italia). Gortania Geol. Paleontol. Paletnologia 2016, 38, 9–37. [Google Scholar]
- Auguścik-Górajek, J.; Nieć, M. The Variability of Mercury Content in Bituminous Coal Seams in the Coal Basins in Poland. Resources 2020, 9, 127. [Google Scholar] [CrossRef]
- Yudovich, Y.E.; Ketris, M.P. Mercury in Coal: A Review. Part 1. Geochemistry. Int. J. Coal Geol. 2005, 62, 107–134. [Google Scholar] [CrossRef]
- Boudala, F.S.; Folkins, I.; Beauchamp, S.; Tordon, R.; Neima, J.; Johnson, B. Mercury Flux Measurements over Air and Water in Kejimkujik National Park, Nova Scotia. Water Air Soil Pollut. 2000, 122, 183–202. [Google Scholar] [CrossRef]
- Feng, X.; Yan, H.; Wang, S.; Qiu, G.; Tang, S.; Shang, L.; Dai, Q.; Hou, Y. Seasonal Variation of Gaseous Mercury Exchange Rate between Air and Water Surface over Baihua Reservoir, Guizhou, China. Atmos. Environ. 2004, 38, 4721–4732. [Google Scholar] [CrossRef]
- Crocker, W.C.; Zhang, H. Seasonal and Diurnal Variation of Air/Water Exchange of Gaseous Mercury in a Southern Reservoir Lake (Cane Creek Lake, Tennessee, USA). Water 2020, 12, 2102. [Google Scholar] [CrossRef]
- Kotnik, J.; Horvat, M.; Fajon, V.; Logar, M. Mercury in Small Freshwater Lakes: A Case Study: Lake Velenje, Slovenia. Water Air Soil Pollut. 2002, 134, 319–339. [Google Scholar] [CrossRef]
- Fu, X.; Feng, X.; Wan, Q.; Meng, B.; Yan, H.; Guo, Y. Probing Hg Evasion from Surface Waters of Two Chinese Hyper/Meso-Eutrophic Reservoirs. Sci. Total Environ. 2010, 408, 5887–5896. [Google Scholar] [CrossRef] [PubMed]
- Wollenberg, J.L.; Peters, S.C. Mercury Emission from a Temperate Lake during Autumn Turnover. Sci. Total Environ. 2009, 407, 2909–2918. [Google Scholar] [CrossRef] [PubMed]
- Gårdfeldt, K.; Feng, X.; Sommar, J.; Lindqvist, O. Total Gaseous Mercury Exchange between Air and Water at River and Sea Surfaces in Swedish Coastal Regions. Atmos. Environ. 2001, 35, 3027–3038. [Google Scholar] [CrossRef]
- Lindberg, S.E.; Zhang, H. Air/Water Exchange of Mercury in the Everglades II: Measuring and Modeling Evasion of Mercury from Surface Waters in the Everglades Nutrient Removal Project. Sci. Total Environ. 2000, 259, 135–143. [Google Scholar] [CrossRef]
- Ferrara, R.; Mazzolai, B.; Lanzillotta, E.; Nucaro, E.; Pirrone, N. Temporal Trends in Gaseous Mercury Evasion from the Mediterranean Seawaters. Sci. Total Environ. 2000, 259, 183–190. [Google Scholar] [CrossRef]
- Tseng, C.M.; Lamborg, C.; Fitzgerald, W.F.; Engstrom, D.R. Cycling of Dissolved Elemental Mercury in Arctic Alaskan Lakes. Geochim. Cosmochim. Acta 2004, 68, 1173–1184. [Google Scholar] [CrossRef]
- Zhang, H.; Dill, C. Apparent Rates of Production and Loss of Dissolved Gaseous Mercury (DGM) in a Southern Reservoir Lake (Tennessee, USA). Sci. Total Environ. 2008, 392, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.C.; Wollenberg, J.L.; Morris, D.P.; Porter, J.A. Mercury Emission to the Atmosphere from Experimental Manipulation of DOC and UVR in Mesoscale Field Chambers in a Freshwater Lake. Environ. Sci. Technol. 2007, 41, 7356–7362. [Google Scholar] [CrossRef] [PubMed]
- Sanemasa, I. The Solubility of Elemental Mercury Vapor in Water. Bull. Chem. Soc. Jpn. 1975, 48, 1795–1798. [Google Scholar] [CrossRef] [Green Version]
- Cizdziel, J.V.; Zhang, Y.; Nallamothu, D.; Brewer, J.S.; Gao, Z. Air/Surface Exchange of Gaseous Elemental Mercury at Different Landscapes in Mississippi, USA. Atmosphere 2019, 10, 538. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, Z.; Zhang, X. Characteristics of the Air–sea Exchange of Gaseous Mercury and Deposition Flux of Atmospheric Mercury at an Island near the Boundary of the Bohai Sea and Yellow Sea. Atmos. Environ. 2020, 232, 117547. [Google Scholar] [CrossRef]
- Floreani, F.; Barago, N.; Acquavita, A.; Covelli, S.; Skert, N.; Higueras, P. Spatial Distribution and Biomonitoring of Atmospheric Mercury Concentrations over a Contaminated Coastal Lagoon (Northern Adriatic, Italy). Atmosphere 2020, 11, 1280. [Google Scholar] [CrossRef]
- Vudamala, K.; Chakraborty, P.; Sailaja, B.B.V. An Insight into Mercury Reduction Process by Humic Substances in Aqueous Medium under Dark Condition. Environ. Sci. Pollut. Res. 2017, 24, 14499–14507. [Google Scholar] [CrossRef] [PubMed]
- Barkay, T.; Miller, S.M.; Summers, A.O. Bacterial Mercury Resistance from Atoms to Ecosystems. FEMS Microbiol. Rev. 2003, 27, 355–384. [Google Scholar] [CrossRef] [Green Version]
- Baldi, F.; Marchetto, D.; Gallo, M.; Fani, R.; Maida, I.; Covelli, S.; Fajon, V.; Zizek, S.; Hines, M.; Horvat, M. Chlor-Alkali Plant Contamination of Aussa River Sediments Induced a Large Hg-Resistant Bacterial Community. Estuar. Coast. Shelf Sci. 2012, 113, 96–104. [Google Scholar] [CrossRef]
- Lanzillotta, E.; Ceccarini, C.; Ferrara, R.; Dini, F.; Frontini, F.P.; Banchetti, R. Importance of the Biogenic Organic Matter in Photo-Formation of Dissolved Gaseous Mercury in a Culture of the Marine Diatom Chaetoceros sp. Sci. Total Environ. 2004, 318, 211–221. [Google Scholar] [CrossRef]
- Grégoire, D.S.; Poulain, A.J. A Physiological Role for HgII during Phototrophic Growth. Nat. Geosci. 2016, 9, 121–125. [Google Scholar] [CrossRef]
- Barkay, T.; Wagner-Döbler, I.B.T.-A. Microbial Transformations of Mercury: Potentials, Challenges, and Achievements in Controlling Mercury Toxicity in the Environment; Academic Press: Cambridge, MA, USA, 2005; Volume 57, pp. 1–52. ISBN 0065-2164. [Google Scholar]
- Lin, C.-C.; Yee, N.; Barkay, T. Microbial Transformations in the Mercury Cycle. In Environmental Chemistry and Toxicology of Mercury; Liu, G., Cai, Y., O’Driscoll, N.J., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2012; pp. 155–192. ISBN 978-047057872-8. [Google Scholar]
- Fantozzi, L.; Ferrara, R.; Frontini, F.P.; Dini, F. Dissolved Gaseous Mercury Production in the Dark: Evidence for the Fundamental Role of Bacteria in Different Types of Mediterranean Water Bodies. Sci. Total Environ. 2009, 407, 917–924. [Google Scholar] [CrossRef]
- Hines, M.E.; Poitras, E.N.; Covelli, S.; Faganeli, J.; Emili, A.; Žižek, S.; Horvat, M. Mercury Methylation and Demethylation in Hg-Contaminated Lagoon Sediments (Marano and Grado Lagoon, Italy). Estuar. Coast. Shelf Sci. 2012, 113, 85–95. [Google Scholar] [CrossRef]
- Bratkič, A.; Tinta, T.; Koron, N.; Guevara, S.R.; Begu, E.; Barkay, T.; Horvat, M.; Falnoga, I.; Faganeli, J. Mercury Transformations in a Coastal Water Column (Gulf of Trieste, Northern Adriatic Sea). Mar. Chem. 2018, 200, 57–67. [Google Scholar] [CrossRef]
- Liang, X.; Zhu, N.; Johs, A.; Chen, H.; Pelletier, D.A.; Zhang, L.; Yin, X.; Gao, Y.; Zhao, J.; Gu, B. Mercury Reduction, Uptake, and Species Transformation by Freshwater Alga Chlorella Vulgaris under Sunlit and Dark Conditions. Environ. Sci. Technol. 2022, 56, 4961–4969. [Google Scholar] [CrossRef] [PubMed]
- Garcia, E.; Poulain, A.J.; Amyot, M.; Ariya, P.A. Diel Variations in Photoinduced Oxidation of Hg0 in Freshwater. Chemosphere 2005, 59, 977–981. [Google Scholar] [CrossRef] [PubMed]
- Lalonde, J.D.; Amyot, M.; Kraepiel, A.M.L.; Morel, F.M.M. Photooxidation of Hg(0) in Artificial and Natural Waters. Environ. Sci. Technol. 2001, 35, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Ramalhosa, E.; Pereira, E.; Vale, C.; Válega, M.; Monterroso, P.; Duarte, A.C. Mercury Distribution in Douro Estuary (Portugal). Mar. Pollut. Bull. 2005, 50, 1218–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valente, R.J.; Shea, C.; Lynn Humes, K.; Tanner, R.L. Atmospheric Mercury in the Great Smoky Mountains Compared to Regional and Global Levels. Atmos. Environ. 2007, 41, 1861–1873. [Google Scholar] [CrossRef]
- Sharif, A.; Tessier, E.; Bouchet, S.; Monperrus, M.; Pinaly, H.; Amouroux, D. Comparison of Different Air-Water Gas Exchange Models to Determine Gaseous Mercury Evasion from Different European Coastal Lagoons and Estuaries. Water Air Soil Pollut. 2013, 224, 1606. [Google Scholar] [CrossRef]
- Schmidt, R.; Schneider, B. The Effect of Surface Films on the Air-Sea Gas Exchange in the Baltic Sea. Mar. Chem. 2011, 126, 56–62. [Google Scholar] [CrossRef]
- Luo, H.W.; Yin, X.; Jubb, A.M.; Chen, H.; Lu, X.; Zhang, W.; Lin, H.; Yu, H.Q.; Liang, L.; Sheng, G.P.; et al. Photochemical Reactions between Mercury (Hg) and Dissolved Organic Matter Decrease Hg Bioavailability and Methylation. Environ. Pollut. 2017, 220, 1359–1365. [Google Scholar] [CrossRef] [Green Version]
- Amyot, M.; Southworth, G.; Lindberg, S.E.; Hintelmann, H.; Lalonde, J.D.; Ogrinc, N.; Poulain, A.J.; Sandilands, K.A. Formation and Evasion of Dissolved Gaseous Mercury in Large Enclosures Amended with 200HgCl2. Atmos. Environ. 2004, 38, 4279–4289. [Google Scholar] [CrossRef]
Measurement Site | Main Hg Source | Gaseous Hg Flux (ng m−2 h−1) | Method | References | |
---|---|---|---|---|---|
Mean ± SD | Min–Max | ||||
Solkan Reservoir (SLO) | Hg mining | 21.88 ± 11.55 | 9.96–46.77 | DFC | This study |
Torviscosa dockyard (ITA) | CAP discharge | 19.01 ± 12.65 | 6.21–52.71 | DFC | This study |
Lake of Cavazzo (ITA) | Unknown | 15.56 ± 12.78 | 0–37.59 | DFC | This study |
Baihua Reservoir (CHI) | Organic chemical plant | 7.6 ± 2.1 | 0–50.5 | DFC | [98] |
Hongfeng Reservoir (CHI) | Atmospheric depositions | 5.4 ± 2.3 | 0.002–36.1 | DFC | [88] |
Wujiangdu Reservoir (CHI) | Wastewater discharge | - | −11.2–67.2 | DFC | [101] |
Suofengying Reservoir (CHI) | Wastewater discharge | - | −6.7–23.9 | DFC | [101] |
Big Dam West (CAN) | Atmospheric depositions | 5.4 ± n.a. | 0.8–43.8 | DFC | [97] |
North Cranberry (CAN) | Atmospheric depositions | 1.1 ± n.a. | −2.0–13.5 | DFC | [97] |
Lake Lacawac (USA) | Atmospheric depositions | - | 0.14–20.95 | DFC | [102] |
Puzzle Lake (CAN) | Atmospheric depositions | 3.8 ± 2.6 | −4.55–9.00 | DFC | [17] |
Lake Velenje (SLO) | Atmospheric depositions | 5.9 ± n.a. | 5.3–6.6 | DFC | [100] |
Lake Ontario (CAN-USA) | n.s. | - | 0–9.07 | MM | [37] |
Lake Michigan (USA) | n.s. | - | 0.6–1.6 | MM | [34] |
Cane Creek Lake (USA) | n.s. | - | 0.6–1.2 | DFC | [99] |
Arbutus Lake (USA) | n.s. | 1.6 ± 0.7 | - | MM | [91] |
Swedish River (SWE) | (Remote area) | 11 ± n.a. | −2.5–88.9 | DFC | [103] |
Lake Gardsjon (SWE) | n.s. | 8.5 ± 6.5 | - | DFC | [36] |
Florida Everglades (USA) | n.s. | 1.2 ± 4.9 | - | DFC | [104] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Floreani, F.; Acquavita, A.; Barago, N.; Klun, K.; Faganeli, J.; Covelli, S. Gaseous Mercury Exchange from Water–Air Interface in Differently Impacted Freshwater Environments. Int. J. Environ. Res. Public Health 2022, 19, 8149. https://doi.org/10.3390/ijerph19138149
Floreani F, Acquavita A, Barago N, Klun K, Faganeli J, Covelli S. Gaseous Mercury Exchange from Water–Air Interface in Differently Impacted Freshwater Environments. International Journal of Environmental Research and Public Health. 2022; 19(13):8149. https://doi.org/10.3390/ijerph19138149
Chicago/Turabian StyleFloreani, Federico, Alessandro Acquavita, Nicolò Barago, Katja Klun, Jadran Faganeli, and Stefano Covelli. 2022. "Gaseous Mercury Exchange from Water–Air Interface in Differently Impacted Freshwater Environments" International Journal of Environmental Research and Public Health 19, no. 13: 8149. https://doi.org/10.3390/ijerph19138149
APA StyleFloreani, F., Acquavita, A., Barago, N., Klun, K., Faganeli, J., & Covelli, S. (2022). Gaseous Mercury Exchange from Water–Air Interface in Differently Impacted Freshwater Environments. International Journal of Environmental Research and Public Health, 19(13), 8149. https://doi.org/10.3390/ijerph19138149