Prenatal Exposure to Organophosphorus Pesticides and Preschool ADHD in the Norwegian Mother, Father and Child Cohort Study
Abstract
:1. Background
2. Methods
2.1. Study Population
2.2. MoBa Preschool ADHD Sub-Study
2.3. Preschool ADHD Diagnostic Interview
2.4. MoBa Reference Population
2.5. Measurement of Dialkylphosphate (DAP) Metabolites
2.6. Genotyping of Paraoxonase 1 L55M and Q192R
2.7. Covariates
2.8. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, J.R.; Routt Reigart, J. Organophosphate Insecticides. In Management of Pesticide Poisonings, 6th ed.; U.S. Environmental Protection Agency Office of Pesticide Programs: Washington, DC, USA, 2013; pp. 43–45. [Google Scholar]
- Costa, L.G. Organophosphorus Compounds at 80: Some Old and New Issues. Toxicol. Sci. 2018, 162, 24–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engel, S.M.; Wetmur, J.; Chen, J.; Zhu, C.; Barr, D.B.; Canfield, R.L.; Wolff, M.S. Prenatal exposure to organophosphates, paraoxonase 1, and cognitive development in childhood. Environ. Health Perspect. 2011, 119, 1182–1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunier, R.B.; Bradman, A.; Harley, K.G.; Kogut, K.; Eskenazi, B. Prenatal Residential Proximity to Agricultural Pesticide Use and IQ in 7-Year-Old Children. Environ. Health Perspect. 2017, 125, 057002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertz-Picciotto, I.; Sass, J.B.; Engel, S.; Bennett, D.H.; Bradman, A.; Eskenazi, B.; Lanphear, B.; Whyatt, R. Organophosphate exposures during pregnancy and child neurodevelopment: Recommendations for essential policy reforms. PLoS Med. 2018, 15, e1002671. [Google Scholar] [CrossRef] [PubMed]
- Marks, A.R.; Harley, K.; Bradman, A.; Kogut, K.; Barr, D.B.; Johnson, C.; Calderon, N.; Eskenazi, B. Organophosphate pesticide exposure and attention in young Mexican-American children: The CHAMACOS study. Environ. Health Perspect. 2010, 118, 1768–1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berman, T.; Göen, T.; Novack, L.; Beacher, L.; Grinshpan, L.; Segev, D.; Tordjman, K.; Berman, T.; Göen, T.; Novack, L.; et al. Urinary concentrations of organophosphate and carbamate pesticides in residents of a vegetarian community. Environ. Int. 2016, 96, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Sokoloff, K.; Fraser, W.; Arbuckle, T.E.; Fisher, M.; Gaudreau, E.; LeBlanc, A.; Morisset, A.-S.; Bouchard, M.F. Determinants of urinary concentrations of dialkyl phosphates among pregnant women in Canada—Results from the MIREC study. Environ. Int. 2016, 94, 133–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cequier, E.; Sakhi, A.K.; Haug, L.S.; Thomsen, C. Exposure to organophosphorus pesticides in Norwegian mothers and their children: Diurnal variability in concentrations of their biomarkers and associations with food consumption. Sci. Total Environ. 2017, 590, 655–662. [Google Scholar] [CrossRef]
- Van den Dries, M.A.; Pronk, A.; Guxens, M.; Spaan, S.; Voortman, T.; Jaddoe, V.W.; Jusko, T.A.; Longnecker, M.P.; Tiemeier, H. Determinants of organophosphate pesticide exposure in pregnant women: A population-based cohort study in The Netherlands. Int. J. Hyg. Environ. Health 2018, 221, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, E.; Haug, L.S.; Sakhi, A.K.; Andrusaityte, S.; Basagaña, X.; Brantsaeter, A.L.; Casas, M.; Fernández-Barrés, S.; Grazuleviciene, R.; Knutsen, H.K.; et al. Diet as a Source of Exposure to Environmental Contaminants for Pregnant Women and Children from Six European Countries. Environ. Health Perspect. 2019, 127, 107005. [Google Scholar] [CrossRef]
- Bradman, A.; Quirós-Alcalá, L.; Castorina, R.; Aguilar Schall, R.; Camacho, J.; Holland, N.T.; Barr, D.B.; Eskenazi, B. Effect of Organic Diet Intervention on Pesticide Exposures in Young Children Living in Low-Income Urban and Agricultural Communities. Environ. Health Perspect. 2015, 123, 1086–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curl, C.L.; Beresford, S.A.; Fenske, R.A.; Fitzpatrick, A.L.; Lu, C.; Nettleton, J.A.; Kaufman, J.D. Estimating pesticide exposure from dietary intake and organic food choices: The Multi-Ethnic Study of Atherosclerosis (MESA). Environ. Health Perspect. 2015, 123, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Barr, D.B.; Pearson, M.A.; Waller, L.A. Dietary intake and its contribution to longitudinal organophosphorus pesticide exposure in urban/suburban children. Environ. Health Perspect. 2008, 116, 537–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Toepel, K.; Irish, R.; Fenske, R.A.; Barr, D.B.; Bravo, R. Organic diets significantly lower children’s dietary exposure to organophosphorus pesticides. Environ. Health Perspect. 2006, 114, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Pierik, F.H.; Angerer, J.; Meltzer, H.M.; Jaddoe, V.W.V.; Tiemeier, H.; Hoppin, J.A.; Longnecker, M.P. Levels of metabolites of organophosphate pesticides, phthalates, and bisphenol A in pooled urine specimens from pregnant women participating in the Norwegian Mother and Child Cohort Study (MoBa). Int. J. Hyg. Environ. Health 2009, 212, 481–491. [Google Scholar] [CrossRef] [Green Version]
- Engel, S.M.; Bradman, A.; Wolff, M.S.; Rauh, V.A.; Harley, K.G.; Yang, J.H.; Hoepner, L.A.; Barr, D.B.; Yolton, K.; Vedar, M.G.; et al. Prenatal Organophosphorus Pesticide Exposure and Child Neurodevelopment at 24 Months: An Analysis of Four Birth Cohorts. Environ. Health Perspect. 2016, 124, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Cequier, E.; Sakhi, A.K.; Haug, L.S.; Thomsen, C. Development of an ion-pair liquid chromatography-high resolution mass spectrometry method for determination of organophosphate pesticide metabolites in large-scale biomonitoring studies. J. Chromatogr. A 2016, 1454, 32–41. [Google Scholar] [CrossRef]
- Bouchard, M.F.; Chevrier, J.; Harley, K.G.; Kogut, K.; Vedar, M.; Calderon, N.; Trujillo, C.; Johnson, C.; Bradman, A.; Barr, D.B.; et al. Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children. Environ. Health Perspect. 2011, 119, 1189–1195. [Google Scholar] [CrossRef] [Green Version]
- Rowe, C.; Gunier, R.; Bradman, A.; Harley, K.G.; Kogut, K.; Parra, K.; Eskenazi, B. Residential proximity to organophosphate and carbamate pesticide use during pregnancy, poverty during childhood, and cognitive functioning in 10-year-old children. Environ. Res. 2016, 150, 128–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagiv, S.K.; Bruno, J.L.; Baker, J.M.; Palzes, V.; Kogut, K.; Rauch, S.; Gunier, R.; Mora, A.M.; Reiss, A.L.; Eskenazi, B. Prenatal exposure to organophosphate pesticides and functional neuroimaging in adolescents living in proximity to pesticide application. Proc. Natl. Acad. Sci. USA 2019, 116, 18347–18356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauh, V.; Arunajadai, S.; Horton, M.; Perera, F.; Hoepner, L.; Barr, D.B.; Whyatt, R. Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ. Health Perspect. 2011, 119, 1196–1201. [Google Scholar] [CrossRef]
- Rauh, V.A.; Garfinkel, R.; Perera, F.P.; Andrews, H.F.; Hoepner, L.; Barr, D.B.; Whitehead, R.; Tang, D.; Whyatt, R.W. Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics 2006, 118, e1845–e1859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eskenazi, B.; Marks, A.R.; Bradman, A.; Harley, K.; Barr, D.B.; Johnson, C.; Morga, N.; Jewell, N.P. Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environ. Health Perspect. 2007, 115, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Marsillach, J.; Costa, L.G.; Furlong, C.E. Paraoxonase-1 and Early-Life Environmental Exposures. Ann. Glob. Health 2016, 82, 100–110. [Google Scholar] [CrossRef] [Green Version]
- Banhela, N.; Naidoo, P.; Naidoo, S. Association between pesticide exposure and paraoxonase-1 (PON1) polymorphisms, and neurobehavioural outcomes in children: A systematic review. Syst. Rev. 2020, 9, 109. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.; Ji, L.; Zhou, Y.; Shi, R.; Kamijima, M.; Ueyama, J.; Gao, Y.; Tian, Y. Prenatal exposure to organophosphate pesticides, maternal paraoxonase 1 genotype, and childhood neurodevelopment at 24 months of age in Shandong, China. Environ. Sci. Pollut. Res. 2020, 27, 1969–1977. [Google Scholar] [CrossRef]
- Costa, L.G.; Giordano, G.; Cole, T.B.; Marsillach, J.; Furlong, C.E. Paraoxonase 1 (PON1) as a genetic determinant of susceptibility to organophosphate toxicity. Toxicology 2013, 307, 115–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, K.L.; Cole, T.B.; Park, S.S.; Furlong, C.E.; Costa, L.G. Paraoxonase 1 (PON1) modulates the toxicity of mixed organophosphorus compounds. Toxicol. Appl. Pharmacol. 2009, 236, 142–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, T.B.; Jansen, K.; Park, S.; Li, W.-F.; Furlong, C.E.; Costa, L.G. The toxicity of mixtures of specific organophosphate compounds is modulated by paraoxonase 1 status. Adv. Exp. Med. Biol. 2010, 660, 47–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, H.; Ito, Y.; Ueyama, J.; Kano, Y.; Arakawa, T.; Gotoh, M.; Kondo, T.; Sugiura, Y.; Saito, I.; Shibata, E.; et al. Effects of Paraoxonase 1 gene polymorphisms on organophosphate insecticide metabolism in Japanese pest control workers. J. Occup. Health 2016, 58, 56–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, G.; Strathearn, L.; Liu, B.; Yang, B.; Bao, W. Twenty-Year Trends in Diagnosed Attention-Deficit/Hyperactivity Disorder Among US Children and Adolescents, 1997–2016. JAMA Netw. Open 2018, 1, e181471. [Google Scholar] [CrossRef]
- Magnus, P.; Birke, C.; Vejrup, K.; Haugan, A.; Alsaker, E.; Daltveit, A.K.; Handal, M.; Haugen, M.; Hoiseth, G.; Knudsen, G.P.; et al. Cohort Profile Update: The Norwegian Mother and Child Cohort Study (MoBa). Int. J. Epidemiol. 2016, 45, 382–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irgens, L.M. The Medical Birth Registry of Norway. Epidemiological research and surveillance throughout 30 years. Acta Obs. Gynecol. Scand. 2000, 79, 435–439. [Google Scholar]
- Stoltenberg, C.; Schjølberg, S.; Bresnahan, M.; Hornig, M.; Hirtz, D.; Dahl, C.; Lie, K.K.; Reichborn-Kjennerud, T.; Schreuder, P.; Alsaker, E.; et al. The Autism Birth Cohort: A paradigm for gene–environment–timing research. Mol. Psychiatry 2010, 15, 676–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR, 4th ed.; American Psychiatric Association: Washington, DC, USA, 2000. [Google Scholar]
- Achenbach, T.M.; Rescorla, L.A. Manual for the ASEBA Preschool Forms & Profiles: An Integrated System of Multi-Informant Assessment; Child Behavior Checklist for Ages 1 1/2-5; Language Development Survey; Caregiver—Teacher Report Form; University of Vermont, Research Center for Children, Youth & Families: Burlington, VT, USA, 2000. [Google Scholar]
- Norwegian Institute of Public Health. Questionnaire 6 When the Child Was 36 Months Old. Available online: https://www.fhi.no/globalassets/dokumenterfiler/studier/den-norske-mor-far-og-barn--undersokelsenmoba/instrumentdokumentasjon/instrument-documentation-q6.pdf (accessed on 24 June 2022).
- Øvergaard, K.R.; Aase, H.; Torgersen, S.; Reichborn-Kjennerud, T.; Oerbeck, B.; Myhre, A.; Zeiner, P. Continuity in features of anxiety and attention deficit/hyperactivity disorder in young preschool children. Eur. Child Adolesc. Psychiatry 2014, 23, 743–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egger, H.L.; Angold, A. The Preschool Age Psychiatric Assessment (PAPA): A Structured Parent Interview for Diagnosing Psychiatric Disorders in Preschool Children. In Handbook of Infant, Toddler, and Preschool Mental Health Assessment; Oxford University Press: New York, NY, USA, 2004; pp. 223–243. [Google Scholar]
- Øvergaard, K.R.; Oerbeck, B.; Friis, S.; Pripp, A.H.; Biele, G.; Aase, H.; Zeiner, P. Attention-Deficit/Hyperactivity Disorder in Preschoolers: The Accuracy of a Short Screener. J. Am. Acad. Child Adolesc. Psychiatry 2018, 57, 428–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engel, S.M.; Villanger, G.D.; Nethery, R.C.; Thomsen, C.; Sakhi, A.K.; Drover, S.S.M.; Hoppin, J.A.; Zeiner, P.; Knudsen, G.P.; Reichborn-Kjennerud, T.; et al. Prenatal Phthalates, Maternal Thyroid Function, and Risk of Attention-Deficit Hyperactivity Disorder in the Norwegian Mother and Child Cohort. Environ. Health Perspect. 2018, 126, 057004. [Google Scholar] [CrossRef] [Green Version]
- Paltiel, L.; Anita, H.; Skjerden, T.; Harbak, K.; Bækken, S.; Nina Kristin, S.; Knudsen, G.P.; Magnus, P. The biobank of the Norwegian Mother and Child Cohort Study—Present status. Nor. Epidemiol. 2014, 24, 1755. [Google Scholar] [CrossRef]
- Rønningen, K.S.; Paltiel, L.; Meltzer, H.M.; Nordhagen, R.; Lie, K.K.; Hovengen, R.; Haugen, M.; Nystad, W.; Magnus, P.; Hoppin, J.A. The biobank of the Norwegian Mother and Child Cohort Study: A resource for the next 100 years. Eur. J. Epidemiol. 2006, 21, 619–625. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, S.; Ziaugra, L.; Tabbaa, D. SNP Genotyping Using the Sequenom MassARRAY iPLEX Platform. Curr. Protoc. Hum. Genet. 2009, 60, 2.12.1–2.12.18. [Google Scholar] [CrossRef]
- Kessler, R.C.; Adler, L.; Ames, M.; Demler, O.; Faraone, S.; Hiripi, E.; Howes, M.J.; Jin, R.; Secnik, K.; Spencer, T.; et al. The World Health Organization Adult ADHD Self-Report Scale (ASRS): A short screening scale for use in the general population. Psychol. Med. 2005, 35, 245–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenland, S.; Pearl, J.; Robins, J.M. Causal Diagrams for Epidemiologic Research. Epidemiology 1999, 10, 37–48. [Google Scholar] [CrossRef]
- Greenland, S.; Pearce, N. Statistical Foundations for Model-Based Adjustments. Annu. Rev. Public Health 2015, 36, 89–108. [Google Scholar] [CrossRef] [PubMed]
- Furlong, M.A.; Herring, A.; Buckley, J.P.; Goldman, B.D.; Daniels, J.L.; Engel, L.S.; Wolff, M.S.; Chen, J.; Wetmur, J.; Barr, D.B.; et al. Prenatal exposure to organophosphorus pesticides and childhood neurodevelopmental phenotypes. Environ. Res. 2017, 158, 737–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furlong, M.A.; Engel, S.M.; Barr, D.B.; Wolff, M.S. Prenatal exposure to organophosphate pesticides and reciprocal social behavior in childhood. Environ. Int. 2014, 70, 125–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoza, B. Peer functioning in children with ADHD. Ambul. Pediatr. 2007, 7, 101–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millenson, M.E.; Braun, J.M.; Calafat, A.M.; Barr, D.B.; Huang, Y.-T.; Chen, A.; Lanphear, B.P.; Yolton, K. Urinary organophosphate insecticide metabolite concentrations during pregnancy and children’s interpersonal, communication, repetitive, and stereotypic behaviors at 8 years of age: The home study. Environ. Res. 2017, 157, 9–16. [Google Scholar] [CrossRef]
- van den Dries, M.A.; Guxens, M.; Pronk, A.; Spaan, S.; El Marroun, H.; Jusko, T.A.; Longnecker, M.P.; Ferguson, K.K.; Tiemeier, H. Organophosphate pesticide metabolite concentrations in urine during pregnancy and offspring attention-deficit hyperactivity disorder and autistic traits. Environ. Int. 2019, 131, 105002. [Google Scholar] [CrossRef]
- Eilertsen, E.M.; Gjerde, L.C.; Kendler, K.S.; Røysamb, E.; Aggen, S.H.; Gustavson, K.; Reichborn-Kjennerud, T.; Ystrom, E. Development of ADHD symptoms in preschool children: Genetic and environmental contributions. Dev. Psychopathol. 2019, 31, 1299–1305. [Google Scholar] [CrossRef] [Green Version]
- Lombroso, P.J.; Pauls, D.L.; Leckman, J.F. Genetic Mechanisms in Childhood Psychiatric Disorders. J. Am. Acad. Child Adolesc. Psychiatry 1994, 33, 921–938. [Google Scholar] [CrossRef]
- Wallis, D.; Russell, H.F.; Muenke, M. Review: Genetics of Attention Deficit/Hyperactivity Disorder. J. Pediatr. Psychol. 2008, 33, 1085–1099. [Google Scholar] [CrossRef] [Green Version]
- Eskenazi, B.; Huen, K.; Marks, A.; Harley, K.G.; Bradman, A.; Barr, D.B.; Holland, N. PON1 and neurodevelopment in children from the CHAMACOS study exposed to organophosphate pesticides in utero. Environ. Health Perspect. 2010, 118, 1775–1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jusko, T.A.; van den Dries, M.A.; Pronk, A.; Shaw, P.A.; Guxens, M.; Spaan, S.; Jaddoe, V.W.; Tiemeier, H.; Longnecker, M.P. Organophosphate Pesticide Metabolite Concentrations in Urine during Pregnancy and Offspring Nonverbal IQ at Age 6 Years. Environ. Health Perspect. 2019, 127, 17007. [Google Scholar] [CrossRef] [PubMed]
- Furlong, C.E.; Holland, N.; Richter, R.J.; Bradman, A.; Ho, A.; Eskenazi, B. PON1 status of farmworker mothers and children as a predictor of organophosphate sensitivity. Pharmacogenet. Genomics. 2006, 16, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Øvergaard, K.R.; Oerbeck, B.; Friis, S.; Pripp, A.H.; Aase, H.; Zeiner, P. Predictive validity of attention-deficit/hyperactivity disorder from ages 3 to 5 Years. Eur. Child Adolesc. Psychiatry 2021, 30, 1–10. [Google Scholar] [CrossRef]
- Curchack-Lichtin, J.T.; Chacko, A.; Halperin, J.M. Changes in ADHD symptom endorsement: Preschool to school age. J. Abnorm. Child Psychol. 2014, 42, 993–1004. [Google Scholar] [CrossRef] [Green Version]
- Harvey, E.A.; Lugo-Candelas, C.I.; Breaux, R.P. Longitudinal changes in individual symptoms across the preschool years in children with ADHD. J. Clin. Child Adolesc. Psychol. 2015, 44, 580–594. [Google Scholar] [CrossRef] [Green Version]
- Li, A.J.; Martinez-Moral, M.-P.; Kannan, K. Temporal variability in urinary pesticide concentrations in repeated-spot and first-morning-void samples and its association with oxidative stress in healthy individuals. Environ. Int. 2019, 130, 104904. [Google Scholar] [CrossRef]
- Lu, C.; Bravo, R.; Caltabiano, L.M.; Irish, R.M.; Weerasekera, G.; Barr, D.B. The presence of dialkylphosphates in fresh fruit juices: Implication for organophosphorus pesticide exposure and risk assessments. J. Toxicol. Environ. Health A 2005, 68, 209–227. [Google Scholar] [CrossRef]
- Zhang, X.; Driver, J.H.; Li, Y.; Ross, J.H.; Krieger, R.I. Dialkylphosphates (DAPs) in fruits and vegetables may confound biomonitoring in organophosphorus insecticide exposure and risk assessment. J. Agric. Food Chem. 2008, 56, 10638–10645. [Google Scholar] [CrossRef]
- Krieger, R.I.; Chen, L.; Ginevan, M.; Watkins, D.; Cochran, R.C.; Driver, J.H.; Ross, J.H. Implications of estimates of residential organophosphate exposure from dialkylphosphates (DAPs) and their relevance to risk. Regul. Toxicol. Pharmacol. 2012, 64, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Statista Research Department. Main Import Partners of Norway for Fresh Fruit and Vegetables in 2020, by Import Value. Available online: https://www.statista.com/statistics/646864/main-import-partners-of-norway-for-fresh-fruit-and-vegetables-by-import-value/ (accessed on 24 September 2021).
Preschool ADHD Cases (n = 259) | Sub-Cohort (n = 547) | |||
---|---|---|---|---|
n | % | n | % | |
(Mean, SD) | (Mean, SD) | |||
Maternal age at delivery (years) | (30.0, 4.05) | (30.9, 4.23) | ||
<26 | 32 | 12.4 | 46 | 8.4 |
26–30 | 110 | 42.5 | 205 | 37.6 |
31–35 | 99 | 38.2 | 218 | 40.0 |
>35 | 18 | 7.0 | 76 | 13.9 |
Missing (n) | 0 | 2 | ||
Maternal education | ||||
<4-year university | 91 | 35.3 | 121 | 22.4 |
4-year university | 108 | 41.9 | 236 | 43.7 |
>4-year university | 59 | 22.9 | 183 | 33.9 |
Missing (n) | 1 | 7 | ||
Maternal ADHD-like symptoms * | ||||
No | 225 | 87.6 | 514 | 96.1 |
Yes | 32 | 12.5 | 21 | 3.9 |
Missing(n) | 2 | 12 | ||
Marital status during pregnancy | ||||
Married | 128 | 49.6 | 298 | 55.0 |
Cohabitant | 130 | 50.4 | 244 | 45.0 |
Missing (n) | 1 | 5 | ||
Maternal income dependence | ||||
Family not dependent on maternal income | 34 | 13.6 | 105 | 19.8 |
Dependent on maternal income ≥400,000 NOK | 88 | 35.2 | 221 | 41.6 |
Dependent on maternal income <400,000 NOK | 128 | 51.2 | 205 | 38.6 |
Missing (n) | 9 | 16 | ||
Parity | ||||
Primiparous | 155 | 59.9 | 268 | 49.2 |
Multiparous | 104 | 40.2 | 277 | 50.8 |
Missing (n) | 20 | 44 | ||
Child sex | ||||
Male | 145 | 56.0 | 274 | 50.1 |
Female | 114 | 44.0 | 273 | 49.9 |
Missing (n) | 0 | 0 |
Preschool ADHD Cases (n = 259) | Sub-Cohort (n = 547) | |||
---|---|---|---|---|
n | % | n | % | |
(Mean, SD) | (Mean, SD) | |||
Any maternal smoking during pregnancy up until the ~17th week of gestation | ||||
Yes | 61 | 23.6 | 75 | 13.9 |
No | 197 | 76.4 | 466 | 86.1 |
Missing (n) | 1 | 6 | ||
Any maternal alcohol use during pregnancy up until the ~17th week of gestation | ||||
Yes | 32 | 13.4 | 65 | 12.9 |
No | 207 | 86.6 | 438 | 87.1 |
Missing (n) | 20 | 44 | ||
Fresh fruit consumption during pregnancy up until ~22 weeks gestation (servings per day) | (2.0, 1.4) | (2.1, 1.3) | ||
Missing (n) | 4 | 7 | ||
Raw vegetable consumption during pregnancy up until ~22 weeks gestation (servings per day) | (1.4, 0.8) | (1.4, 0.9) | ||
Missing (n) | 8 | 21 | ||
Self-reported pesticide exposure * | ||||
Yes | 15 | 6.1 | 25 | 4.8 |
No | 230 | 93.9 | 495 | 95.2 |
Missing(n) | 14 | 27 | ||
Season of prenatal urine collection | ||||
Winter | 70 | 27.3 | 156 | 28.5 |
Fall | 56 | 21.6 | 119 | 21.8 |
Spring | 66 | 25.5 | 135 | 24.7 |
Summer | 67 | 25.9 | 137 | 25.1 |
Missing (n) | 0 | 0 |
OP metabolite | Population | N | LOQ | %>LOQ | Min | 25% | 50% | 75% | Max |
---|---|---|---|---|---|---|---|---|---|
DEP (ng/mL) | Case | 259 | 1.089 | 67.3 | <LOQ | <LOQ | 1.67 | 3.27 | 32.8 |
Sub-cohort | 548 | 1.089 | 67.4 | <LOQ | <LOQ | 1.68 | 3.49 | 25.9 | |
DETP (ng/mL) | Case | 259 | 0.594 | 41.5 | <LOQ | <LOQ | <LOQ | 1.37 | 25.0 |
Sub-cohort | 548 | 0.594 | 47.4 | <LOQ | <LOQ | <LOQ | 1.58 | 131 | |
DEDTP (ng/mL) | Case | 259 | 0.594 | 0.38 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Sub-cohort | 548 | 0.594 | 0.18 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | |
Sum DEP * (nmol/L) | Case | 259 | NA | NA | 2.04 | 10.1 | 18.2 | 34.3 | 241 |
Sub-cohort | 547 | NA | NA | 0.02 | 11.5 | 19.7 | 37.3 | 581 | |
DMP (ng/mL) | Case | 259 | 3.003 | 47.7 | <LOQ | <LOQ | <LOQ | 7.01 | 91.8 |
Sub-cohort | 547 | 3.003 | 52.3 | <LOQ | <LOQ | 3.27 | 10.2 | 168 | |
DMTP (ng/mL) | Case | 259 | 0.429 | 89.6 | <LOQ | 0.91 | 2.09 | 5.18 | 68.6 |
Sub-cohort | 548 | 0.429 | 93.3 | <LOQ | 1.05 | 2.58 | 8.06 | 221 | |
DMDTP (ng/mL) | Case | 259 | 1.320 | 13.5 | <LOQ | <LOQ | <LOQ | <LOQ | 37.6 |
Sub-cohort | 548 | 1.320 | 16.9 | <LOQ | <LOQ | <LOQ | <LOQ | 83.9 | |
Sum DMP * (nmol/L) | Case | 259 | NA | NA | 3.14 | 25.6 | 56.7 | 114 | 1363 |
Sub-cohort | 547 | NA | NA | 0.05 | 31.7 | 66.1 | 156 | 1979 |
OP Metabolite | Case | Sub-Cohort | Log10OR (95% CI) | Case | Sub-Cohort | Q1 (Ref) OR (95% CI) | Case | Sub- Cohort | Q2 OR (95% CI) | Case | Sub-Cohort | Q3 OR (95% CI) | Case | Sub-Cohort | Q4 OR (95% CI) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
∑DEP0 | 259 | 547 | 0.76 (0.52, 1.09) | 72 | 129 | ref | 62 | 140 | 0.79 (0.52, 1.20) | 67 | 135 | 0.89 (0.59, 1.34) | 58 | 143 | 0.73 (0.48, 1.11) |
∑DEP1 | 231 | 483 | 1.08 (0.67, 1.75) | 66 | 117 | ref | 56 | 124 | 0.96 (0.59, 1.56) | 58 | 115 | 1.13 (0.69, 1.85) | 51 | 127 | 0.94 (0.55, 1.61) |
∑DMP0 | 259 | 547 | 0.65 (0.49, 0.88) | 77 | 124 | ref | 63 | 139 | 0.73 (0.48, 1.10) | 67 | 135 | 0.80 (0.53, 1.20) | 52 | 149 | 0.56 (0.37, 0.86) |
∑DMP1 | 231 | 483 | 0.79 (0.53, 1.17) | 73 | 111 | ref | 52 | 127 | 0.75 (0.47, 1.19) | 59 | 119 | 0.88 (0.54, 1.42) | 47 | 126 | 0.75 (0.44, 1.26) |
Genotypes | n Cases/Sub-Cohort | Log10DEP (OR 95% CI) | p-Interaction | Log10DMP (OR 95% CI) | p-Interaction |
---|---|---|---|---|---|
PON1 L55M (maternal rs854560) | |||||
MM (AA) | 100/213 | 0.67 (0.35, 1.27) | 0.40 | 0.66 (0.40, 1.11) | 0.77 |
LM (TA) or LL (TT) | 144/306 | 0.94 (0.58, 1.51) | 0.73 (0.49, 1.09) | ||
PON1 Q192R (maternal rs662) | |||||
QQ (TT) | 124/279 | 0.74 (0.44, 1.26) | 0.43 | 0.68 (0.45, 1.04) | 0.72 |
QR (TC) or RR (CC) | 123/243 | 1.01 (0.57, 1.79) | 0.76 (0.48, 1.21) | ||
Child sex at birth | |||||
Male | 144/271 | 0.73 (0.43, 1.24) | 0.45 | 0.74 (0.54, 1.00) | 0.83 |
Female | 114/267 | 0.98 (0.57, 1.69) | 0.72 (0.47, 1.10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manley, C.K.; Villanger, G.D.; Thomsen, C.; Cequier, E.; Sakhi, A.K.; Reichborn-Kjennerud, T.; Herring, A.H.; Øvergaard, K.R.; Zeiner, P.; Roell, K.R.; et al. Prenatal Exposure to Organophosphorus Pesticides and Preschool ADHD in the Norwegian Mother, Father and Child Cohort Study. Int. J. Environ. Res. Public Health 2022, 19, 8148. https://doi.org/10.3390/ijerph19138148
Manley CK, Villanger GD, Thomsen C, Cequier E, Sakhi AK, Reichborn-Kjennerud T, Herring AH, Øvergaard KR, Zeiner P, Roell KR, et al. Prenatal Exposure to Organophosphorus Pesticides and Preschool ADHD in the Norwegian Mother, Father and Child Cohort Study. International Journal of Environmental Research and Public Health. 2022; 19(13):8148. https://doi.org/10.3390/ijerph19138148
Chicago/Turabian StyleManley, Cherrel K., Gro D. Villanger, Cathrine Thomsen, Enrique Cequier, Amrit K. Sakhi, Ted Reichborn-Kjennerud, Amy H. Herring, Kristin R. Øvergaard, Pal Zeiner, Kyle R. Roell, and et al. 2022. "Prenatal Exposure to Organophosphorus Pesticides and Preschool ADHD in the Norwegian Mother, Father and Child Cohort Study" International Journal of Environmental Research and Public Health 19, no. 13: 8148. https://doi.org/10.3390/ijerph19138148
APA StyleManley, C. K., Villanger, G. D., Thomsen, C., Cequier, E., Sakhi, A. K., Reichborn-Kjennerud, T., Herring, A. H., Øvergaard, K. R., Zeiner, P., Roell, K. R., Engel, L. S., Kamai, E. M., Thistle, J., Hall, A., Aase, H., & Engel, S. M. (2022). Prenatal Exposure to Organophosphorus Pesticides and Preschool ADHD in the Norwegian Mother, Father and Child Cohort Study. International Journal of Environmental Research and Public Health, 19(13), 8148. https://doi.org/10.3390/ijerph19138148