Estimation and Potential Analysis of Land Population Carrying Capacity in Shanghai Metropolis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Data Processing
2.2. Methods
2.2.1. Division of Land Use Space
2.2.2. Evaluation Indicator Selection
2.2.3. Evaluation Indicator Weighting
- First, set the original data matrix as , in which represent the number of evaluation objects and is the number of evaluation indicators. The matrix is normalized to .
- 2.
- The entropy value of indicator is shown below:
- 3.
- The difference coefficient of indicator is shown below:
- 4.
- The weight of indicator j is as follows:
2.2.4. Estimation Method of Subspace Land Population Carrying Capacity Based on GIS
3. Results
3.1. Analysis of Estimation Results
3.1.1. Evaluation Results of Subspaces Land Carrying Capacity
3.1.2. Grading Evaluation Results
3.2. Estimation Results of Land Population Carrying Capacity
3.2.1. Basic Concepts of Estimation
3.2.2. Estimation Scheme
Estimation Scheme of Urban Land Space
Estimation Scheme of Agricultural Land Space
Estimation Scheme of Ecological Land Space
3.2.3. Estimation of Gross Population Carrying Capacity
3.3. Potential Analysis of Population Carrying Capacity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arrow, K.; Bolin, B.; Costanza, R.; Dasgupta, P.; Mler, K.G. Economic growth, carrying capacity, and the environment. Environ. Dev. Econ. 1996, 1, 104–110. [Google Scholar] [CrossRef]
- Shi, Y.S.; Wang, H.F.; Yin, C.Y. Evaluation method of urban land population carrying capacity based on GIS—A case of Shanghai, China. Comput. Environ. Urban Syst. 2013, 39, 27–38. [Google Scholar] [CrossRef]
- Lane, M. The carrying capacity imperative: Assessing regional carrying capacity methodologies for sustainable land-use planning. Land Use Policy 2010, 27, 1038–1045. [Google Scholar] [CrossRef] [Green Version]
- Agustizar, A.; Muryani, C.; Sarwono, S. Agricultural Land Carrying Capacity and Shift of Land Use in Upstream of Grompol Watershed, Central Java Province. IOP Conf. Ser. Earth Environ. Sci. 2018, 145, 012070. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.M.; Zhang, H.Y.; Zhang, Y.G.; Lin, M.S.; Gong, P. Measurement and coupling analysis of land carrying capacity of coastal areas in the Yangtze River Delta. Trans. Chin. Soc. Agric. Eng. 2020, 36, 281–292. (In Chinese) [Google Scholar] [CrossRef]
- Chen, D.; Zhou, Q.G.; Yu, L.A. Response of resources and environment carrying capacity under the evolution of land use structure in Chongqing Section of the Three Gorges Reservoir Area. J. Environ. Manag. 2020, 274, 111169. [Google Scholar] [CrossRef]
- Wang, Y.X.; Wang, Y.; Su, X.L.; Qi, L.; Liu, M. Evaluation of the Comprehensive Carrying Capacity of Interprovincial Water Resources in China and the Spatial Effect. J. Hydrol. 2019, 575, 794–809. [Google Scholar] [CrossRef]
- Luo, W.Z.; Ren, Y.T.; Shen, L.Y.; Zhu, M.C.; Jiang, Y.M.; Meng, C.H.; Zhang, P.X. An evolution perspective on the urban land carrying capacity in the urbanization era of China. Sci. Total Environ. 2020, 744, 140827. [Google Scholar] [CrossRef]
- Tsou, J.Y.; Gao, Y.F.; Zhang, Y.Z.; Sun, G.Y.; Ren, J.C.; Li, Y. Evaluating Urban Land Carrying Capacity Based on the Ecological Sensitivity Analysis: A Case Study in Hangzhou, China. Remote Sens. 2017, 9, 529–544. [Google Scholar] [CrossRef] [Green Version]
- Cui, G.M.; Zhang, X.L.; Zhang, Z.H.; Cao, Y.H.; Liu, X.J. Comprehensive Land Carrying Capacities of the Cities in the Shandong Peninsula Blue Economic Zone and their Spatio-Temporal Variations. Sustainability 2019, 11, 439. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Y.; Wei, Y.G.; Zhang, J. Overpopulation and urban sustainable development-population carrying capacity in Shanghai based on probability-satisfaction evaluation method. Environ. Dev. Sustain. 2020, 23, 3318–3337. [Google Scholar] [CrossRef]
- Cohen, J.E. Population Growth and Earth’s Human Carrying Capacity. Science 1995, 269, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.G.; Huang, C.; Li, J.; Xie, L.L. An evaluation model for urban carrying capacity: A case study of China’s mega-cities. Habitat Int. 2015, 53, 87–96. [Google Scholar] [CrossRef]
- Tang, Y.; Yuan, Y.B.; Zhong, Q.Y. Evaluation of Land Comprehensive Carrying Capacity and Spatio-Temporal Analysis of the Harbin-Changchun Urban Agglomeration. Int. J. Environ. Res. Public Health 2021, 18, 521–539. [Google Scholar] [CrossRef]
- Wang, Z.B. Land Spatial Development Based on Carrying Capacity, Land Development Potential, and Efficiency of Urban Agglomerations in China. Sustainability 2018, 10, 4701. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Sun, C.W. Comprehensive Carrying Capacity, Economic Growth and the Sustainable Development of Urban Areas: A Case Study of the Yangtze River Economic Belt. J. Clean. Prod. 2018, 195, 486–496. [Google Scholar] [CrossRef]
- Liu, Z.; Ren, Y.T.; Shen, L.Y.; Liao, X.; Wei, X.X.; Wang, J.H. Analysis on the effectiveness of indicators for evaluating urban carrying capacity: A popularity-suitability perspective. J. Clean. Prod. 2019, 246, 119019. [Google Scholar] [CrossRef]
- Zhou, W.; Elshkaki, A.; Zhong, S.; Shen, L. Study on Relative Carrying Capacity of Land Resources and Its Zoning in 31 Provinces of China. Sustainability 2021, 13, 1459. [Google Scholar] [CrossRef]
- Guo, S.L.; Li, C.J.; Liu, S.Q.; Zhou, K. Land carrying capacity in rural settlements of three gorges reservoir based on the system dynamic model. Nat. Resour. Modeling 2018, 31, e12152. [Google Scholar] [CrossRef]
- Gilandeh, A.; Behjou, F.; Yarmohammadi, K. Evaluation of Ardabil City Carrying Capacity Using DPSIR Method and ELECTRE Model. Glob. J. Agric. Innov. Res. Dev. 2018, 5, 15–23. [Google Scholar] [CrossRef]
- Xu, Z.H.; Fan, W.G.; Wei, H.J.; Zhang, P.; Ren, J.H.; Gao, Z.C.; Dong, X.B. Evaluation and simulation of the impact of land use change on ecosystem services based on a carbon flow model: A case study of the Manas River Basin of Xinjiang, China. Sci. Total Environ. 2019, 652, 117–133. [Google Scholar] [CrossRef]
- Shi, S.N.; Hu, B.Q.; Yan, Y.; Li, X.Q.; Zhou, K.C.; Tang, C.Y.; Xie, B.G. Dynamic Evolution of the Ecological Carrying Capacity of Poverty-Stricken Karst Counties Based on Ecological Footprints: A Case Study in Northwestern Guangxi, China. Int. J. Environ. Res. Public Health 2020, 17, 991–1011. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.L.; Gao, Y.N.; Hao, J.M. Synergic relationship between urban land carrying capacity and urbanization level in Inner Mongolia Autonomous Region. J. China Agric. Univ. 2021, 26, 107–116. (In Chinese) [Google Scholar] [CrossRef]
- Doan, T.; Guo, X.L. Understanding Bison Carrying Capacity Estimation in Northern Great Plains Using Remote Sensing and GIS. Can. J. Remote Sens. 2019, 45, 139–162. [Google Scholar] [CrossRef]
- Shi, Y.S.; Shi, S.Z.; Wang, H.F. Reconsideration of the methodology for estimation of land population carrying capacity in Shanghai metropolis. Sci. Total Environ. 2019, 652, 367–381. [Google Scholar] [CrossRef]
- Feng, Z.M.; Yang, Y.Z.; Zhang, J. The land carrying capacity of China based on man_grain relationship. J. Nat. Resour. 2008, 23, 865–875. (In Chinese) [Google Scholar] [CrossRef]
- Cheng, K.; Fu, Q.; Cui, S.; Li, T.X.; Pei, W.; Liu, D.; Meng, J. Evaluation of the land carrying capacity of major grain-producing areas and the identification of risk factors. Nat. Hazards 2017, 86, 263–280. [Google Scholar] [CrossRef]
- Fan, C.H.; Ma, B.B.; Xue, D.Q. Optimum Population Measure on Basis of Land Comprehensive Carrying Capacity in Xi’an City. Bull. Soil Water Conserv. 2015, 35, 205–209. [Google Scholar]
- Fu, C.Y.; Dong, X.F. A grey prediction model based on the background value correction of and application in the potential land population carrying:a case study of the Hexi Corridor. J. Lanzhou Univ. Nat. Sci. 2020, 56, 477–485. (In Chinese) [Google Scholar] [CrossRef]
- Kirkman, L.K.; Goebel, P.C.; West, L.; Drew, M.B.; Palik, B.J. Depressional wetland vegetation types: A question of plant community development. Wetlands 2000, 20, 373–385. [Google Scholar] [CrossRef]
- Wenfa, L. Types of wetlands. DaQing Soc. Sci. 2008, 01, 51–55. (In Chinese) [Google Scholar]
- Ellison, G.; Glaeser, E.L. Geographic Concentration in U.S. Manufacturing Industries: A Dartboard Approach. J. Political Econ. 1997, 105, 889–927. [Google Scholar] [CrossRef] [Green Version]
- Ren, P.; Wu, T.; Zhou, J.M. Analysis of spatial distribution pattern and evolutionary characteristics of cultivated lands based on spatial autocorrelation model and GIS platform—A case study of Longquanyi District, Chengdu, China. Chin. J. Eco.-Agric. 2016, 24, 325–334. (In Chinese) [Google Scholar] [CrossRef]
- Laura, U.; Caroline, N.; Karl, H.; David, L.; Elizabeth, M.; Alexei, L.; Lvan, M.; Janne, L.; Albert, P.C. Detecting inter-annual variations in the phenology of evergreen conifers using long-term modis vegetation index time series. Remote Sens. 2017, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Qin, Z.H.; Li, W.J.; Xu, B.; Zhang, W.C. Estimation method of land surface emissivity for retrieving land surface temperature from Landsat TM6 data. Adv. Mar. Sci. 2004, 22, 129–137. (In Chinese) [Google Scholar]
- Wu, Y.Q.; Fang, L.; Yin, W. Land use classification standard for Shanghai territorial spatial planning. Shanghai Urban Planning Review. Land Use Classif. Stand. Shanghai Territ. Spat. Plan. 2019, 4, 45–50. (In Chinese) [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, S.; Duan, J. Studies on the land use classification scheme for territory spatial planning. Geographical Research. Geogr. Res. 2019, 38, 2388–2401. (In Chinese) [Google Scholar] [CrossRef]
- GB/T21010-2017; Current Land Use Classification. General Administration of Quality Supervision; Inspection Quarantine of P.R.C. Standardization and Administration of the People’s Republic of China, 2017.
- Deng, X.; Liu, Y.Y.; Xiong, Y. Analysis on the Development of Digital Economy in Guangdong Province Based on Improved Entropy Method and Multivariate Statistical Analysis. Entropy 2020, 22, 1441. [Google Scholar] [CrossRef]
- Liu, N.Q.; Jiang, Q.Z.; Hu, Y.Q. The population development law of economic center cities in major developed countries and its enlightenment to Shanghai. Sci. Dev. 2021, 153, 49–57. (In Chinese) [Google Scholar]
- Gao, J.X.; Liu, X.M.; Wang, C.; Wang, Y.; Fu, Z.; Hou, P.; Liu, N. Evaluating changes in ecological land and effect of protecting important ecological spaces in China. J. Geogr. Sci. 2021, 31, 1245–1260. (In Chinese) [Google Scholar] [CrossRef]
- Xie, G.D.; Cheng, S.K.; Yu, G.R.; Gao, W.S. Trend of China’s natural resources consumption and national resources safety change. China Popul. Resour. Environ. 2002, 12, 24–28. (In Chinese) [Google Scholar] [CrossRef]
- Wu, L. City population size and living environmental quality—Shanghai, China as an example. J. Northwest Popul. 1995, 3, 14–22. (In Chinese) [Google Scholar] [CrossRef]
- Xu, H.; Mu, X.; Wang, H.C. Study on the maximum population carrying capacity of Shanghai under the target of establishing a world metropolitan. J. Syst. Manag. 2007, 16, 225–229. (In Chinese) [Google Scholar]
- Wang, Y.M.; Ji, X.; Liu, C.Y. Study on prediction of population change in Shanghai. Shanghai J. Econ. 2014, 03, 89–98. (In Chinese) [Google Scholar] [CrossRef]
- Yang, X.L.; Liu, J.W.; Zhou, W.T.; Qin, Z. Demonstration of 2040 Shanghai population forecast based on economic growth. China Anc. City 2016, 06, 38–44. (In Chinese) [Google Scholar]
Data Types | The Data Source |
---|---|
Statistics data | Shanghai Statistical Yearbook in 2018 |
Statistical Bulletin of Districts in 2018 | |
Shanghai water resources bulletin in 2017 | |
Environmental quality status bulletin of districts in 2017 | |
Spatial data | Landsat8_OLI (Geospatial Data Cloud, http://www.gscloud.cn/, accessed on 5 January 2021) |
DEM data (Geospatial Data Cloud, http://www.gscloud.cn/, accessed on 5 January 2021) | |
Shanghai administrative divisions map | |
Shanghai Traffic Map in 2017 | |
Shanghai Land Use Status Database in 2017 | |
Shanghai comprehensive evaluation map of surface soil environmental quality | |
Comprehensive evaluation map of water quality districts of Shanghai in 2017 Contour Map of Shanghai Land Subsidence | |
Shanghai suitability zoning map of natural foundation engineering construction | |
Shanghai potential geological disaster zoning map |
Three Categories | Names and Codes of Level I Types | Names and Codes of Level II Types |
---|---|---|
Agricultural land | Arable land (01) | Paddy field (011), watered land (012), dry land (013) |
Garden land (02) | Orchard (021), tea garden (022), other garden land (023) | |
Woodland (03) | Forested land (031), shrub land (032), other woodland (033) | |
Grassland (04) | Natural pasture (041), artificial pasture (042) | |
Transportation land (10) | Rural road land (104) | |
Water area and water conservancy facilities land (11) | Pond (114), ditch (117) | |
Other land (12) | Agricultural facilities land (122), ridge of field (123) | |
Construction land | Commercial land (05) | Wholesale and retail land (051), accommodation and catering land (052), commercial and financial land (053), other commercial land (054) |
Mining warehouse land (06) | Industrial land (061), mining land (062), warehouse land (063) | |
Residential land (07) | Urban residential land (071), rural housing land (072) | |
Public management and service land (08) | Government organization land (081), press and publication land (082), science and education land (083), medical and health charity land (084), sport and entertainment land (085), public facilities land (086), park and green space (087), scenic spot and facilities land (088) | |
Special land (09) | Military facilities land (091), embassies and consulates land (092), educational supervision site land (093), religious land (094), funeral land (095) | |
Transportation land (10) | Railway land (101), highway land (102), streets and alleys land (103), airport land (105), port and wharf land (106), pipeline transportation land (107) | |
Water area and water conservancy facilities land (11) | Reservoir (113), hydraulic construction land (118) | |
Other land (12) | Vacant land (121) | |
Unused land | Water area and water conservancy facilities land (11) | River (111), lake (112), tidal flat (115), inland tidal flat (116), glaciers and permanent snow (119) |
Grassland (04) | Other grassland (043) | |
Other land (12) | Saline land (124), marshland (125), sand land (126), bare land (127) |
Land Space Type | Major Land Use Types | Area (km2) |
---|---|---|
Urban land space | Commercial land, mining warehouse land, residential land, transportation land, public management and service land, special land, other land (vacant land), water area and water conservancy facilities land (hydraulic construction land) | 3028.631 |
Agricultural land space | Arable land, garden land, rural road land, other land (agricultural facilities land, ridge of field) | 2265.151 |
Ecological land space | Woodland, grassland, water area and water conservancy facilities land and other land (sand, bare land) | 1777.911 |
Urban land space | Indicators | Per capita Construction Land | Industrial Land Proportion | Population Density | Economic Density | Urbanization Rate |
Weights | 0.055 | 0.066 | 0.154 | 0.20 | 0.030 | |
Indicators | Hospital beds per 10,000 people | Road network density | Infrastructure investment per unit area | Suitability of natural foundation engineering construction | Land subsidence | |
Weights | 0.142 | 0.104 | 0.183 | 0.033 | 0.033 | |
Agricultural land space | Indicators | Per capita cultivated land | per capita food occupancy | Soil Environmental Quality | Output value per unit agricultural land | Agricultural labor productivity |
Weights | 0.168 | 0.182 | 0.030 | 0.164 | 0.210 | |
Indicators | Cultivated land concentration | Slope | ||||
Weights | 0.175 | 0.071 | ||||
Ecological land space | Indicators | Geological hazards susceptibility | Comprehensive water quality Index | Per capita park green area | Air quality index | PM2.5 |
Weights | 0.057 | 0.320 | 0.105 | 0.039 | 0.052 | |
Indicators | Vegetation coverage | wetland area ratio | ||||
Weights | 0.238 | 0.189 |
Grade | Urban Land Space | Agricultural Land Space | Ecological Land Space | |||
---|---|---|---|---|---|---|
Threshold Value | Area (km2) | Threshold Value | Area (km2) | Threshold Value | Area (km2) | |
Poor | <0.154 | 950.943 | <0.444 | 125.791 | <0.192 | 18.472 |
Inferior | [0.154, 0.218) | 1268.640 | [0.444, 0.484) | 32.773 | [0.192, 0.267) | 286.183 |
Common | [0.218, 0.272) | 532.118 | [0.484, 0.597) | 882.594 | [0.267, 0.363) | 144.087 |
Good | [0.272, 0.572) | 197.620 | [0.597, 0.646) | 205.977 | [0.363, 0.510) | 721.106 |
Better | ≥0.572 | 79.310 | ≥0.646 | 1018.017 | ≥0.510 | 608.063 |
Total (km2) | / | 3028.631 | / | 2265.151 | / | 1777.911 |
Grade | Urban Land Space | |||
---|---|---|---|---|
Urban Centres | Inner Suburbs | Outer Suburbs | Total | |
Poor | 0 | 0.280 | 950.662 | 950.943 |
Inferior | 0 | 1022.329 | 246.311 | 1268.640 |
Common | 0 | 532.118 | 0 | 532.118 |
Good | 196.235 | 1.385 | 0 | 197.6203 |
Better | 79.310 | 0 | 0 | 79.310 |
Total | 275.545 | 1556.113 | 1196.973 | 3028.631 |
Grade | Urban Centres | Inner Suburbs | Outer Suburbs | |||
---|---|---|---|---|---|---|
Carrying Density (Persons/km2) | Carrying Population (1000 Persons) | Carrying Density (Persons/km2) | Carrying Population (1000 Persons) | Carrying Density (Persons/km2) | Carrying Population (1000 Persons) | |
Poor | 0 | 0 | 3000–6000 | 0.84–1.68 | 3000–4500 | 2851.99–4277.98 |
Inferior | 0 | 0 | 6000–9000 | 6133.98–9200.96 | 4500–6000 | 1108.40–1477.86 |
Common | 0 | 0 | 9000 | 4789.06 | 0 | 0 |
Good | 20,000–25,000 | 3924.70–4905.87 | 9000–12,000 | 12.47–16.62 | 0 | 0 |
Better | 25,000–30,000 | 1982.75–2379.30 | 12,000–15,000 | 0 | 0 | 0 |
Total | 5907.45–7285.17 | 10,936.35–14,008.32 | 3960.39–5755.84 |
Grade | Space Types | |||
---|---|---|---|---|
Urban Land Space | Agricultural Land Space | Ecological Land Space | Total | |
Poor | 2852.83–4279.66 | 188.69–213.84 | 1.11–1.66 | 3042.63–4495.16 |
Inferior | 7242.38–10,678.82 | 55.71–62.27 | 25.76–34.34 | 7323.85–10,775.43 |
Common | 4789.06 | 1676.93 | 17.29 | 6483.28 |
Good | 3937.17–4922.49 | 391.36–432.55 | 86.53–108.17 | 4415.06–5463.21 |
Better | 1982.75–2379.30 | 2137.83–2341.44 | 91.21–109.45 | 4211.79–4830.19 |
Total | 20,804.19–27,049.33 | 4450.52–4727.03 | 221.90–270.91 | 25,476.61–32,047.27 |
District Name | Estimation Population Carrying Capacity | Resident Population in 2017 | Potential Population Carrying | Appropriate Carrying Population | Potential Appropriate Population Carrying | |
---|---|---|---|---|---|---|
Urban centres | Xuhui | 1028.71–1285.90 | 1088.3 | −59.59–197.60 | 1157.31 | 69.01 |
Yangpu | 1115.95–1394.11 | 1313.4 | −197.45–80.71 | 1255.03 | −58.37 | |
Putuo | 1076.96–1346.23 | 1284.7 | −207.74–61.53 | 1211.60 | −73.11 | |
Hongkou | 578.29–693.95 | 799. | −220.71–−105.05 | 636.12 | −162.88 | |
Huangpu | 468.06–561.69 | 654.8 | −186.74–−93.11 | 514.88 | −139.93 | |
Jing’an | 915.75–1098.90 | 1066.2 | −150.45–32.70 | 1007.33 | −58.87 | |
Changning | 724.63–905.80 | 693.7 | 30.93–212.10 | 815.21 | 121.51 | |
Subtotal | 5908.35–7286.59 | 6900.1 | −991.76–386.49 | 6597.46 | −302.64 | |
Inner suburbs | Pudong | 5355.55–7607.59 | 5528.4 | −172.85–2079.19 | 6481.57 | 953.17 |
Jiading | 1838.25–2687.64 | 1581.8 | 256.45–1105.84 | 2262.95 | 681.15 | |
Minghang | 2636.93–2641.39 | 2534.3 | 102.63–107.09 | 2639.16 | 104.86 | |
Baoshan | 2166.19–2176.27 | 2030.8 | 135.39–145.47 | 2171.23 | 140.43 | |
Subtotal | 11,996.92–15,112.89 | 11,675.3 | 321.62–3437.59 | 13,554.90 | 1879.60 | |
Outer suburbs | Fengxian | 1666.62–2049.67 | 1155.3 | 511.32–894.37 | 1858.15 | 702.85 |
Qingpu | 1092.17–1477.74 | 1205.3 | −113.13–272.44 | 1284.96 | 79.66 | |
Songjiang | 1243.74–1671.40 | 1751.3 | −507.56–−79.90 | 1457.57 | −293.73 | |
Jinshan | 1232.68–1592.72 | 801.4 | 431.28–791.32 | 1412.70 | 611.30 | |
Chongming | 2336.13–2856.26 | 694.6 | 1641.53–2161.66 | 2596.20 | 1901.60 | |
Subtotal | 7571.34–9647.79 | 5607.9 | 1963.44–4039.89 | 8609.57 | 3001.67 | |
Total | 25,476.61–32,047.27 | 24,183.3 | 1293.30–7863.97 | 28,761.94 | 4578.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Cao, Y.; Wu, X.; Zhao, A.; Xie, Y. Estimation and Potential Analysis of Land Population Carrying Capacity in Shanghai Metropolis. Int. J. Environ. Res. Public Health 2022, 19, 8240. https://doi.org/10.3390/ijerph19148240
Wang H, Cao Y, Wu X, Zhao A, Xie Y. Estimation and Potential Analysis of Land Population Carrying Capacity in Shanghai Metropolis. International Journal of Environmental Research and Public Health. 2022; 19(14):8240. https://doi.org/10.3390/ijerph19148240
Chicago/Turabian StyleWang, Hefeng, Yuan Cao, Xiaohu Wu, Ao Zhao, and Yi Xie. 2022. "Estimation and Potential Analysis of Land Population Carrying Capacity in Shanghai Metropolis" International Journal of Environmental Research and Public Health 19, no. 14: 8240. https://doi.org/10.3390/ijerph19148240
APA StyleWang, H., Cao, Y., Wu, X., Zhao, A., & Xie, Y. (2022). Estimation and Potential Analysis of Land Population Carrying Capacity in Shanghai Metropolis. International Journal of Environmental Research and Public Health, 19(14), 8240. https://doi.org/10.3390/ijerph19148240