Effects of Health Shocks, Insurance, and Education on Income: Fresh Analysis Using CHNS Panel Data
Abstract
:1. Introduction
2. Literature Review
2.1. Introducing HSs into the Wealth Equation
2.2. Introducing Insurance into the Equation
2.3. Introducing Education into the Equation
3. Materials and Methods
3.1. Sample Set
3.2. Variable Definition
3.2.1. Dependent Variable: Individual Wealth
3.2.2. Independent Variables
Health Shocks
3.2.3. Control Variables
3.3. Econometric Strategy and Model Specification
4. Results
4.1. Investigation of Variables
4.2. Empirical Results of HS Variables
4.2.1. Objective HSs (OHSs)
4.2.2. Subjective HSs (SHSs)
4.3. Weighted Average HSs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, K. Insuring against health shocks: Health insurance and household choices. J. Health Econ. 2016, 46, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, E.V. Child labor and schooling responses to anticipated income in South Africa. J. Dev. Econ. 2006, 81, 386–414. [Google Scholar] [CrossRef]
- Jacoby, H.G.; Skoufias, E. Risk, Financial Markets, and Human Capital in a Developing Country. Rev. Econ. Stud. 1997, 64, 311–335. [Google Scholar] [CrossRef]
- Dercon, S.; Krishnan, P. In Sickness and in Health: Risk Sharing within Households in Rural Ethiopia. J. Politi-Econ. 2000, 108, 688–727. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.K.; Reynolds, J.R. Educational expectation trajectories and attainment in the transition to adulthood. Soc. Sci. Res. 2012, 42, 818–835. [Google Scholar] [CrossRef]
- Asfaw, A.; von Braun, J. Can community health insurance schemes shield the poor against the downside health effects of economic reforms? The case of rural ethiopia. Health Policy 2004, 70, 97–108. [Google Scholar] [CrossRef]
- Morduch, J. Income Smoothing and Consumption Smoothing. J. Econ. Perspect. 1995, 9, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Evans, D.B.; Kawabata, K.; Zeramdini, R.; Klavus, J.; Murray, C.J. Household catastrophic health expenditure: A multicountry analysis. Lancet 2003, 362, 111–117. [Google Scholar] [CrossRef]
- Survey Data—China Health and Nutrition Survey (CHNS). Available online: https://www.cpc.unc.edu/projects/china/data/data (accessed on 1 June 2022).
- Grossman, M. On the Concept of Health Capital and the Demand for Health. J. Politi-Econ. 1972, 80, 223–255. [Google Scholar] [CrossRef] [Green Version]
- Khelfaoui, I.; Xie, Y.; Hafeez, M.; Ahmed, D. Education Impact on Health Shocks: Evidence from C.H.N.S. Data. In Proceedings of the Fourteenth International Conference on Management Science and Engineering Management, Chisinau, Moldova, 30 July–2 August 2022; Xu, J., Duca, G., Ahmed, S.E., Márquez, F.P.G., Hajiyev, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 1190, pp. 66–80. [Google Scholar] [CrossRef]
- Cropper, M.L. Health, Investment in Health, and Occupational Choice. J. Politi-Econ. 1977, 85, 1273–1294. [Google Scholar] [CrossRef]
- Ehrlich, I.; Chuma, H. A Model of the Demand for Longevity and the Value of Life Extension. J. Politi-Econ. 1990, 98, 761–782. [Google Scholar] [CrossRef] [PubMed]
- Sickles, R.C.; Yazbeck, A. On the Dynamics of Demand for Leisure and the Production of Health. J. Bus. Econ. Stat. 1998, 16, 187–197. [Google Scholar] [CrossRef]
- Carol Weiss. Evaluating Action Programs—Readings in Social Action and Education|Office of Justice Programs. Available online: https://www.ojp.gov/ncjrs/virtual-library/abstracts/evaluating-action-programs-readings-social-action-and-education (accessed on 1 June 2022).
- Smith, J.P. Healthy Bodies and Thick Wallets: The Dual Relation Between Health and Economic Status. J. Econ. Perspect. 1999, 13, 145–166. [Google Scholar] [CrossRef] [Green Version]
- Capatina, E. Life-cycle effects of health risk. J. Monetary Econ. 2015, 74, 67–88. [Google Scholar] [CrossRef]
- Bloom, D.E.; Canning, D.; Sevilla, J. The Effect of Health on Economic Growth: A Production Function Approach. World Dev. 2004, 32, 1–13. [Google Scholar] [CrossRef]
- Hokayem, C.; Ziliak, J.P. Health, Human Capital, and Life Cycle Labor Supply. Am. Econ. Rev. 2014, 104, 127–131. [Google Scholar] [CrossRef] [Green Version]
- Bound, J.; Schoenbaum, M.; Stinebrickner, T.R.; Waidmann, T. The dynamic effects of health on the labor force transitions of older workers. Labour Econ. 1999, 6, 179–202. [Google Scholar] [CrossRef] [Green Version]
- Riphahn, R.T. Income and employment effects of health shocks A test case for the German welfare state. J. Popul. Econ. 1999, 12, 363–389. [Google Scholar] [CrossRef] [Green Version]
- Smith, J. Unravelling the SES health connection. Popul. Dev. Rev. 2004, 30, 108–132. [Google Scholar] [CrossRef]
- Wu, S. The Effects of Health Events on the Economic Status of Married Couples. J. Hum. Resour. 2003, XXXVIII, 219–230. [Google Scholar] [CrossRef]
- Smith, J. Consequences and Predictors of New Health Events. Institute for Fiscal Studies, IFS Working Paper W03/22, October 2003. Available online: https://econpapers.repec.org/paper/ifsifsewp/03_2F22.htm (accessed on 1 June 2022).
- Himmelstein, D.U.; Thorne, D.; Warren, E.; Woolhandler, S. Medical Bankruptcy in the United States, 2007: Results of a National Study. Am. J. Med. 2009, 122, 741–746. [Google Scholar] [CrossRef]
- Himmelstein, D.U.; Warren, E.; Thorne, D.; Woolhandler, S. Illness And Injury As Contributors To Bankruptcy. Health Aff. 2005, 24, W5–W63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Case, A.; Deaton, A. Broken Down by Work and Sex: How Our Health Declines. In Analyses in the Economics of Aging; National Bureau of Economic Research: Cambridge, MA, USA, 2003. [Google Scholar] [CrossRef]
- Scholz, J.K.; Seshadri, A. Health and Wealth in a Life Cycle Model. SSRN Electron. J. 2011. [Google Scholar] [CrossRef] [Green Version]
- Disney, R.; Emmerson, C.; Wakefield, M. Ill health and retirement in Britain: A panel data-based analysis. J. Health Econ. 2006, 25, 621–649. [Google Scholar] [CrossRef] [Green Version]
- García-Gómez, P.; Jones, A.; Rice, N. Health effects on labour market exits and entries. Labour Econ. 2009, 17, 62–76. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.M.; Rice, N.; Roberts, J. Sick of work or too sick to work? Evidence on self-reported health shocks and early retirement from the BHPS. Econ. Model. 2010, 27, 866–880. [Google Scholar] [CrossRef]
- Au, D.W.H.; Crossley, T.F.; Schellhorn, M. The effect of health changes and long-term health on the work activity of older Canadians. Health Econ. 2005, 14, 999–1018. [Google Scholar] [CrossRef] [Green Version]
- Stephens, T.; Joubert, N. The economic burden of mental health problems in Canada. Chronic Dis. Can. 2001, 22, 18–23. [Google Scholar]
- Gómez, P.G.; Nicolás, A.L. Health shocks, employment and income in the Spanish labour market. Health Econ. 2006, 15, 997–1009. [Google Scholar] [CrossRef]
- Lechner, M.; Vazquez-Alvarez, R. The effect of disability on labour market outcomes in Germany. Appl. Econ. 2008, 43, 389–412. [Google Scholar] [CrossRef]
- García-Gómez, P.; van Kippersluis, H.; O’Donnell, O.; Van Doorslaer, E. Long-Term and Spillover Effects of Health Shocks on Employment and Income. J. Hum. Resour. 2013, 48, 873–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dano, A.M. Road injuries and long-run effects on income and employment. Health Econ. 2005, 14, 955–970. [Google Scholar] [CrossRef] [PubMed]
- Dercon, S.; Krishnan, P. Vulnerability, seasonality and poverty in Ethiopia. J. Dev. Stud. 2000, 36, 25–53. [Google Scholar] [CrossRef]
- Gertler, P.; Gruber, J. Insuring Consumption Against Illness. Am. Econ. Rev. 2002, 92, 51–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asfaw, A.; von Braun, J. Is Consumption Insured against Illness? Evidence on Vulnerability of Households to Health Shocks in Rural Ethiopia. Econ. Dev. Cult. Chang. 2004, 53, 115–129. [Google Scholar] [CrossRef]
- Wagstaff, A. The economic consequences of health shocks: Evidence from Vietnam. J. Health Econ. 2007, 26, 82–100. [Google Scholar] [CrossRef]
- Choi, J.-W.; Cho, K.-H.; Choi, Y.; Han, K.-T.; Kwon, J.-A.; Park, E.-C. Changes in Economic Status of Households Associated with Catastrophic Health Expenditures for Cancer in South Korea. Asian Pac. J. Cancer Prev. 2014, 15, 2713–2717. [Google Scholar] [CrossRef] [Green Version]
- Case, A.; Deaton, A. Health and Wealth among the Poor: India and South Africa Compared. Am. Econ. Rev. 2005, 95, 229–233. [Google Scholar] [CrossRef] [Green Version]
- Sun, A.; Yao, Y. Health shocks and children’s school attainments in rural China. Econ. Educ. Rev. 2010, 29, 375–382. [Google Scholar] [CrossRef]
- Lindelow, M.; Wagstaff, A. Health Shocks in China: Are the Poor and Uninsured Less Protected? Social Science Research Network, Rochester, NY, SSRN Scholarly Paper 2894727, October 2005. Available online: https://papers.ssrn.com/abstract=2894727 (accessed on 1 June 2022).
- Currie, J.; Madrian, B.C. Chapter 50 Health, health insurance and the labor market. In Handbook of Labor Economics; Elsevier: Amsterdam, The Netherlands, 1999; Volume 3, pp. 3309–3416. [Google Scholar] [CrossRef]
- Khwaja, A. Estimating willingness to pay for medicare using a dynamic life-cycle model of demand for health insurance. J. Econ. 2010, 156, 130–147. [Google Scholar] [CrossRef]
- Levy, B.S. Health and peace. Croat. Med. J. 2002, 43, 114–116. [Google Scholar] [PubMed]
- Flores, G.; Tomany-Korman, S.C. Racial and Ethnic Disparities in Medical and Dental Health, Access to Care, and Use of Services in US Children. Pediatrics 2008, 121, e286–e298. [Google Scholar] [CrossRef]
- García-Gómez, P. Institutions, health shocks and labour market outcomes across Europe. J. Health Econ. 2011, 30, 200–213. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Maitra, P. Health shocks and consumption smoothing in rural households: Does microcredit have a role to play? J. Dev. Econ. 2012, 97, 232–243. [Google Scholar] [CrossRef]
- Ambrosius, C.; Cuecuecha, A. Are Remittances a Substitute for Credit? Carrying the Financial Burden of Health Shocks in National and Transnational Households. World Dev. 2013, 46, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Farrell, P.; Fuchs, V.R. Schooling and health: The cigarette connection. J. Health Econ. 1982, 1, 217–230. [Google Scholar] [CrossRef]
- Cutler, D.; Lleras-Muney, A. Education and Health: Insights from International Comparisons; National Bureau of Economic Research: Cambridge, MA, USA, 2012. [Google Scholar] [CrossRef]
- Cutler, D.M.; Lleras-Muney, A. Understanding differences in health behaviors by education. J. Health Econ. 2010, 29, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Grossman, M. The Relationship between Health and Schooling. In Investing in Human Capital for Economic Development in China; World Scientific: Singapore, 2010; pp. 279–291. [Google Scholar] [CrossRef]
- Silles, M.A. The causal effect of education on health: Evidence from the United Kingdom. Econ. Educ. Rev. 2009, 28, 122–128. [Google Scholar] [CrossRef]
- Kemptner, D.; Jürges, H.; Reinhold, S. Changes in compulsory schooling and the causal effect of education on health: Evidence from Germany. J. Health Econ. 2011, 30, 340–354. [Google Scholar] [CrossRef] [Green Version]
- Lleras-Muney, A. The Relationship Between Education and Adult Mortality in the United States. Rev. Econ. Stud. 2005, 72, 189–221. [Google Scholar] [CrossRef] [Green Version]
- Oreopoulos, P. Do dropouts drop out too soon? Wealth, health and happiness from compulsory schooling. J. Public Econ. 2007, 91, 2213–2229. [Google Scholar] [CrossRef]
- Gakidou, E.; Cowling, K.; Lozano, R.; Murray, C.J. Increased educational attainment and its effect on child mortality in 175 countries between 1970 and 2009: A systematic analysis. Lancet 2010, 376, 959–974. [Google Scholar] [CrossRef]
- OECD. Improving Health and Social Cohesion through Education; Organisation for Economic Co-operation and Development: Paris, France, 2010; Available online: https://www.oecd-ilibrary.org/education/improving-health-and-social-cohesion-through-education_9789264086319-en (accessed on 1 June 2022).
- Bicego, G.T.; Boerma, J.T. Maternal education and child survival: A comparative study of survey data from 17 countries. Soc. Sci. Med. 1993, 36, 1207–1227. [Google Scholar] [CrossRef]
- WHO. The Impact of Health and Health Behaviours on Educational Outcomes in High-Income Countries. 2011. Available online: http://www.euro.who.int/__data/assets/pdf_file/0004/134671/e94805.pdf (accessed on 1 June 2022).
- International Health Conference. Constitution of the World Health Organization. 1946. Bull. World Health Organ. 2003, 80, 983–984. [Google Scholar]
- Schurer, S. Discrete Heterogeneity in the Impact of Health Shocks on Labour Market Outcomes. SSRN Electron. J. 2008. [Google Scholar] [CrossRef] [Green Version]
- Strauss, J.; Thomas, D. Chapter 34 Human resources: Empirical modeling of household and family decisions. In Handbook of Development Economics; Elsevier: Amsterdam, The Netherlands, 1995; Volume 3, pp. 1883–2023. [Google Scholar] [CrossRef]
- Haveman, R.; Wolfe, B. The Economic Well-Being of the Disabled: 1962-84. J. Hum. Resour. 1990, 25, 32. [Google Scholar] [CrossRef]
- Baldwin, M.L.; Zeager, L.A.; Flacco, P.R. Gender Differences in Wage Losses from Impairments: Estimates from the Survey of Income and Program Participation. J. Hum. Resour. 1994, 29, 865. [Google Scholar] [CrossRef]
- Schultz, T.; Tansel, A. Wage and labor supply effects of illness in Côte d’Ivoire and Ghana: Instrumental variable estimates for days disabled. J. Dev. Econ. 1997, 53, 251–286. [Google Scholar] [CrossRef] [Green Version]
- Bound, J. Self-Reported vs. Objective Measures of Health in Retirement Models; National Bureau of Economic Research: Cambridge, MA, USA, 1989. [Google Scholar] [CrossRef]
- Stephens, M. The Long-Run Consumption Effects of Earnings Shocks. Rev. Econ. Stat. 2001, 83, 28–36. [Google Scholar] [CrossRef]
- Kochar, A. Explaining Household Vulnerability to Idiosyncratic Income Shocks. Am. Econ. Rev. 1995, 85, 159–164. [Google Scholar]
- Townsend, R.M. Consumption Insurance: An Evaluation of Risk-Bearing Systems in Low-Income Economies. J. Econ. Perspect. 1995, 9, 83–102. [Google Scholar] [CrossRef] [Green Version]
Subjective HS | Objective HS |
---|---|
: self-reported assessment (very good = 5 to bad = 0), according to the CHNS data; t: year of recording; t − 1: previous year or previous wave according to the data; i: individual. | : sick days, days of hospitalization, or days where a person was unable to carry out their normal activities in the last 4 weeks; t: wave year; i: individual. |
Variable Coding | Label | N | Mean | SD | Min | Max |
---|---|---|---|---|---|---|
INC | Average monthly wage last year | 215,352 | 200.111 | 3420.88 | 0 | 999,999 |
OHS_U | Unable to carry out normal activities in the last 4 weeks | 215,352 | 0.0100 | 0.0930 | 0 | 3.5357 |
IOC | Inpatient or outpatient care | 215,352 | 0.0072 | 0.0845 | 0 | 1 |
OHS_H | Days hospitalized in the last 4 weeks | 215,352 | 0.0037 | 0.1049 | 0 | 28.6785 |
SHS | Self-reported assessment | 215,352 | −0.2047 | 0.6589 | −4 | 0 |
CEDU | Completed years of formal education in regular school | 151,139 | 17.548 | 8.9965 | 0 | 36 |
HEDU | Highest level of education attained | 154,014 | 1.5516 | 1.3778 | 0 | 9 |
INS | Use of medical insurance | 215,352 | 0.3333 | 0.4714 | 0 | 1 |
INST | Insurance type | 215,352 | 0.2884 | 0.4530 | 0 | 1 |
INSC | Insurance type: commercial | 215,352 | 0.0211 | 0.1439 | 0 | 1 |
INSUFM | Insurance type: urban free medical | 215,352 | 0.0555 | 0.2289 | 0 | 1 |
INSRCB | Insurance type: rural cooperative basic | 215,352 | 0.1537 | 0.3607 | 0 | 1 |
ADW | Average number of days per week worked last year | 215,352 | 1.3924 | 2.5117 | 0 | 9 |
PW | Presently working | 215,352 | 0.4079 | 0.4915 | 0 | 2 |
SLN | Spouse’s line number | 215,352 | 2.8625 | 14.606 | 0 | 181 |
MLH | Mother living in household | 215,352 | 0.3053 | 0.4605 | 0 | 1 |
FLH | Father living in household | 215,352 | 0.2858 | 0.4518 | 0 | 1 |
PROV | Province | 215,352 | 38.790 | 9.6323 | 11 | 55 |
URSR | 1 = urban site (U); 2 = rural site (R) | 215,349 | 1.6906 | 0.4622 | 1 | 2 |
UNCN | U: 1–2 = city number; 1–4 = county number | 215,349 | 2.2026 | 1.0801 | 1 | 4 |
UR | U: 1–2, 5–6, 9–10 = urban; 3–4, 7–8, 11–12 = suburban; 1, 5, 9 = town; 2–4, 6–8, 10–12 = village | 215,349 | 2.7594 | 1.3681 | 1 | 9 |
HN | Household number | 215,349 | 21.4240 | 30.6238 | 1 | 180 |
MSI | Money spent on illness or injury | 215,352 | 14.1004 | 650.5129 | 0 | 88,888 |
AGE | Calculated age in years to 0 decimal points | 213,405 | 33.6580 | 21.5426 | 0 | 101 |
G | Gender | 215,298 | 0.4942 | 0.4999 | 0 | 1 |
Parameter | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
OHS_U | −0.434 *** (−3.59) | −0.256 *** (−3.53) | −0.218 *** (−3.48) | −0.207 *** (−3.19) | −0.145 ** (−2.39) | −0.114 * (−1.86) | ||||||
OHS_ H | −0.143 ** (−2.37) | −0.142 ** (−2.39) | −0.062 (−1.14) | −0.065 (−1.22) | −0.439 *** (−3.61) | −0.275 * (−1.77) | ||||||
HEDU | 0.245 *** (54.42) | 0.246 *** (54.82) | 0.236 *** (55.84) | 0.236 *** (55.89) | 0.287 *** (40.90) | 0.289 *** (41.29) | ||||||
CEDU | 0.052 *** (51.71) | 0.052 *** (51.81) | 0.049 *** (53.06) | 0.049 *** (53.16) | 0.056 *** (39.86) | 0.057 *** (40.23) | ||||||
INS | −0.063 *** (−3.28) | −0.071 *** (−3.53) | −0.072 *** (−3.59) | −0.064 *** (−3.34) | −0.003 (−0.20) | −0.003 (−0.17) | −0.004 (−0.23) | −0.004 (−0.26) | 0.000 (1.51) | 0.000 (1.55) | 0.000 (1.51) | 0.000 (1.52) |
INST | −0.886 *** (−33.37) | −0.871 *** (−30.25) | −0.868 *** (−30.15) | −0.884 *** (−33.27) | −0.741 *** (−22.82) | −0.671 *** (−13.57) | −0.664 *** (−13.43) | −0.737 *** (−22.71) | ||||
INSC | 1.546 *** (3.83) | 1.479 *** (3.61) | 1.477 *** (3.61) | 1.545 *** (3.83) | ||||||||
INSUFM | −1.032 *** (−41.55) | −1.020 *** (−37.80) | −1.018 *** (−37.73) | −1.030 *** (−41.47) | ||||||||
INSRCB | −0.518 *** (−7.42) | −0.474 *** (−6.22) | −0.472 *** (−6.20) | −0.517 *** (−7.40) | ||||||||
OHS_U_ HEDU | 0.082 * (1.73) | 0.153 ** (2.57) | Not significant | |||||||||
INS_HEDU | −0.067 *** (−7.75) | −0.068 *** (−7.87) | ||||||||||
INS_HEDU _ OHS_U | −0.120 ** (−2.14) | −0.083 ** (−2.24) | ||||||||||
INS_CEDU | −0.009 *** (−4.94) | −0.009 *** (−5.08) | ||||||||||
CEDU_OHSH | 0.010 (1.22) | Not significant | ||||||||||
INS_CEDU_ OHS_H | −0.016 ** (−2.41) | Not significant | ||||||||||
MSI | 0.000 (1.43) | 0.000 (1.50) | 0.000 (1.47) | 0.000 (1.41) | 0.000 ** (2.15) | 0.000 ** (2.28) | 0.000 ** (2.25) | 0.000 ** (2.12) | −0.087 *** (−4.46) | −0.086 *** (−4.22) | −0.086 *** (−4.23) | −0.087 *** (−4.50) |
FLH | 0.109 *** | 0.136 *** (5.65) | 0.137 *** (5.68) | 0.110 *** (4.74) | 0.069 *** (3.34) | 0.093 *** (4.30) | 0.093 *** (4.32) | 0.070 *** (3.36) | 0.111 *** (4.78) | 0.136 *** (5.66) | 0.137 *** (5.69) | 0.111 *** (4.80) |
MLH | 0.134 *** (6.02) | 0.132 *** (5.71) | 0.131 *** (5.69) | 0.134 *** (6.00) | 0.134 *** (6.72) | 0.123 *** (5.96) | 0.123 *** (5.94) | 0.133 *** (6.70) | 0.129 *** (5.82) | 0.130 *** (5.62) | 0.129 *** (5.57) | 0.129 *** (5.80) |
SLN | 0.009 *** (33.56) | 0.009 *** (32.72) | 0.009 *** (32.72) | 0.009 *** (33.55) | 0.006 *** (27.32) | 0.007 *** (26.94) | 0.007 *** (26.95) | 0.007 *** (27.33) | 0.009 *** (33.47) | 0.009 *** (32.69) | 0.009 *** (32.72) | 0.009 *** (33.46) |
PW | 0.574 *** (11.79) | 0.507 *** (9.57) | 0.507 *** (9.58) | 0.575 *** (11.81) | 0.455 *** (10.44) | 0.400 *** (8.43) | 0.400 *** (8.43) | 0.455 *** (10.45) | 0.556 *** (11.41) | 0.493 *** (9.29) | 0.492 *** (9.29) | 0.557 *** (11.43) |
ADW | −0.111 *** (−26.26) | −0.121 *** (−27.98) | −0.121 *** (−27.94) | −0.111 *** (−26.21) | −0.119 *** (−31.40) | −0.126 *** (−32.32) | −0.126 *** (−32.29) | −0.119 *** (−31.36) | −0.110 *** (−26.09) | −0.121 *** (−27.96) | −0.121 *** (−27.88) | −0.110 *** (−26.04) |
G | 0.042 *** (3.56) | −0.002 (−0.17) | −0.002 (−0.19) | 0.041 *** (3.54) | 0.094 *** (8.97) | 0.057 *** (5.24) | 0.057 *** (5.24) | 0.094 *** (8.97) | 0.042 *** (3.57) | −0.002 (−0.20) | −0.003 (−0.22) | 0.041 *** (3.54) |
AGE | 0.034 *** (53.92) | 0.036 *** (53.19) | 0.036 *** (53.16) | 0.034 *** (53.87) | 0.028 *** (48.04) | 0.029 *** (47.77) | 0.029 *** (47.73) | 0.028 *** (47.99) | 0.034 *** (53.97) | 0.036 *** (53.23) | 0.036 *** (53.21) | 0.034 *** (53.95) |
PROV | −0.011 *** (−19.53) | −0.012 *** (−19.76) | −0.012 *** (−19.68) | −0.011 *** (−19.46) | −0.007 *** (−14.02) | −0.007 *** (−13.79) | −0.007 *** (−13.73) | −0.007 *** (−13.96) | −0.011 *** (−19.77) | −0.012 *** (−19.95) | −0.012 *** (−19.86) | −0.011 *** (−19.73) |
USRS | 0.185 *** (14.41) | 0.170 *** (12.76) | 0.171 *** (12.78) | 0.185 *** (14.40) | 0.076 *** (6.48) | 0.072 *** (5.90) | 0.073 *** (5.92) | 0.076 *** (6.49) | 0.182 *** (14.16) | 0.166 *** (12.45) | 0.166 *** (12.45) | 0.182 *** (14.14) |
UNCN | 0.042 *** (7.16) | 0.044 *** (7.15) | 0.044 *** (7.17) | 0.043 *** (7.17) | 0.020 *** (3.81) | 0.022 *** (3.96) | 0.022 *** (3.98) | 0.020 *** (3.84) | 0.042 *** (7.18) | 0.044 *** (7.16) | 0.044 *** (7.19) | 0.042 *** (7.18) |
UR | 0.150 *** (41.41) | 0.152 *** (40.05) | 0.152 *** (40.03) | 0.150 *** (41.38) | 0.106 *** (32.44) | 0.106 *** (30.51) | 0.106 *** (30.51) | 0.107 *** (32.44) | 0.149 *** (41.19) | 0.152 *** (39.76) | 0.151 *** (39.75) | 0.149 *** (41.14) |
HN | 0.009 *** (52.13) | 0.008 *** (50.32) | 0.008 *** (50.33) | 0.009 *** (52.14) | 0.005 *** (36.42) | 0.005 *** (35.15) | 0.005 *** (35.17) | 0.005 *** (36.45) | 0.008 *** (51.99) | 0.008 *** (50.28) | 0.008 *** (50.31) | 0.008 *** (51.98) |
Intercept | 3.343 *** (47.84) | 2.887 *** (36.99) | 2.882 *** (36.93) | 3.338 *** (47.77) | 3.990 *** (63.38) | 3.510 *** (49.96) | 3.506 *** (49.90) | 3.987 *** (63.32) | 3.283 *** (46.72) | 2.808 *** (35.20) | 2.799 *** (35.12) | 3.278 *** (46.65) |
Adj_R2 | 0.4737 | 0.4684 | 0.4683 | 0.4735 | 0.5803 | 0.5745 | 0.5744 | 0.5801 | 0.4747 | 0.4689 | 0.4687 | 0.4746 |
Parameter | (13) | (14) | (15) | (16) | (17) | (18) | (19) | (20) |
---|---|---|---|---|---|---|---|---|
IOC_OHS_H | −0.069 (−0.78) | −0.087 (−0.96) | −0.062 (−1.15) | −0.063 (−1.18) | ||||
IOC_OHS_U | −0.144 ** (−2.38) | −0.141 ** (−2.36) | −0.065 (−0.83) | −0.076 (−0.94) | ||||
HEDU | 0.246 *** (54.83) | 0.246 *** (54.82) | 0.236 *** (55.89) | 0.236 *** (55.89) | ||||
CEDU | 0.052 *** (51.83) | 0.052 *** (51.81) | 0.049 *** (53.16) | 0.049 *** (53.16) | ||||
INS | −0.065 *** (−3.37) | −0.073 *** (−3.61) | −0.072 *** (−3.59) | −0.064 *** (−3.35) | −0.004 (−0.27) | −0.004 (−0.23) | −0.004 (−0.23) | −0.004 (−0.26) |
INSC | 1.546 *** (3.83) | 1.478 *** (3.61) | 1.477 *** (3.61) | 1.545 *** (3.83) | ||||
INSUFM | −1.031 *** (−41.51) | −1.019 *** (−37.76) | −1.018 *** (−37.73) | −1.030 *** (−41.47) | ||||
INSRCB | −0.517 *** (−7.41) | −0.472 *** (−6.20) | −0.472 *** (−6.20) | −0.517 *** (−7.40) | ||||
INST | −0.885 *** (−33.32) | −0.869 *** (−30.20) | −0.868 *** (−30.15) | −0.884 *** (−33.27) | ||||
FLH | 0.110 *** (4.75) | 0.137 *** (5.69) | 0.137 *** (5.68) | 0.110 *** (4.74) | 0.070 *** (3.36) | 0.093 *** (4.32) | 0.093 *** (4.32) | 0.070 *** (3.36) |
MSI | 0.000 (1.41) | 0.000 (1.47) | 0.000 (1.47) | 0.000 (1.41) | 0.000 ** (2.12) | 0.000 ** (2.25) | 0.000 ** (2.25) | 0.000 ** (2.12) |
MLH | 0.133 *** (5.99) | 0.131 *** (5.68) | 0.131 *** (5.69) | 0.134 *** (6.00) | 0.133 *** (6.70) | 0.123 *** (5.94) | 0.123 *** (5.94) | 0.133 *** (6.70) |
SLN | 0.009 *** (33.56) | 0.009 *** (32.73) | 0.009 *** (32.72) | 0.009 *** (33.56) | 0.007 *** (27.33) | 0.007 *** (26.95) | 0.007 *** (26.95) | 0.007 *** (27.33) |
PW | 0.575 *** (11.80) | 0.507 *** (9.56) | 0.507 *** (9.58) | 0.575 *** (11.81) | 0.454 *** (10.44) | 0.399 *** (8.42) | 0.400 *** (8.43) | 0.455 *** (10.45) |
ADW | −0.111 *** (−26.21) | −0.121 *** (−27.94) | −0.121 *** (−27.94) | −0.111 *** (−26.21) | −0.119 *** (−31.36) | −0.126 *** (−32.28) | −0.126 *** (−32.29) | −0.119 *** (−31.36) |
G | 0.042 *** (3.58) | −0.002 (−0.16) | −0.002 (−0.19) | 0.041 *** (3.54) | 0.094 *** (8.99) | 0.057 *** (5.26) | 0.057 *** (5.24) | 0.094 *** (8.97) |
AGE | 0.034 *** (53.85) | 0.036 *** (53.15) | 0.036 *** (53.16) | 0.034 *** (53.87) | 0.028 *** (47.99) | 0.029 *** (47.73) | 0.029 *** (47.73) | 0.028 *** (47.99) |
PROV | −0.011 *** (−19.48) | −0.012 *** (−19.70) | −0.012 *** (−19.68) | −0.011 *** (−19.46) | −0.007 *** (−13.98) | −0.007 *** (−13.74) | −0.007 *** (−13.73) | −0.007 *** (−13.97) |
USRS | 0.185 *** (14.42) | 0.171 *** (12.80) | 0.171 *** (12.78) | 0.185 *** (14.40) | 0.076 *** (6.50) | 0.073 *** (5.93) | 0.073 *** (5.92) | 0.076 *** (6.49) |
UNCN | 0.043 *** (7.18) | 0.044 *** (7.17) | 0.044 *** (7.17) | 0.043 *** (7.18) | 0.020 *** (3.84) | 0.022 *** (3.98) | 0.022 *** (3.98) | 0.020 *** (3.84) |
UR | 0.150 *** (41.43) | 0.153 *** (40.07) | 0.152 *** (40.03) | 0.150 *** (41.38) | 0.107 *** (32.46) | 0.106 *** (30.52) | 0.106 *** (30.51) | 0.107 *** (32.44) |
HN | 0.009 *** (52.15) | 0.008 *** (50.34) | 0.008 *** (50.33) | 0.009 *** (52.14) | 0.005 *** (36.45) | 0.005 *** (35.16) | 0.005 *** (35.17) | 0.005 *** (36.45) |
Intercept | 3.338 *** (47.76) | 2.881 *** (36.92) | 2.882 *** (36.93) | 3.338 *** (47.77) | 3.987 *** (63.32) | 3.506 *** (49.90) | 3.506 *** (49.90) | 3.987 *** (63.32) |
Adj_R2 | 0.4735 | 0.4682 | 0.4683 | 0.4735 | 0.5801 | 0.5744 | 0.5744 | 0.5801 |
Parameters | (21) | (22) | (23) | (24) | p = 0.1 | p = 0.01 | p = 0.5 |
---|---|---|---|---|---|---|---|
SHS | −0.220 *** (−23.45) | −0.195 *** (−20.49) | −0.322 *** (−22.87) | −0.345 *** (−21.27) | |||
WHS | −1.286 *** (−22.87) | −0.2518 *** (−2.88) | −1.9150 *** (−20.41) | ||||
CEDU | 0.051 *** (51.63) | 0.055 *** (39.18) | |||||
HEDU | 0.246 *** (55.29) | 0.282 *** (40.64) | 0.2816 *** (40.64) | 0.2880 *** (41.21) | 0.2814 *** (40.53) | ||
INS | −0.051 *** (−2.68) | −0.059 *** (−2.95) | −0.064 *** (−3.32) | −0.057 *** (−2.85) | −0.0639 *** (−3.32) | −0.0860 *** (−4.43) | −0.0622 *** (−3.22) |
INST | −0.861 *** (−32.65) | −0.845 *** (−29.51) | −0.746 *** (−23.17) | −0.706 *** (−14.38) | −0.7455 *** (−23.17) | −0.7395 *** (−22.79) | −0.7475 *** (−23.21) |
INS _HEDU | −0.048 *** (−5.53) | −0.0479 *** (−5.53) | −0.0679 *** (−7.85) | −0.0536 *** (−6.21) | |||
INS _HEDU_SHS | 0.055 *** (9.96) | ||||||
INS _HEDU_WHS | 0.2206 *** (9.96) | −0.0333 *** (−0.74) | 0.2678 *** (6.90) | ||||
INS _CEDU | −0.005 *** (−2.96) | ||||||
INS _CEDU_SHS | 0.009 *** (11.53) | ||||||
MSI | 0.000 (1.51) | 0.000 (1.55) | 0.000 (1.53) | 0.000 (1.57) | 0.000 (1.53) | 0.000 (1.53) | 0.000 (1.61) |
FLH | 0.105 *** (4.58) | 0.133 *** (5.57) | 0.107 *** (4.65) | 0.132 *** (5.51) | 0.1066 *** (4.65) | 0.1108 *** (4.78) | 0.1053 *** (4.58) |
MLH | 0.129 *** (5.86) | 0.127 *** (5.55) | 0.119 *** (5.42) | 0.119 *** (5.18) | 0.1194 *** (5.42) | 0.1291 (5.81) | 0.1239 *** (5.62) |
SLN | 0.009 *** (33.37) | 0.009 *** (32.60) | 0.009 *** (33.36) | 0.009 *** (32.69) | 0.0087 *** (33.36) | 0.0088 *** (33.47) | 0.0087 *** (33.36) |
PW | 0.565 *** (11.70) | 0.503 *** (9.55) | 0.550 *** (11.40) | 0.494 *** (9.40) | 0.5503 *** (11.4) | 0.5561 *** (11.42) | 0.5507 *** (11.39) |
ADW | −0.112 *** (−26.65) | −0.122 *** (−28.38) | −0.111 *** (−26.59) | −0.122 *** (−28.46) | −0.1113 *** (−26.59) | −0.1100 *** (−26.06) | −0.111 *** (−26.53) |
G | 0.039 *** (3.34) | −0.004 (−0.34) | 0.040 *** (3.43) | −0.003 (−0.23) | 0.0396 *** (3.43) | 0.0413 *** (3.55) | 0.0389 *** (3.36) |
AGE | 0.033 *** (52.10) | 0.035 *** (51.59) | 0.033 *** (52.07) | 0.035 *** (51.54) | 0.0329 *** (52.07) | 0.0343 *** (53.97) | 0.0333 *** (52.73) |
PROV | −0.011 *** (−20.17) | −0.012 *** (−20.32) | −0.011 *** (−20.06) | −0.012 *** (−20.22) | −0.0111 *** (−20.06) | −0.011 *** (−19.77) | −0.011 *** (−20.18) |
USRS | 0.176 *** (13.82) | 0.162 *** (12.22) | 0.174 *** (13.68) | 0.160 *** (12.09) | 0.1742 *** (13.68) | 0.1818 *** (14.15) | 0.1749 *** (13.71) |
HN | 0.009 *** (52.73) | 0.008 *** (50.89) | 0.042 *** (7.12) | 0.043 *** (7.12) | 0.0084 *** (52.38) | 0.0084 *** (51.98) | 0.0084 *** (52.26) |
UR | 0.145 *** (40.44) | 0.148 *** (39.07) | 0.144 *** (40.18) | 0.147 *** (38.74) | 0.1442 *** (40.18) | 0.1490 *** (41.17) | 0.1449 *** (40.31) |
UNCN | 0.042 *** (7.14) | 0.044 *** (7.20) | 0.008 *** (52.38) | 0.008 *** (50.53) | 0.0417 *** (7.12) | 0.0423 *** (7.16) | 0.0414 *** (7.05) |
Intercept | 3.407 *** (49.11) | 2.952 *** (38.04) | 3.340 *** (47.92) | 2.869 *** (36.26) | 3.3397 *** (47.92) | 3.2805 *** (46.69) | 3.3424 *** (47.88) |
Adj_R2 | 0.4820 | 0.4752 | 0.4842 | 0.4777 | 0.4747 | 0.4827 | 0.4842 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khelfaoui, I.; Xie, Y.; Hafeez, M.; Ahmed, D.; Degha, H.E.; Meskher, H. Effects of Health Shocks, Insurance, and Education on Income: Fresh Analysis Using CHNS Panel Data. Int. J. Environ. Res. Public Health 2022, 19, 8298. https://doi.org/10.3390/ijerph19148298
Khelfaoui I, Xie Y, Hafeez M, Ahmed D, Degha HE, Meskher H. Effects of Health Shocks, Insurance, and Education on Income: Fresh Analysis Using CHNS Panel Data. International Journal of Environmental Research and Public Health. 2022; 19(14):8298. https://doi.org/10.3390/ijerph19148298
Chicago/Turabian StyleKhelfaoui, Issam, Yuantao Xie, Muhammad Hafeez, Danish Ahmed, Houssem Eddine Degha, and Hicham Meskher. 2022. "Effects of Health Shocks, Insurance, and Education on Income: Fresh Analysis Using CHNS Panel Data" International Journal of Environmental Research and Public Health 19, no. 14: 8298. https://doi.org/10.3390/ijerph19148298
APA StyleKhelfaoui, I., Xie, Y., Hafeez, M., Ahmed, D., Degha, H. E., & Meskher, H. (2022). Effects of Health Shocks, Insurance, and Education on Income: Fresh Analysis Using CHNS Panel Data. International Journal of Environmental Research and Public Health, 19(14), 8298. https://doi.org/10.3390/ijerph19148298