Relationship of 24-Hour Movement Behaviors with Weight Status and Body Composition in Chinese Primary School Children: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Procedure and Quality Control
2.3. Measures
2.3.1. Demographic Information
2.3.2. 24 h Movement Behaviors
2.3.3. Weight Status and Body Composition
2.4. Statistical Analyses
3. Results
3.1. Sample Characteristics
3.2. Associations of Individual Movement Behavior with Weight Status and Body Composition
3.3. Associations of Movement Guidelines Adherence with Weight Status and Body Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, H.; Zhang, Y.; Zhang, S.; He, Y.; Gao, J.; Wang, L.; Wang, Y.; Hang, D.; Ma, Y. Association between environmental composite quality index score and obesity in children and their family: A cross-sectional study in northeast China. Chemosphere 2022, 297, 134204. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.T.; Liu, Y.; Tremblay, M.S.; Hong, J.T.; Tang, Y.; Cao, Z.B.; Zhuang, J.; Zhu, Z.; Wu, X.; Wang, L.; et al. Meeting 24-h movement guidelines: Prevalence, correlates, and the relationships with overweight and obesity among Chinese children and adolescents. J. Sport Health Sci. 2021, 10, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.S.; Liang, W.; Jiao, J.; Quach, B.; Dutheil, F.; Gao, Y. Obesity prevention environment: Is it time to empower educators and remobilize schools in the post-COVID-19 period? Phys. Act. Health 2021, 5, 71–75. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 20 January 2022).
- Pan, X.F.; Wang, L.; Pan, A. Epidemiology and determinants of obesity in China. Lancet Diabetes Endocrinol. 2021, 9, 373–392. [Google Scholar] [CrossRef]
- Gurnani, M.; Birken, C.; Hamilton, J. Childhood Obesity: Causes, Consequences and Management. Pediatr. Clin. N. Am. 2015, 62, 821–840. [Google Scholar] [CrossRef]
- Di Cesare, M.; Sorić, M.; Bovet, P.; Miranda, J.J.; Bhutta, Z.; Stevens, G.A.; Bentham, J. The epidemiological burden of obesity in childhood: A worldwide epidemic requiring urgent action. BMC Med. 2019, 17, 212. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Kelly, A.S. Review of Childhood Obesity: From Epidemiology, Etiology and Comorbidities to Clinical Assessment and Treatment. Mayo Clin. Proc. 2017, 92, 251–265. [Google Scholar] [CrossRef] [Green Version]
- Hui, S.S.C.; Zhang, R.; Suzuki, K.; Naito, H.; Balasekaran, G.; Song, J.K.; Thasanasuwan, W. The associations between meeting 24-hour movement guidelines and adiposity in Asian adolescents: The Asia-fit study. Scand. J. Med. Sci. Sports 2021, 31, 763–771. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, W.Y.; Sit, C.H.P.; Wong, S.H.S. Compliance With 24-Hour Movement Guidelines in Hong Kong Adolescents: Associations with Weight Status. J. Phys. Act. Health 2020, 17, 287–292. [Google Scholar] [CrossRef]
- Gába, A.; Mitáš, J.; Jakubec, L. Associations between accelerometer-measured physical activity and body fatness in school-aged children. Environ. Health Prev. Med. 2017, 22, 43. [Google Scholar] [CrossRef] [Green Version]
- Sedumedi, C.M.; Janssen, X.; Reilly, J.J.; Kruger, H.S.; Monyeki, M.A. Association between Objectively Determined Physical Activity Levels and Body Composition in 6–8-Year-Old Children from a Black South African Population: BC-IT Study. Int. J. Environ. Res. Public Health 2021, 18, 6453. [Google Scholar] [CrossRef] [PubMed]
- Carnero, E.A.; Dubis, G.S.; Hames, K.C.; Jakicic, J.M.; Houmard, J.A.; Coen, P.M.; Goodpaster, B.H. Randomized trial reveals that physical activity and energy expenditure are associated with weight and body composition after RYGB. Obesity 2017, 25, 1206–1216. [Google Scholar] [CrossRef] [PubMed]
- Gualdi-Russo, E.; Rinaldo, N.; Toselli, S.; Zaccagni, L. Associations of physical activity and sedentary behaviour assessed by accelerometer with body composition among children and adolescents: A scoping review. Sustainability 2020, 13, 335. [Google Scholar] [CrossRef]
- Shao, T.; Wang, L.; Chen, H. Association between Sedentary Behavior and Obesity in School-age Children in China: A Systematic Review of Evidence. Curr. Pharm. Des. 2020, 26, 5012–5020. [Google Scholar] [CrossRef]
- Riso, E.M.; Kull, M.; Mooses, K.; Jürimäe, J. Physical activity, sedentary time and sleep duration: Associations with body composition in 10–12-year-old Estonian schoolchildren. BMC Public Health 2018, 18, 496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrissey, B.; Taveras, E.; Allender, S.; Strugnell, C. Sleep and obesity among children: A systematic review of multiple sleep dimensions. Pediatr. Obes. 2020, 15, e12619. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.R.G.; Silva, H.H.; Paiva, T. Sleep duration, body composition, dietary profile and eating behaviours among children and adolescents: A comparison between Portuguese acrobatic gymnasts. Eur. J. Pediatr. 2018, 177, 815–825. [Google Scholar] [CrossRef]
- Alanazi, Y.A.; Sousa-Sá, E.; Chong, K.H.; Parrish, A.M.; Okely, A.D. Systematic review of the relationships between 24-hour movement behaviours and health indicators in school-aged children from Arab-speaking countries. Int. J. Environ. Res. Public Health 2021, 18, 8640. [Google Scholar] [CrossRef]
- Wang, L. 24-hour movement of children and adolescents aged 5–18: Current situation, influencing factors, and healthy impact. China Sport Sci. Technol. 2022, 58, 46–56. [Google Scholar] [CrossRef]
- Aas, D. Designs for large scale time use studies of the 24-hour day. In It’s about Time; Staikov, Z., Ed.; Bulgarian Sociological Association: Sofia, Bulgaria, 1982; pp. 17–53. [Google Scholar]
- Pedišić, Ž.; Dumuid, D.; Olds, T.S. Integrating sleep, sedentary behaviour, and physical activity research in the emerging field of time-use epidemiology: Definitions, concepts, statistical methods, theoretical framework and future directions. Kinesiology 2017, 49, 252–269. [Google Scholar]
- Tremblay, M.S.; Carson, V.; Chaput, J.P.; Connor Gorber, S.; Dinh, T.; Duggan, M.; Zehr, L. Canadian 24-Hour Movement Guidelines for Children and Youth: An Integration of Physical Activity, Sedentary Behaviour and Sleep. Appl. Physiol. Nutr. Metab. 2016, 41, S311–S327. [Google Scholar] [CrossRef] [PubMed]
- Rollo, S.; Antsygina, O.; Tremblay, M.S. The whole day matters: Understanding 24-hour movement guideline adherence and relationships with health indicators across the lifespan. J. Sport Health Sci. 2020, 9, 493–510. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Ross, R.; Després, J.P.; Matsuzawa, Y.; Yamashita, S.; Shai, I.; Eckel, R.H. Visceral and ectopic fat, atherosclerosis and cardiometabolic disease: A position statement. Lancet Diabetes Endocrinol. 2019, 7, 715–725. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Lin, R.H.; Lin, Y.C.; Chen, J.Y.; Li, W.C.; Lee, L.A.; Liu, K.H.; Chuang, H.H. Are body composition parameters better than conventional anthropometric measures in predicting pediatric hypertension? Int. J. Environ. Res. Public Health 2020, 17, 5771. [Google Scholar] [CrossRef]
- Thibault, R.; Genton, L.; Pichard, C. Body composition: Why, when and for who? Clin. Nutr. 2012, 31, 435–447. [Google Scholar] [CrossRef]
- Weber, D.R.; Leonard, M.B.; Zemel, B.S. Body composition analysis in the pediatric population. Pediatr. Endocrinol. Rev. 2012, 10, 130–139. [Google Scholar]
- Leppänen, M.H.; Ray, C.; Wennman, H.; Alexandrou, C.; Sääksjärvi, K.; Koivusilta, L.; Roos, E. Compliance with the 24-h movement guidelines and the relationship with anthropometry in Finnish preschoolers: The DAGIS study. BMC Public Health 2019, 19, 1–8. [Google Scholar] [CrossRef]
- Hu, D.; Zhou, S.; Crowley-McHattan, Z.J.; Liu, Z. Factors that influence participation in physical activity in school-aged children and adolescents: A systematic review from the social ecological model perspective. Int. J. Environ. Res. Public Health 2021, 18, 3147. [Google Scholar] [CrossRef]
- Katzmarzyk, P.T.; Staiano, A.E. Relationship between meeting 24-hour movement guidelines and cardiometabolic risk factors in children. J. Phys. Act. Health 2017, 14, 779–784. [Google Scholar] [CrossRef]
- Pearson, N.; Sherar, L.B.; Hamer, M. Prevalence and correlates of meeting sleep, screen-time and physical activity guidelines among adolescents in the United Kingdom. JAMA Pediatr. 2019, 173, 993–994. [Google Scholar] [CrossRef] [PubMed]
- Manyanga, T.; Barnes, J.D.; Chaput, J.P.; Katzmarzyk, P.T.; Prista, A.; Tremblay, M.S. Prevalence and correlates of adherence to movement guidelines among urban and rural children in Mozambique: A cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 94. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, M.; Zhu, Y.; He, B.; Yang, W.; Chen, Y.; Ma, J.; Jing, J. Association between sleep duration and obesity is age- and gender-dependent in Chinese urban children aged 6–18 years: A cross-sectional study. BMC Public Health 2015, 15, 1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Statistical Bulletin of National Economic and Social Development of Hebei Province. Yearly Household Income of Hebei Residents. Available online: http://tjj.hebei.gov.cn/hetj/tjgbtg/101642400676357.html (accessed on 15 February 2022).
- Liu, Y.; Wang, M.; Tynjälä, J.; Lv, Y.; Villberg, J.; Zhang, Z.; Kannas, L. Test-Retest Reliability of Selected Items of Health Behaviour in School-Aged Children (HBSC) Survey Questionnaire in Beijing, China. BMC Med. Res. Methodol. 2010, 10, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Uchiyama, M.; Okawa, M.; Kurita, H. Prevalence and correlates of self-reported sleep problems among Chinese adolescents. Sleep J. Sleep Res. Sleep Med. 2000, 23, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.D.; Yuan, S.; Liu, Q.; Li, F.; Dong, Y.; Dong, B.; Zou, Z.; Ma, J.; Baker, J.S.; Li, X.; et al. Meeting 24-hour movement and dietary guidelines: Prevalence, correlates and association with weight status among children and adolescents: A national cross-sectional study in China. Nutrients 2022, 14, 2822. [Google Scholar] [CrossRef]
- Fan, X.; Cao, Z.B. Physical activity among Chinese school-aged children: National prevalence estimates from the 2016 Physical Activity and Fitness in China-The Youth Study. J. Sport Health Sci. 2017, 6, 388–394. [Google Scholar] [CrossRef]
- Group of China Obesity Task Force. Body mass index reference norm for screening overweight and obesity in Chinese children and adolescents. Zhonghua Liu Xing Bing Xue Za Zhi 2004, 25, 1–10. [Google Scholar]
- Musálek, M.; Sedlak, P.; Dvořáková, H.; Vážná, A.; Novák, J.; Kokštejn, J.; Vokounová, Š.; Beránková, A.; Pařízková, J. Insufficient physical fitness and deficits in basic eating habits in normal-weight obese children are apparent from pre-school age or sooner. Nutrients 2021, 13, 3464. [Google Scholar] [CrossRef]
- Lee, L.W.; Liao, Y.S.; Lu, H.K.; Hsiao, P.L.; Chen, Y.Y.; Chi, C.C.; Hsieh, K.C. Validation of two portable bioelectrical impedance analyses for the assessment of body composition in school age children. PLoS ONE 2017, 12, e0171568. [Google Scholar]
- Brown, D.M.; Kwan, M.Y.; Arbour-Nicitopoulos, K.P.; Cairney, J. Identifying patterns of movement behaviours in relation to depressive symptoms during adolescence: A latent profile analysis approach. Prev. Med. 2021, 143, 106352. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Huang, W.Y.; Lau, P.W.C.; Wong, S.H.S.; Sit, C.H.P. Movement behaviors and mental health of caregivers of preschoolers in China during the COVID-19 pandemic. Prev. Med. 2022, 155, 106913. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Liang, W.; Wang, Y.; Lippke, S.; Lin, Z.; Shang, B.; Baker, J.S. The Effectiveness of Sequentially Delivered Web-Based Interventions on Promoting Physical Activity and Fruit-Vegetable Consumption Among Chinese College Students: Mixed Methods Study. J. Med. Internet Res. 2022, 24, e30566. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.P.; Lippke, S.; Liang, W.; Shang, B.R.; Keller, F.M.; Wagner, P.; Baker, J.S.; He, J.L. Association of social-cognitive factors with individual preventive behaviors of COVID-19 among a mixed-sample of older adults from China and Germany. Int. J. Environ. Res. Public Health 2022, 19, 6364. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Serrano, M.A.; Sevil-Serrano, J.; Sánchez-Miguel, P.A.; López-Gil, J.F.; Tremblay, M.S.; García-Hermoso, A. Prevalence of meeting 24-Hour Movement Guidelines from pre-school to adolescence: A systematic review and meta-analysis including 387,437 participants and 23 countries. J. Sport Health Sci. 2022. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Education of the People’s Republic of China (MEPRC). National Physical Fitness Promotion Campaigns Guidelines. 2001. Available online: http://www.moe.gov.cn/jyb_xxgk/gk_gbgg/moe_0/moe_7/moe_17/tnull_208.html (accessed on 12 May 2022).
- Kuhn, A.P.; Kowalski, A.J.; Wang, Y.; Deitch, R.; Selam, H.; Rahmaty, Z.; Hager, E.R. On the move or barely moving? Age-related changes in physical activity, sedentary and sleep behaviors by weekday/weekend following pandemic control policies. Int. J. Environ. Res. Public Health 2021, 19, 286. [Google Scholar] [CrossRef]
- Chen, S.T.; Liu, Y.; Hong, J.T.; Tang, Y.; Cao, Z.B.; Zhuang, J.; Chen, P.J. Co-existence of physical activity and sedentary behavior among children and adolescents in Shanghai, China: Do gender and age matter? BMC Public Health 2018, 18, 1287. [Google Scholar] [CrossRef]
- Zhu, Z.; Tang, Y.; Zhuang, J.; Liu, Y.; Wu, X.; Cai, Y.; Wang, L.; Cao, Z.B.; Chen, P. Physical activity, screen viewing time and overweight/obesity among Chinese children and adolescents: An update from the 2017 physical activity and fitness in China—The youth study. BMC Public Health 2019, 19, 197. [Google Scholar] [CrossRef] [Green Version]
- Moore, S.A.; Faulkner, G.; Rhodes, R.E.; Vanderloo, L.M.; Ferguson, L.J.; Guerrero, M.D.; Brussoni, M.; Mitra, R.; O’Reilly, N.; Spence, J.C.; et al. Few Canadian children and youth were meeting the 24-hour movement behaviour guidelines 6-months into the COVID-19 pandemic: Follow-up from a national study. Appl. Physiol. Nutr. Metab. 2021, 46, 1225–1240. [Google Scholar] [CrossRef]
- Masini, A.; Ceciliani, A.; Dallolio, L.; Gori, D.; Marini, S. Evaluation of feasibility, effectiveness and sustainability of school-based physical activity “active break” interventions in pre-adolescent and adolescent students: A systematic review. Can. J. Public Health 2022. [Google Scholar] [CrossRef]
- Riso, E.M.; Kull, M.; Mooses, K.; Hannus, A.; Jürimäe, J. Objectively measured physical activity levels and sedentary time in 7–9-year-old Estonian schoolchildren: Independent associations with body composition parameters. BMC Public Health 2016, 16, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butte, N.F.; Puyau, M.R.; Wilson, T.A.; Liu, Y.; Wong, W.W.; Adolph, A.L.; Zakeri, I.F. Role of physical activity and sleep duration in growth and body composition of preschool-aged children. Obesity 2016, 24, 1328–1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoner, L.; Castro, N.; Signal, L.; Skidmore, P.; Faulkner, J.; Lark, S.; Harrex, H. Sleep and Adiposity in Preadolescent Children: The Importance of Social Jetlag. Child. Obes. 2018, 14, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Nam, G.E.; Han, K.; Kim, D.H.; Lee, J.H.; Seo, W.H. Sleep duration is associated with body fat and muscle mass and waist-to-height ratio beyond conventional obesity parameters in Korean adolescent boys. J. Sleep Res. 2017, 26, 444–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matricciani, L.; Paquet, C.; Galland, B.; Short, M.; Olds, T. Children’s sleep and health: A meta-review. Sleep Med. Rev. 2019, 46, 136–150. [Google Scholar] [CrossRef]
- Rhodes, R.E.; Spence, J.C.; Berry, T.; Faulkner, G.; Latimer-Cheung, A.E.; O’Reilly, N.; Vanderloo, L. Parental support of the Canadian 24-hour movement guidelines for children and youth: Prevalence and correlates. BMC Public Health 2019, 19, 1385. [Google Scholar] [CrossRef] [Green Version]
Total (n = 978) | Adherence (n = 255) | Non-Adherence (n = 723) | p | Cohen d | |
---|---|---|---|---|---|
Age (years), mean (SD) | 9.11 (1.39) | 8.96 (1.31) | 9.16 (1.42) | 0.016 | 0.14 |
Gender, n (%) | |||||
Boy | 520 (53.2) | 153 (60.0) | 367 (50.8) | 0.011 | 0.21 |
Girl | 458 (46.8) | 102 (40.0) | 356 (49.2) | ||
Grade, n (%) | |||||
Grade-1 | 154 (15.7) | 35 (13.7) | 119 (16.4) | 0.017 | 0.13 |
Grade-2 | 203 (20.8) | 63 (24.7) | 140 (19.3) | ||
Grade-3 | 241 (24.6) | 77 (30.2) | 164 (22.6) | ||
Grade-4 | 168 (17.2) | 38 (14.9) | 130 (17.9) | ||
Grade-5 | 150 (15.3) | 29 (11.4) | 124 (17.1) | ||
Grade-6 | 62 (6.3) | 13 (5.1) | 49 (6.7) | ||
Weight status, n (%) | |||||
Not overweight/obese | 691 (70.7) | 195 (76.5) | 496 (68.6) | 0.018 | 0.22 |
Overweight/obese | 287 (29.3) | 60 (23.5) | 227 (31.4) | ||
Body composition, mean (SD) | |||||
PBF (%) | 21.01 (9.54) | 19.42 (8.43) | 21.56 (9.84) | 0.002 | 0.23 |
FFM (kg) | 26.85 (6.57) | 25.74 (5.26) | 27.24 (6.94) | <0.001 | 0.23 |
SMM (kg) | 13.77 (3.86) | 13.15 (3.14) | 13.99 (4.06) | <0.001 | 0.22 |
Father education level, n (%) | |||||
Below college | 705 (72. 1) | 186 (72.9) | 519 (71.8) | 0.72 | 0.03 |
College or above | 273 (27.9) | 69 (27.1) | 204 (28.2) | ||
Mother education level, n (%) | |||||
Below college | 668 (68.3) | 174 (68.2) | 494 (68.3) | 0.98 | 0.002 |
College or above | 310 (31.7) | 81 (31.8) | 229 (31.7) | ||
Yearly household income 1, n (%) | |||||
Low | 348 (35.6) | 88 (34.5) | 260 (36.0) | 0.22 | 0.09 |
Medium | 348 (35.6) | 83 (32.5) | 265 (36.7) | ||
High | 282 (28.8) | 84 (32.9) | 198 (27.4) |
Weight Status 1 | ||
---|---|---|
Crude Model a OR (95%CI) | Multivariate Model b OR (95%CI) | |
Age | 1.10 (0.84, 1.44) | 0.70 (0.54, 0.92) ** |
Gender | ||
Girl | Reference | Reference |
Boy | 1.81 (1.37, 2.40) *** | 2.00 (1.49, 2.70) *** |
Grade (reference: Grade-1) | ||
Grade-1 | Reference | Reference |
Grade-2 | 1.71 (1.01, 2.87) * | 2.43 (1.33, 4.42) ** |
Grade-3 | 2.25 (1.37, 3.69) *** | 4.53 (2.28, 9.02) *** |
Grade-4 | 2.48 (1.47, 4.19) *** | 6.84 (2.92, 16.02) *** |
Grade-5 | 2.28 (1.34, 3.90) ** | 10.45 (3.22, 33.91) *** |
Grade-6 | 2.77 (1.43, 5.38) *** | 14.17 (3.90, 51.48) *** |
Father education level | ||
Blow college | Reference | Reference |
College or above | 1.37 (1.02, 1.85) * | 1.51 (1.02, 2.25) * |
Mother education level | ||
Blow college | Reference | Reference |
College or above | 1.03 (0.77, 1.38) | 0.74 (0.50, 1.09) |
Yearly Household income 2 | ||
Low | Reference | Reference |
Medium | 0.85 (0.60, 1.20) | 1.18 (0.83, 1.68) |
High | 1.02 (0.74, 1.41) | 1.12 (0.74, 1.68) |
Individual movement behavior | ||
Light PA (MET-h/day) | 1.01 (0.99, 1.02) | N/A |
MVPA (MET-h/day) | 0.98 (0.97, 0.99) * | N/A |
Total PA (MET-h/day) | 1.00 (0.99, 1.00) | 0.99 (0.99, 1.00) + |
ST (hs/day) | 1.10 (0.93, 1.28) | 1.22 (1.04, 1.42) * |
Sleep (hs/day) | 0.92 (0.77, 1.09) | 1.04 (0.85, 1.28) |
PBF (%) | FFM (kg) | SMM (kg) | ||||
---|---|---|---|---|---|---|
Crude Model a B (95%CI) | Multivariate Model b B (95%CI) | Crude Model a B (95%CI) | Multivariate Model b B (95%CI) | Crude Model a B (95%CI) | Multivariate Model b B (95%CI) | |
Age | 0.97 (0.54, 1.39) *** | 0.28 (−0.38, 0.95) | 3.34 (3.13, 3.55) *** | 2.02 (1.59, 2.44) *** | 1.96 (1.84, 2.08) *** | 1.22 (0.97, 1.47) *** |
Gender | ||||||
Girl | Reference | Reference | Reference | Reference | Reference | Reference |
Boy | 0.72 (−0.47, 1.92) | −0.93 (−1.69, −0.18) * | 1.26 (0.44, 2.08) ** | 0.49 (0.01, 0.97) * | 0.84 (0.36, 1.32) *** | 0.40 (0.12, 0.69) ** |
Grade | ||||||
Grade-1 | Reference | Reference | Reference | Reference | Reference | Reference |
Grade-2 | 2.72 (0.78, 4.65) ** | 1.11 (−0.31, 2.54) | 3.25 (2.28, 4.22) *** | 0.64 (−0.27, 1.55) | 1.92 (1.35, 2.49) *** | 0.35 (−0.19, 0.88) |
Grade-3 | 5.77 (3.90, 7.64) *** | 3.07 (1.38, 4.76) *** | 4.99 (4.05, 5.92) *** | 1.07 (−0.01, 2.14) | 2.94 (2.39, 3.49) *** | 0.58 (−0.05, 1.21) + |
Grade-4 | 7.29 (5.27, 9.31) *** | 4.15 (2.03, 6.27) *** | 7.13 (6.12, 8.15) *** | 1.98 (0.63, 3.33) ** | 4.22 (3.62, 4.81) *** | 1.09 (0.30, 1.89) ** |
Grade-5 | 4.62 (2.56, 6.69) *** | 1.93 (−1.05, 4.91) | 13.36 (12.33, 14.40) *** | 5.06 (3.17, 6.96) *** | 7.79 (7.18, 8.40) *** | 2.82 (1.71, 3.94) *** |
Grade-6 | 7.59 (4.87, 10.31) *** | 3.70 (.43, 6.97) * | 15.54 (14.17, 16.90) *** | 6.75 (4.66, 8.84) *** | 9.21 (8.40, 10.01) *** | 3.91 (2.68, 5.13) *** |
Father education level | ||||||
Below college | Reference | Reference | Reference | Reference | Reference | Reference |
College or above | 2.01 (0.69, 3.34) ** | 0.42 (−0.62, 1.45) | 0.65 (−0.27, 1.57) | −0.34 (−1.00, 0.32) | 0.40 (−0.14, 0.94) | −0.17 (−0.56, 0.22) |
Mother education level | ||||||
Below college | Reference | Reference | Reference | Reference | Reference | Reference |
College or above | 0.72 (−0.56, 2.01) | −0.03 (−1.02, 0.96) | 0.07 (−0.82, 0.95) | 0.22 (−0.41, 0.85) | 0.06 (−0.46, 0.58) | 0.14 (−0.24, 0.51) |
Yearly Household income 1 | ||||||
Low | Reference | Reference | Reference | Reference | Reference | Reference |
Medium | −0.53 (−1.94, 0.88) | −0.12 (−1.02, 0.79) | −1.05 (−2.00, −0.10) * | 0.36 (−0.22, 0.94) | −0.69 (−1.25, −0.14) * | 0.14 (−0.20, 0.48) |
High | −2.09 (−3.59, −0.60) ** | −0.54 (−1.58, 0.50) | −3.94 (−4.94, −2.93) *** | 0.45 (−0.22, 1.11) | −2.33 (−2.92, −0.74) *** | 0.22 (−0.17, 0.61) |
Weight status | ||||||
Non-overweight/obese | Reference | Reference | Reference | Reference | Reference | Reference |
Overweight or obesity | 16.02 (15.18, 16.86) *** | 15.65 (14.81, 16.48) *** | 6.23 (5.42, 7.05) *** | 5.48 (4.95, 6.01) *** | 3.65 (3.17, 4.13) *** | 3.19 (2.88, 3.51) *** |
Individual movement behavior | ||||||
Light PA (MET-hr/day) | 0.01 (−0.02, −0.05) | N/A | 0.05 (0.02, 0.07) *** | N/A | 0.03 (0.02, 0.04) *** | N/A |
MVPA (MET-hr/day) | −0.05 (−0.08, −0.03) *** | N/A | 0.05 (0.04, 0.07) *** | N/A | 0.03 (0.02, 0.04) *** | N/A |
Total PA (MET−hr/day) | −0.03 (−0.05, −0.01) ** | −0.03 (−0.04, −0.01) *** | 0.05 (0.04, 0.07) *** | <0.01 (−0.01, 0.01) | 0.03 (0.02, 0.04) *** | <0.01 (−0.01, 0.01) |
ST (hr/day) | 0.26 (−0.35, 0.87) | 0.34 (−0.06, 0.74) + | −0.47 (−0.89, −0.05) * | 0.27 (0.01, 0.52) * | −0.31 (−0.55, −0.06) * | 0.13 (−0.03, 0.28) |
Sleep (hr/day) | −0.55 (−1.40, 0.30) | 0.11 (−0.44, 0.65) | −1.82 (−2.40, −1.25) *** | −0.20 (−0.55, 0.15) | −1.02 (−1.36, −0.69) *** | −0.07 (−0.28, 0.14) |
Weight Status 1 | PBF (%) | FFM (kg) | SMM (kg) | |
---|---|---|---|---|
OR (95%CI) | B (95%CI) | B (95%CI) | B (95%CI) | |
Meeting (vs. not meeting) individual guideline | ||||
At least PA | 0.66 (0.50, 0.88) ** | −1.75 (−2.52, −0.98) *** | 0.15 (−0.34, 0.65) | 0.06 (−0.23, 0.35) |
At least ST | 0.72 (0.53, 0.97) * | −0.59 (−1.38, 0.21) | -0.39 (−0.89, 0.11) | −0.16 (−0.45, 0.14) |
At least Sleep | 1.07 (0.78, 1.48) | 0.01 (−0.83, 0.84) | −0.53 (−1.16, 0.10) | −0.27 (−0.58, 0.04) + |
Meeting (vs. not meeting) specific combination | ||||
PA + ST | 0.67 (0.49, 0.90) ** | −1.33 (−2.11, −0.54) *** | −0.21 (−0.71, 0.29) | −0.07 (−0.36, 0.23) |
PA + Sleep | 0.67 (0.50, 0.91) * | −1.14 (−1.93, −0.36) ** | −0.26 (−0.76, 0.24) | −0.12 (−0.41, 0.17) |
ST + Sleep | 0.81 (0.61, 1.09) | −0.34 (−1.10, 0.42) | −0.48 (−0.96, 0.00) + | −0.25(−0.53, 0.03) + |
All three | 0.63 (0.44, 0.88) ** | −0.79 (−1.65, 0.07) + | −0.55 (−1.09, 0.00) + | −0.30(−0.62, 0.02) + |
Number of guidelines adhered to | ||||
Meet non/one | Reference | Reference | Reference | Reference |
Meet two | 0.90 (0.65, 1.25) | −1.50 (−2.37, −0.63) ** | 0.17 (−0.39, 0.72) | 0.19 (−0.14, 0.52) |
Meet all | 0.59 (0.40, 0.87) ** | −1.63 (−2.62, −0.65) ** | −0.46 (−1.08, 0.17) | −0.19 (−0.56, 0.18) |
Trend analysis | 0.78 (0.65, 0.94) * | −0.85 (−1.34, −0.36) *** | −0.21 (−0.52, 0.11) | −0.08 (−0.26, 0.10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Liang, W.; He, Y.; Duan, Y.; Rhodes, R.E.; Liu, H.; Liang, H.; Shi, X.; Zhang, J.; Cheng, Y. Relationship of 24-Hour Movement Behaviors with Weight Status and Body Composition in Chinese Primary School Children: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 8586. https://doi.org/10.3390/ijerph19148586
Zhou L, Liang W, He Y, Duan Y, Rhodes RE, Liu H, Liang H, Shi X, Zhang J, Cheng Y. Relationship of 24-Hour Movement Behaviors with Weight Status and Body Composition in Chinese Primary School Children: A Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2022; 19(14):8586. https://doi.org/10.3390/ijerph19148586
Chicago/Turabian StyleZhou, Lin, Wei Liang, Yuxiu He, Yanping Duan, Ryan E. Rhodes, Hao Liu, Hongmei Liang, Xiaowei Shi, Jun Zhang, and Yingzhe Cheng. 2022. "Relationship of 24-Hour Movement Behaviors with Weight Status and Body Composition in Chinese Primary School Children: A Cross-Sectional Study" International Journal of Environmental Research and Public Health 19, no. 14: 8586. https://doi.org/10.3390/ijerph19148586
APA StyleZhou, L., Liang, W., He, Y., Duan, Y., Rhodes, R. E., Liu, H., Liang, H., Shi, X., Zhang, J., & Cheng, Y. (2022). Relationship of 24-Hour Movement Behaviors with Weight Status and Body Composition in Chinese Primary School Children: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 19(14), 8586. https://doi.org/10.3390/ijerph19148586