Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma
Abstract
:1. Introduction
2. Data and Methodology
2.1. Measurements and Data Usage
2.2. Empirical Model Development and Validation
3. Results
3.1. Global Solar Radiation during 2007–2020
3.2. The Losses of Global Solar Radiation in the Atmosphere during 2007–2020
3.3. Analysis of Global Solar Radiation and Its Loss and Meteorological Variables in the Periods of Model Development and 2007–2020
3.4. Sensitivity Analysis
3.5. Albedo Estimations at the TOA and the Surface
4. Discussion
4.1. Interactions between Changes in Air Temperature and Solar Radiation
4.2. Issues about Global Solar Radiation and Its Empirical Model
4.3. Relationship between Wind Speed and Atmospheric Substances (AF)
4.4. Global Solar Radiation and Other Parameters at Three Polar Sites and a Mid-Latitude Site in 2013–2016
4.5. Solar Radiation and Different Types of Aerosols
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solanki, S.K. Solar variability and climate change: Is there a link. Astron. Geophys. 2002, 43, 5. [Google Scholar] [CrossRef] [Green Version]
- Elminir, H.K. Relative influence of weather conditions and air pollutants on solar radiation—Part 2: Modification of solar radiation over urban and rural sites. Meteorol. Atmos. Phys. 2007, 96, 257–264. [Google Scholar] [CrossRef]
- Lean, J.; Rind, D. Climate forcing by changing solar radiation. J. Clim. 1998, 11, 3069–3094. [Google Scholar] [CrossRef]
- Andreae, M.O.; Ramanathan, V. Climate’s Dark Forcings. Sciences 2013, 340, 280–281. [Google Scholar] [CrossRef] [PubMed]
- García, R.D.; Cuevas, E.; García, O.E.; Cachorro, V.E.; Pallé, P.; Bustos, J.J.; Romero-Campos, P.M.; de Frutos, A.M. Reconstruction of global solar radiation time series from 1933 to 2013 at the Izaña Atmospheric Observatory. Atmos. Meas. Tech. 2014, 7, 3139–3150. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, D.; Sherwood, S.; Wood, R.; Donner, L. Climate Effects of Aerosol-Cloud Interactions. Sciences 2014, 343, 379–380. [Google Scholar] [CrossRef] [PubMed]
- Williamson, C.E.; Zepp, R.G.; Lucas, R.M.; Madronich, S.; Austin, A.T.; Ballaré, C.L.; Norval, M.; Sulzberger, B.; Bais, A.F.; McKenzie, R.L.; et al. Solar ultraviolet radiation in a changing climate. Nat. Clim. Change 2014, 4, 434–441. [Google Scholar] [CrossRef]
- Calabrò, E.; Magazù, S. Correlation between Increases of the Annual Global Solar Radiation and the Ground Albedo Solar Radiation due to Desertification-A Possible Factor Contributing to Climatic Change. Climate 2016, 4, 64. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.H.; Zong, X.M. Global solar radiation transfer and its loss in the atmosphere. Appl. Sci. 2021, 11, 2651. [Google Scholar] [CrossRef]
- He, J.; Lu, S.; Yu, Y.; Gong, S.; Zhao, S.; Zhou, C. Numerical simulation study on the transport of pollution from China to the Arctic region. Plateau Meteorol. 2019, 38, 887–900. [Google Scholar]
- Ma, Y.; Hu, Z.; Xie, Z.; Ma, W.; Wang, B.; Chen, X.; Li, M.; Zhong, L.; Sun, F.; Gu, L.; et al. A long-term (2005–2016) dataset of hourly integrated land–atmosphere interaction observations on the Tibetan Plateau. Earth Syst. Sci. Data 2020, 12, 2937–2957. [Google Scholar] [CrossRef]
- Bai, J.H.; Zou, H.; Li, A.G.; Ma, S.P.; Jia, J.J.; Li, P.; Wang, W.; Huo, C.P. Primary study on the characteristics of solar radiation at a specific topography of the north slope of the Mount Qomolangma. Clim. Environ. Res. 2008, 13, 225–237. (In Chinese) [Google Scholar]
- Yanai, M.; Wu, G. Effects of the Tibetan Plateau. In The Asian Monsoon; Springer: Berlin/Heidelberg, Germany, 2006; pp. 513–549. [Google Scholar]
- Qiu, J. The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.H.; Zhang, L. Intercomparison of the time for climate abrupt change between the Tibetan Plateau and other regions in China. Chin. J. Atmos. Sci. 2008, 4, 794–805. [Google Scholar]
- Cai, D.; You, Q.; Fraedrich, K.; Guan, Y. Spatiotemporal temperature variability over the Tibetan Plateau: Altitudinal dependence associated with the global warming hiatus. J. Clim. 2017, 30, 969–984. [Google Scholar] [CrossRef]
- Xu, L.J.; Hu, Z.Y.; Zhao, Y.N.; Hong, X.Y. Climate change characteristics in Qinghai-Tibetan Plateau during 1961-2010. Plateau Meteorol. 2019, 38, 911–919. [Google Scholar] [CrossRef]
- Hua, W.; Fan, G.; Zhang, Y.; Zhu, L.; Wen, X.; Zhang, Y.; Lai, X.; Wang, B.; Zhang, M.; Hu, Y.; et al. Trends and uncertainties in surface air temperature over the Tibetan Plateau, 1951-2013. J. Meteor. Res. 2017, 31, 420–430. [Google Scholar] [CrossRef]
- Kang, S.; Zhang, Q.; Zhang, Y.; Guo, W.; Ji, Z.; Shen, M.; Wang, S.; Wang, X.; Tripathee, L.; Liu, Y.; et al. Warming and thawing in the Mt. Everest region: A review of climate and environmental changes. Earth-Sci. Rev. 2022, 225, 103911. [Google Scholar] [CrossRef]
- Vaughan, D.; Marshall, G.J.; Connolley, W.M.; Parkinson, C.; Mulvaney, R.; Hodgson, D.A.; King, J.C.; Pudsey, C.J.; Turner, J. Recent rapid regional climate warming on the Antarctic Peninsula. Clim. Change 2003, 60, 243–274. [Google Scholar] [CrossRef]
- Turner, J.; Colwell, S.R.; Marshall, G.J.; Lachlan-Cope, T.A.; Carleton, A.M.; Jones, P.D.; Lagun, V.; Reid, P.A.; Iagovkina, S. Antarctic climate change during the last 50 years. Int. J. Climatol. 2005, 25, 279–294. [Google Scholar] [CrossRef]
- Vaughan, D.G.; Marshall, G.J.; Connolley, W.M.; King, J.C.; Mulvaney, R. Climate Change: Devil in the Detail. Science 2001, 293, 1777–1779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaughan, D.G. British Antarctic Survey; Natural Environment Research Council: Cambridge, UK, 2007; Available online: http://www.homepages.ed.ac.uk/shs/Climatechange/Data%20sources/antarctic_peninsula.php.htm (accessed on 1 January 2022).
- Turner, J.; Lu, H.; White, I.; King, J.C.; Phillips, T.; Hosking, J.S.; Bracegirdle, T.; Marshall, G.J.; Mulvaney, R.; Deb, P. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 2016, 535, 411–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.F.; Liang, S.L. Recent advances in driving mechanisms of the Arctic amplification: A review. Chin. Sci. Bull. 2018, 63, 2757–2771. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Screen, J.A.; Furtado, J.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.A.; Dethloff, K.; Entekhabi, D.; Overland, J.E.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.Y.; Wang, B.Y.; Xie, Y.X.; Hu, S.H.; Wang, Z.Y.; Yue, L.Y. The Variation Characteristics of Temperature in Barrow Alaska during 1925-2018. Clim. Change Res. Lett. 2019, 8, 769–774. [Google Scholar] [CrossRef]
- Zavalishin, N.N. Reasons for Modern Warming: Hypotheses and Facts. J. Atmos. Sci. Res. 2022, 5, 11–17. [Google Scholar]
- Glower, J.; McGulloch, J.S.G. The empirical relation between solar radiation and hours of sunshine. Q. J. R. Meteorol. Soc. 1958, 84, 172–175. [Google Scholar]
- Zhang, J.; Zhao, L.; Deng, S.; Xu, W.; Zhang, Y. A critical review of the models used to estimate solar radiation. Renew. Sustain. Energy Rev. 2017, 70, 314–329. [Google Scholar] [CrossRef]
- Gueymard, C.A. Critical analysis and performance assessment of clear sky solar irradiance models using theoretical and measured data. Sol. Energy 1993, 51, 121–138. [Google Scholar] [CrossRef]
- Gueymard, C.A. Clear-sky solar irradiance predictions for large-scale applications using 18 radiative models: Improved validation methodology and detailed performance analysis. Sol. Energy 2012, 86, 2145–2169. [Google Scholar] [CrossRef]
- Badescu, V.; Gueymard, C.A.; Cheval, S.; Oprea, C.; Baciu, M.; Dumitrescu, A.; Iacobescu, F.; Milos, I.; Rada, C. Accuracy analysis for fifty-four clear-sky solar radiation models using routine hourly global irradiance measurements in Romania. Renew. Energy 2013, 55, 85–103. [Google Scholar] [CrossRef]
- Bayrakc, H.C.; Demircan, C.; Keceba, A. The development of empirical models for estimating global solar radiation on horizontal surface: A case study. Renew. Sustain. Energy Rev. 2018, 81, 2771–2782. [Google Scholar] [CrossRef]
- Antonanzas-Torres, F.; Urraca, R.; Polo, J.; Perpinan-Lamigueiro, O.; Escobar, R. Clear sky solar irradiance models: A review of seventy models. Renew. Sustain. Energy Rev. 2019, 107, 374–387. [Google Scholar] [CrossRef]
- Zang, H.; Cheng, L.; Ding, T.; Cheung, K.W.; Wang, M.; Wei, Z.; Sun, G. Estimation and validation of daily global solar radiation by day of the year-based models for different climates in China. Renew. Energy 2019, 135, 984–1003. [Google Scholar] [CrossRef]
- Psiloglou, B.; Kambezidis, H.; Kaskaoutis, D.; Karagiannis, D.; Polo, J. Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece. Renew. Energy 2020, 146, 1372–1391. [Google Scholar] [CrossRef]
- Bai, J.; Heikkilä, A.; Zong, X. Long-Term Variations of Global Solar Radiation and Atmospheric Constituents at Sodankylä in the Arctic. Atmosphere 2021, 12, 749. [Google Scholar] [CrossRef]
- Zhong, L.; Zou, M.; Ma, Y.; Huang, Z.; Xu, K.; Wang, X.; Ge, N.; Cheng, M. Estimation of downwelling shortwave and longwave radiation in the Tibetan Plateau under all-sky conditions. J. Geophys. Res. Atmos. 2019, 124, 11086–11102. [Google Scholar] [CrossRef]
- Bilbao, J.; Mateos, D.; De Miguel, A. Analysis and cloudiness influence on UV total irradiation. J. Climatol. 2011, 31, 451–460. [Google Scholar]
- Kondratyev, K.Y.A. Solar Energy; Science Press: Beijing, China, 1962; pp. 123–132. [Google Scholar]
- Roesch, A.; Wild, M.; Ohmura, A.; Dutton, E.G.; Long, C.N.; Zhang, T. Assessment of BSRN radiation records for the computation of monthly means. Atmos. Meas. Tech. 2011, 4, 339–354. [Google Scholar] [CrossRef] [Green Version]
- Myers, D.R. Solar radiation modeling and measurements for renewable energy applications data and model quality. Energy 2005, 30, 1517–1531. [Google Scholar] [CrossRef]
- Gueymard, C.A.; Ruiz-Arias, J.A. Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance. Solar Energy 2016, 128, 1–30. [Google Scholar] [CrossRef]
- Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health 2022, 19, 3084. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, R.E. Land surface processes and climate surface albedos and energy balance. Adv. Geophys. 1983, 25, 305–353. [Google Scholar]
- Li, Z.Q.; Garand, L. Estimation of Surface Albedo from Surface-A Parameterization for Global Application. J. Geophys. Res. 1994, 99, 8335–8350. [Google Scholar] [CrossRef]
- Hudson, S.R.; Warren, S.G.; Brandt, R.E.; Grenfell, T.C.; Six, D. Spectral bidirectional reflectance of Antarctic snow: Measurements and parameterization. J. Geophys. Res. 2006, 111, D18106. [Google Scholar] [CrossRef] [Green Version]
- Psiloglou, B.E.; Kambezidis, H.D. Estimation of the ground albedo for the Athens area, Greece. J. Atmos. Sol.-Terr. Phys. 2009, 71, 943–954. [Google Scholar] [CrossRef]
- Loeb, N.G.; Doelling, D.R.; Wang, H.; Su, W.; Nguyen, C.; Corbett, J.G.; Liang, L.; Mitrescu, C.; Rose, F.G.; Kato, S. Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition 4.0 Data Product. J. Clim. 2018, 31, 895–918. [Google Scholar] [CrossRef]
- Kato, S.; Rose, F.G.; Rutan, D.A.; Thorsen, T.J.; Loeb, N.G.; Doelling, D.R.; Huang, X.; Smith, W.L.; Su, W.; Ham, S.H. Surface Irradiances of Edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Data Product. J. Clim. 2018, 31, 4501–4527. [Google Scholar] [CrossRef]
- Sun, Y.J.; Wang, Z.H.; Qin, Q.M.; Han, G.H.; Ren, H.Z.; Huang, J.F. Retrieval of surface albedo based on GF-4 geostationary satellite image data. J. Remote Sens. 2018, 22, 220–233. [Google Scholar]
- Bai, J.H. Photosynthetically active radiation loss in the atmosphere in North China. Atmos. Pollut. Res. 2013, 4, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.H. UV extinction in the atmosphere and its spatial variation in North China. Atmos. Environ. 2017, 154, 318–330. [Google Scholar] [CrossRef]
- Valero, F.P.J.; Pope, S.K.; Bush, B.C.; Nguyen, Q.; Marsden, D.; Cess, R.D.; Simpson-Leitner, A.S.; Bucholtz, A.; Udelhofen, P.M. Absorption of solar radiation by the clear and cloudy atmosphere during the Atmospheric Radiation Measurement Enhanced Shortwave Experiments (ARESE) I and II: Observations and models. J. Geophys. Res. 2003, 108, 4016. [Google Scholar] [CrossRef]
- Shindell, D.T.; Chin, M.; Dentener, F.; Fiore, A.M.; Hess, P.; MacKenzie, I.A.; Sanderson, M.G.; Schultz, M.G.; Schulz, M.; Stevenson, D.S.; et al. A multi-model assessment of pollution transport to the Arctic. Atmos. Chem. Phys. 2008, 8, 5353–5372. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.H.; Su, H.; Zhai, C.; Wu, L.; Minschwaner, K.; Molod, A.M.; Tompkins, A.M. An assessment of upper troposphere and lower stratosphere water vapor in MERRA, MERRA2, and ECMWF reanalyses using Aura MLS observations. J. Geophys. Res. Atmos. 2015, 120, 11468–11485. [Google Scholar] [CrossRef] [Green Version]
- Sakerin, S.M.; Vlasov, N.I.; Kabanov, D.M.; Lubo-Lesnichenko, K.E.; Prakhov, A.N.; Radionov, V.F.; Turchinovich, Y.S.; Holben, B.N.; Smirnov, A. Results of spectral measurements of atmospheric aerosol optical depth with sun photometers in the 58th Russian Antarctic Expedition. Atmos. Ocean. Opt. 2014, 27, 393–402. [Google Scholar] [CrossRef]
- Yang, Y.K.; Zhao, C.F.; Wang, Q.; Cong, Z.Y.; Yang, X.C.; Fan, H. Aerosol characteristics at the three poles of the Earth as characterized by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. Atmos. Chem. Phys. 2021, 21, 4849–4868. [Google Scholar] [CrossRef]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Climate response of fossil fuel and biofuel soot, accounting for soot’s feedback to snow and sea ice albedo and emissivity. J. Geophys. Res. 2004, 109, D2120. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.Z. Effects of externally-through-internally-mixed soot inclusions within clouds and precipitation on global climate. J. Phys. Chem. 2006, 110, 6860. [Google Scholar] [CrossRef]
- Ramanathan, V.; Feng, Y. Air pollution, greenhouse gases and climate change: Global and regional perspectives. Atmos. Environ. 2009, 43, 37–50. [Google Scholar] [CrossRef]
- von Schneidemesser, E.; Monks, P.S.; Allan, J.D.; Bruhwiler, L.; Forster, P.; Fowler, D.; Lauer, A.; Morgan, W.T.; Paasonen, P.; Righi, M.; et al. Chemistry and the linkages between air quality and climate change. Chem. Rev. 2015, 115, 3856–3897. [Google Scholar]
- Bai, J.; Duhl, T. A primary generalized empirical model of BVOC emissions for some typical forests in China. Atmos. Pollut. Res. 2021, 12, 101126. [Google Scholar] [CrossRef]
- Claeys, M.; Graham, B.; Vas, G.; Wang, W.; Vermeylen, R.; Pashynska, V.; Cafmeyer, J.; Guyon, P.; Andreae, M.O.; Artaxo, P.; et al. Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene. Science 2004, 303, 1173–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlton, A.G.; Wiedinmyer, C.; Kroll, J.H. A review of secondary organic aerosol (SOA) formation from isoprene. Atmos. Chem. Phys. 2009, 9, 4987–5005. [Google Scholar] [CrossRef] [Green Version]
- Riccobono, F.; Schobesberger, S.; Scott, C.E.; Dommen, J.; Ortega, I.K.; Rondo, L.; Almeida, J.; Amorim, A.; Bianchi, F.; Breitenlechner, M.; et al. Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles. Science 2014, 344, 717–721. [Google Scholar] [CrossRef] [Green Version]
- Tackett, J.L.; Winker, D.M.; Getzewich, B.J.; Vaughan, M.A.; Young, S.A.; Kar, J. CALIPSO lidar level 3 aerosol profile product: Version 3 algorithm design. Atmos. Meas. Tech. 2018, 11, 4129–4152. [Google Scholar] [CrossRef] [Green Version]
- Pokharel, M.; Guang, J.; Liu, B.; Kang, S.; Ma, Y.; Holben, B.N.; Xia, X.; Xin, J.; Ram, K.; Rupakheti, D.; et al. Aerosol properties over Tibetan Plateau from a decade of AERONET measurements: Baseline, types, and influencing factors. J. Geophys. Res. Atmos. 2019, 124, 13357–13374. [Google Scholar] [CrossRef]
A1 | A2 | A0 | R2 | δavg | δmax | NMSE | σcal | σobs | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(MJ m−2) | (%) | (MJ m−2) | (%) | |||||||||
5.521 | 0.859 | −1.011 | 0.712 | 9.80 | 56.03 | 0.01 | 0.53 | 0.63 | 0.26 | 8.82 | 0.31 | 11.38 |
Gobs ≥ 20 W m−2 | δavg | δmax | NMSE | σcal | σobs | MAD | RMSE | ||
(MJ m−2) | (%) | (MJ m−2) | (%) | ||||||
HAVG | 60.14 | 4525 | 0.080 | 1.28 | 1.16 | 0.40 | 19.82 | 0.58 | 28.88 |
MAVG | 7.13 | 24.95 | 0.008 | 0.17 | 0.19 | 0.14 | 7.10 | 0.18 | 9.10 |
AAVG | 2.72 | 3.81 | 0.001 | 0.05 | 0.03 | 0.05 | 2.72 | 0.07 | 3.50 |
Gobs ≥ 50 W m−2 | δavg | δmax | NMSE | σcal | σobs | MAD | RMSE | ||
(MJ m−2) | (%) | (MJ m−2) | (%) | ||||||
HAVG | 40.07 | 1576 | 0.072 | 1.21 | 1.13 | 0.39 | 18.57 | 0.56 | 27.10 |
MAVG | 6.98 | 25.44 | 0.008 | 0.20 | 0.22 | 0.14 | 6.94 | 0.19 | 9.00 |
AAVG | 2.63 | 4.16 | 0.001 | 0.03 | 0.05 | 0.06 | 2.62 | 0.07 | 3.42 |
Situation | δavg | δmax | NMSE | σcal | σobs | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|
(MJ m−2) | (%) | (MJ m−2) | (%) | ||||||
HAVG | 21.98 | 357.91 | 0.048 | 1.04 | 0.99 | 0.35 | 16.42 | 0.48 | 22.13 |
MAVG | 5.46 | 19.77 | 0.005 | 0.23 | 0.20 | 0.12 | 5.49 | 0.15 | 7.05 |
AAVG | 2.65 | 6.42 | 0.001 | 0.04 | 0.06 | 0.06 | 2.63 | 0.07 | 3.46 |
Situation | Gobs | Gcal | T | ΔT (°C) | RH | E | AF | GLA | GLS | GL | n |
---|---|---|---|---|---|---|---|---|---|---|---|
A | −0.09 | −0.05 | −0.30 | −1.45 | 0.19 | 0.86 | 0.01 | 0.12 | −0.13 | 0.06 | 7020 |
B | −0.16 | 0.08 | −0.19 | −0.70 | 1.06 | 0.72 | 0.02 | 0.07 | −0.31 | −0.01 | 14,886 |
C | −0.001 | 0.001 | 0.002 | 0.47 | 0 | 0.008 | −0.001 | 0.003 | −0.002 | 0 | 46,683 |
n | T-Gobs | T-Gcal | T-GLA | T-GLS | T-GL | T-E | T-AF | GLA-E | GLS-E | GL-E | GLA-AF | GLS-AF | GL-AF | P-AF | v-AF | P-E |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7020 | 0.286 | 0.284 | −0.443 | 0.455 | −0.284 | 0.569 | 0.426 | −0.130 | 0.584 | 0.103 | −0.180 | 0.880 | 0.173 | 0.224 | −0.145 | 0.358 |
Situation | n | Gobs | Gcal | T °C | RH % | E hPa | AF | GLA | GLS | GL | RLA % | RLS % |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 7020 | 2.99 | 2.99 | 9.94 | 27.50 | 3.75 | 1.66 | 1.76 | 0.62 | 2.38 | 72.54 | 27.46 |
B | 14,886 | 2.08 | 2.11 | 7.61 | 30.31 | 3.55 | 2.26 | 2.61 | 0.65 | 3.25 | 77.23 | 22.77 |
C | 46,683 | 2.17 | 2.19 | 8.03 | 32.69 | 3.85 | 2.97 | 2.53 | 0.65 | 3.18 | 76.66 | 23.34 |
E (%) | AF (%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
+20 | +40 | +80 | +160 | −20 | −40 | −80 | +20 | +40 | +80 | +160 | −20 | −40 | −80 | −100 |
−1.21 | −2.28 | −4.14 | −7.13 | 1.39 | 3.05 | 8.20 | −1.35 | −2.35 | −3.70 | −5.09 | 1.85 | 4.45 | 13.74 | 22.20 |
Site | Gcal MJ m−2 | T °C | RH % | E hPa | S/G AF | v ms−1 | GLA MJ m−2 | GLS MJ m−2 | GL MJ m−2 | G’ MJ m−2 | n | AOD | RLA % | RLS % | alb TOA | alb sur |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sod | 0.65 | 3.05 | 76.00 | 6.83 | 0.59 | 2.38 | 1.94 | 1.23 | 3.18 | 0.51 | 14,343 | 0.10 | 61.96 | 38.04 | 0.36 | 0.22 |
Qomo | 2.17 | 7.48 | 31.68 | 3.59 | 3.35 | 3.53 | 2.52 | 0.68 | 3.20 | 0.58 | 13,424 | 0.04 | 76.02 | 23.98 | 0.32 | 0.23 |
QYZ | 1.42 | 22.71 | 75.76 | 22.38 | 0.83 | 1.19 | 1.68 | 0.27 | 1.95 | 1.11 | 14,915 | 0.57 | 89.31 | 13.69 | 0.29 | 0.22 |
Dome | 1.25 | −41.39 | 58.23 | 0.13 | 0.31 | 7.15 | 3.83 | 0.18 | 4.01 | 0.25 | 12,412 | 0.01 | 95.51 | 4.49 | 0.69 | 0.80 |
Ratio1 | 0.46 | 0.13 | 1.00 | 0.30 | 0.71 | 2.00 | 1.15 | 4.56 | 1.63 | 0.46 | 0.17 | 0.69 | 2.77 | 1.24 | 0.99 | |
Ratio2 | 1.53 | 0.33 | 0.42 | 0.16 | 2.97 | 1.50 | 2.52 | 1.64 | 0.52 | 0.08 | 0.85 | 1.75 | 1.10 | 1.05 | ||
Ratio3 | 0.88 | −1.82 | 0.37 | 0.006 | 0.37 | 6.01 | 2.28 | 0.67 | 2.06 | 0.23 | 0.03 | 1.07 | 0.33 | 2.38 | 3.64 |
Site | E (%) | S/G (%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
+20 | +40 | +80 | +160 | −20 | −40 | −80 | +20 | +40 | +80 | +160 | −20 | −40 | −80 | −100 | |
Sod | −1.25 | −2.37 | −4.30 | −7.41 | 1.44 | 3.17 | 8.52 | −10.03 | −18.82 | −33.37 | −53.69 | 11.45 | 24.57 | 56.93 | 76.86 |
QYZ | −2.48 | −4.70 | −8.53 | −14.69 | 2.86 | 6.27 | 16.88 | −4.41 | −8.22 | −14.39 | −22.50 | 5.09 | 10.96 | 25.59 | 34.65 |
Dome | −0.48 | −0.91 | −1.66 | −1.85 | 0.56 | 1.22 | 3.28 | −0.89 | −1.76 | −3.42 | −6.48 | 0.92 | 1.86 | 3.84 | 4.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health 2022, 19, 8906. https://doi.org/10.3390/ijerph19158906
Bai J, Zong X, Ma Y, Wang B, Zhao C, Yang Y, Guang J, Cong Z, Li K, Song T. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. International Journal of Environmental Research and Public Health. 2022; 19(15):8906. https://doi.org/10.3390/ijerph19158906
Chicago/Turabian StyleBai, Jianhui, Xuemei Zong, Yaoming Ma, Binbin Wang, Chuanfeng Zhao, Yikung Yang, Jie Guang, Zhiyuan Cong, Kaili Li, and Tao Song. 2022. "Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma" International Journal of Environmental Research and Public Health 19, no. 15: 8906. https://doi.org/10.3390/ijerph19158906
APA StyleBai, J., Zong, X., Ma, Y., Wang, B., Zhao, C., Yang, Y., Guang, J., Cong, Z., Li, K., & Song, T. (2022). Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. International Journal of Environmental Research and Public Health, 19(15), 8906. https://doi.org/10.3390/ijerph19158906