Incidence and Predictors of Mortality among Community-Dwelling Older Adults in Malaysia: A 5 Years Longitudinal Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Respondents
- Nh = the parameter to be calculated and is the sample size in terms of number of households to be selected
- z = the statistic that defines the level of confidence desired; usually 95% confidence interval was chosen
- r = an estimate of a key indicator to be measured by the survey
- f = the sample design effect, deff, assumed to be 2.0 (default value)
- k = a multiplier to account for the anticipated rate of non-response
- p = the proportion of the total population accounted for by the target population and upon which the parameter, r, is based
- ñ = the average household size (number of persons per household)
- e = the margin of error (MOE) to be attained. MOE was recommended to be set at 10% of r, thus e = 0.1 (r).
2.2. Data Collection
2.2.1. Socio-Demographic Data
2.2.2. Nutritional Status and Blood Pressure
2.2.3. Biochemical Profiles
2.2.4. Cognitive Function Test
2.2.5. Physical Performance Test
2.2.6. Psychosocial Assessment
2.2.7. Dietary Intake Assessment
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Population Division, Department of Economic and Social Affairs, United Nations. World Population Ageing; United Nations: New York, NY, USA, 2015.
- Department of Statistics Malaysia. Current Population Estimates Malaysia 2018–2019; Department of Statistics: Putrajaya, Malaysia, 2019. [Google Scholar]
- Liu, Z.; Kuo, P.L.; Horvath, S.; Crimmins, E.; Ferrucci, L.; Levine, M. A new aging measure captures morbidity and mortality risk across diverse subpopulations from NHANES IV: A cohort study. PLoS Med. 2018, 15, e1002718. [Google Scholar] [CrossRef] [PubMed]
- Maia Fde, O.; Duarte, Y.A.; Lebrão, M.L.; Santos, J.L. Risk factors for mortality among elderly people. Rev. Saude Publica 2006, 40, 1049–1056. [Google Scholar] [PubMed]
- Holt-Lunstad, J.; Smith, T.B.; Baker, M.; Harris, T.; Stephenson, D. Loneliness and social isolation as risk factors for mortality: A meta-analytic review. Perspect. Psychol. Sci. A J. Assoc. Psychol. Sci. 2015, 10, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Lv, Y.-B.; Gao, X.; Zhou, J.-H.; Kraus, V.B.; Zeng, Y.; Su, H.; Shi, X.-M. Association of cognitive impairment and elderly mortality: Differences between two cohorts ascertained 6-years apart in China. BMC Geriatr. 2020, 20, 29. [Google Scholar] [CrossRef] [Green Version]
- Rizzuto, D.; Fratiglioni, L. Lifestyle Factors Related to Mortality and Survival: A Mini-Review. Gerontology 2014, 60, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Shahar, S.; Vanoh, D.; Mat Ludin, A.F.; Singh, D.K.A.; Hamid, T.A. Factors associated with poor socioeconomic status among Malaysian older adults: An analysis according to urban and rural settings. BMC Public Health 2019, 19, 549. [Google Scholar] [CrossRef] [Green Version]
- Luy, M.; Gast, K. Do Women Live Longer or Do Men Die Earlier? Reflections on the Causes of Sex Differences in Life Expectancy. Gerontology 2014, 60, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Kamphuis, C.B.; Turrell, G.; Giskes, K.; Mackenbach, J.P.; van Lenthe, F.J. Life course socioeconomic conditions, adulthood risk factors and cardiovascular mortality among men and women: A 17-year follow up of the GLOBE study. Int. J. Cardiol. 2013, 168, 2207–2213. [Google Scholar] [CrossRef]
- Rogers, R.G.; Everett, B.G.; Onge, J.M.; Krueger, P.M. Social, behavioral, and biological factors, and sex differences in mortality. Demography 2010, 47, 555–578. [Google Scholar] [CrossRef]
- DESA. Designing Household Survey Samples: Practical Guidelines; Studies in Methods (ST/ESA/STAT/SER.F/98); Statistics Division, Department of Economic and Social Affairs, United Nations: New York, NY, USA, 2008.
- Ibrahim, N.M.; Shohaimi, S.; Chong, H.-T.; Rahman, A.H.A.; Razali, R.; Esther, E.; Basri, H. Validation Study of the Mini-Mental State Examination in a Malay-Speaking Elderly Population in Malaysia. Dement. Geriatr. Cogn. Disord. 2009, 27, 247–253. [Google Scholar] [CrossRef]
- Shahar, S.; Omar, A.; Vanoh, D.; Hamid, A.T.; Mukari, S.Z.M.-S.; Din, N.C.; Rajab, N.F.; Mohammed, Z.; Ibrahim, R.; Loo, W.H.; et al. Approaches in methodology for population-based longitudinal study on neuroprotective model for healthy longevity (TUA) among Malaysian older adults. Aging Clin. Exp. Res. 2015, 28, 1089–1104. [Google Scholar] [CrossRef] [PubMed]
- Marfell-Jones, T.O.A.S.L.C.M.; Stewart, A.; Marfell-Jones, M.; International Society for Advancement of Kinanthropometry. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Glasgow, UK, 2011. [Google Scholar]
- Weshsler, D. Wechsler Adult Intelligence Scale-III; The Psychological Corporation: San Antonio, TX, USA, 1997. [Google Scholar]
- Jamaluddin, R.; Othman, Z.; Musa, K.I.; Alwi, M.N.M. Validation of The Malay Version Of Auditory Verbal Learning Test (Mvavlt) Among Schizophrenia Patients In Hospital Universiti Sains Malaysia (HUSM), Malaysia. ASEAN J. Psychiatry 2009, 10, 1–21. [Google Scholar]
- Hori, T.; Sanjo, N.; Tomita, M.; Mizusawa, H. Visual reproduction on the Wechsler Memory Scale-Revised as a predictor of Alzheimer’s disease in Japanese patients with mild cognitive impairments. Dement. Geriatr. Cogn. Disord. 2013, 35, 165–176. [Google Scholar] [CrossRef]
- Jones, C.J.; Rikli, R.E. Measuring Functional Fitness in Older Adults. J. Act. Ageing 2002, 1, 24–30. [Google Scholar]
- Katz, S.; Ford, A.B.; Moskowitz, R.W.; Jackson, B.A.; Jaffe, M.W. Studies of Illness in the Aged: The Index of ADL: A Standardized Measure of Biological and Psychosocial Function. JAMA 1963, 185, 914–919. [Google Scholar] [CrossRef]
- Graf, C. The Lawton instrumental activities of daily living scale. Am. J. Nurs. 2008, 108, 52–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teh, E.E.; Hasanah, C.I. Validation of Malay Version of Geriatric Depression Scale among Elderly Inpatients: Universiti Sains Malaysia. 2004. Available online: http://priory.com/psych/MalayGDS.html (accessed on 17 May 2022).
- Andrews, G.; Kemp, A.; Sunderland, M.; Von Korff, M.; Ustun, T.B. Normative Data for the 12 Item WHO Disability Assessment Schedule 2.0. PLoS ONE 2009, 4, e8343. [Google Scholar] [CrossRef] [Green Version]
- Norhayati, M.N.; Aniza, A.A.; Nik Hazlina, N.H.; Azman, M.Y. Psychometric properties of the revised Malay version Medical Outcome Study Social Support Survey using confirmatory factor analysis among postpartum mothers. Asia-Pac. Psychiatry Off. J. Pac. Rim Coll. Psychiatr. 2015, 7, 398–405. [Google Scholar] [CrossRef]
- Shahar, S.; Earland, J.; Abdulrahman, S. Validation of a Dietary History Questionnaire against a 7-D Weighed Record for Estimating Nutrient Intake among Rural Elderly Malays. Malays. J. Nutr. 2000, 6, 33–44. [Google Scholar]
- Hirschmann, R. Death Rate of Elderly Residents in Singapore from 1970 to 2020: Statista. 2021. Available online: https://www.statista.com/statistics/1112958/singapore-death-rate-elderly-residents/ (accessed on 17 May 2022).
- Gribbin, J.; Hubbard, R.; Smith, C.; Gladman, J.; Lewis, S. Incidence and mortality of falls amongst older people in primary care in the United Kingdom. QJM Int. J. Med. 2009, 102, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Cui, L.; Wang, K.; Xie, C.; Sun, N.; Xu, F.; Tang, Q.; Sun, C. Mortality Pattern Trends and Disparities among Chinese from 2004 to 2016. BMC Public Health 2019, 19, 780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Yang, Y.C.; Anderson, J.J. Mortality increase in late-middle and early-old age: Heterogeneity in death processes as a new explanation. Demography 2013, 50, 1563–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolejs, J.; Marešová, P. Onset of mortality increase with age and age trajectories of mortality from all diseases in the four Nordic countries. Clin. Interv. Aging 2017, 12, 161–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Institute for Public Health. National Health and Morbidity Survey 2019; Institute for Public Health: Shah Alam, Malaysia, 2019. [Google Scholar]
- Hussin, N.M.; Shahar, S.; Din, N.C.; Singh, D.K.A.; Chin, A.V.; Razali, R.; Omar, M.A. Incidence and predictors of multimorbidity among a multiethnic population in Malaysia: A community-based longitudinal study. Aging Clin. Exp. Res. 2019, 31, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Population Division, Department of Economic and Social Affairs, United Nations. World Mortality Report; United Nations: New York, NY, USA, 2015.
- Müezzinler, A.; Mons, U.; Gellert, C.; Schöttker, B.; Jansen, E.; Kee, F.; O’Doherty, M.G.; Kuulasmaa, K.; Freedman, N.D.; Abnet, C.C.; et al. Smoking and All-cause Mortality in Older Adults: Results From the CHANCES Consortium. Am. J. Prev. Medicine 2015, 49, e53–e63. [Google Scholar] [CrossRef] [PubMed]
- Henley, S.J.; Asman, K.; Momin, B.; Gallaway, M.S.; Culp, M.B.; Ragan, K.R.; Richards, T.B.; Babb, S. Smoking cessation behaviors among older U.S. adults. Prev. Med. Rep. 2019, 16, 100978. [Google Scholar] [CrossRef]
- Chang, C.-P.; Huang, W.-H.; You, C.-H.; Hwang, L.-C.; Lu, I.J.; Chan, H.-L. Factors Correlated with Smoking Cessation Success in Older Adults: A Retrospective Cohort Study in Taiwan. Int. J. Env. Res. Public Health 2019, 16, 3462. [Google Scholar] [CrossRef] [Green Version]
- Twito, O.; Frankel, M.; Nabriski, D. Impact of glucose level on morbidity and mortality in elderly with diabetes and pre-diabetes. World J. Diabetes 2015, 6, 345–351. [Google Scholar] [CrossRef]
- Yi, S.W.; Park, S.; Lee, Y.H.; Park, H.J.; Balkau, B.; Yi, J.J. Association between fasting glucose and all-cause mortality according to sex and age: A prospective cohort study. Sci. Rep. 2017, 7, 8194. [Google Scholar] [CrossRef] [Green Version]
- Forbes, A. Reducing the Burden of Mortality in Older People With Diabetes: A Review of Current Research. Front. Endocrinol. 2020, 11, 133. [Google Scholar] [CrossRef] [Green Version]
- Roper, N.A.; Bilous, R.W.; Kelly, W.F.; Unwin, N.C.; Connolly, V.M. Cause-specific mortality in a population with diabetes: South Tees Diabetes Mortality Study. Diabetes Care 2002, 25, 43–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruno, G.; Merletti, F.; Biggeri, A.; Bargero, G.; Ferrero, S.; Pagano, G.; Perin, P.C. Progression to Overt Nephropathy in Type 2 Diabetes. Diabetes Care 2003, 26, 2150–2155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papatheodorou, K.; Banach, M.; Bekiari, E.; Rizzo, M.; Edmonds, M. Complications of Diabetes 2017. J. Diabetes Res. 2018, 2018, 3086167. [Google Scholar] [CrossRef] [PubMed]
- Thalacker-Mercer, A.E.; Johnson, C.A.; Yarasheski, K.E.; Carnell, N.S.; Campbell, W.W. Nutrient ingestion, protein intake, and sex, but not age, affect the albumin synthesis rate in humans. J. Nutr. 2007, 137, 1734–1740. [Google Scholar] [CrossRef] [Green Version]
- Volkert, D.; Berner, Y.N.; Berry, E.; Cederholm, T.; Coti Bertrand, P.; Milne, A.; Palmbladg, J.; Schneiderh, S.; Sobotkai, L.; Stangaj, Z.; et al. ESPEN Guidelines on Enteral Nutrition: Geriatrics. Clin. Nutr. 2006, 25, 330–360. [Google Scholar] [CrossRef]
- Malafarina, V.; Uriz-Otano, F.; Gil-Guerrero, L.; Iniesta, R. The anorexia of ageing: Physiopathology, prevalence, associated comorbidity and mortality. A systematic review. Maturitas 2013, 74, 293–302. [Google Scholar] [CrossRef] [PubMed]
- De Buyser, S.L.; Petrovic, M.; Taes, Y.E.; Toye, K.R.; Kaufman, J.M.; Goemaere, S. Physical function measurements predict mortality in ambulatory older men. Eur. J. Clin. Investig. 2013, 43, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Roshanravan, B.; Robinson-Cohen, C.; Patel, K.V.; Ayers, E.; Littman, A.J.; de Boer, I.H.; Ikizler, T.A.; Himmelfarb, J.; Katzel, L.I.; Kestenbaum, B.; et al. Association between physical performance and all-cause mortality in CKD. J. Am. Soc. Nephrol. 2013, 24, 822–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergland, A.; Jørgensen, L.; Emaus, N.; Strand, B.H. Mobility as a predictor of all-cause mortality in older men and women: 11.8 year follow-up in the Tromsø study. BMC Health Serv. Res. 2017, 17, 22. [Google Scholar] [CrossRef] [Green Version]
- Savva, G.M.; Donoghue, O.A.; Horgan, F.; O’Regan, C.; Cronin, H.; Kenny, R.A. Using timed up-and-go to identify frail members of the older population. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013, 68, 441–446. [Google Scholar] [CrossRef]
- Rosano, C.; Brach, J.; Studenski, S.; Longstreth, W.T.; Newman, A.B. Gait variability is associated with subclinical brain vascular abnormalities in high-functioning older adults. Neuroepidemiology 2007, 29, 193–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosano, C.; Aizenstein, H.; Brach, J.; Longenberger, A.; Studenski, S.; Newman, A.B. Special article: Gait measures indicate underlying focal gray matter atrophy in the brain of older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2008, 63, 1380–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingemarsson, A.H.; Frändin, K.; Mellström, D.; Möller, M. Walking ability and activity level after hip fracture in the elderly—A follow-up. J. Rehabil. Med. 2003, 35, 76–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abellan van Kan, G.; Rolland, Y.; Andrieu, S.; Bauer, J.; Beauchet, O.; Bonnefoy, M.; Cesari, M.; Donini, L.M.; Guyonnet, S.G.; Inzitari, M.; et al. Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force. J. Nutr. Health Aging 2009, 13, 881–889. [Google Scholar] [CrossRef] [PubMed]
- National Coordinating Committee on Food and Nutrition. Malaysia Recommended Nutrient Intake: Ministry of Health Malaysia. 2017. Available online: http://nutrition.moh.gov.my (accessed on 29 May 2022).
- Fakhruddin, N.N.I.N.M.; Shahar, S.; Aziz, N.A.; Yahya, H.M.; Rajikan, R. Which aging group prone to have inadequate nutrient intake?: TUA study. Sains Malays. 2016, 45, 1381–1391. [Google Scholar]
- Park, Y.; Subar, A.F.; Hollenbeck, A.; Schatzkin, A. Dietary fiber intake and mortality in the NIH-AARP diet and health study. Arch. Intern. Med. 2011, 171, 1061–1068. [Google Scholar] [CrossRef] [Green Version]
- Dandona, P.; Ghanim, H.; Chaudhuri, A.; Dhindsa, S.; Kim, S.S. Macronutrient intake induces oxidative and inflammatory stress: Potential relevance to atherosclerosis and insulin resistance. Exp. Mol. Med. 2010, 42, 245–253. [Google Scholar] [CrossRef]
- Wong, J.M.; Esfahani, A.; Singh, N.; Villa, C.R.; Mirrahimi, A.; Jenkins, D.J.; Kendall, C.W.C. Gut microbiota, diet, and heart disease. J. AOAC Int. 2012, 95, 24–30. [Google Scholar] [CrossRef]
- Kim, Y.; Je, Y. Dietary fiber intake and total mortality: A meta-analysis of prospective cohort studies. Am. J. Epidemiol. 2014, 180, 565–573. [Google Scholar] [CrossRef] [Green Version]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef] [Green Version]
Cause of Death | No. of Respondents | Percentage (%) |
---|---|---|
Old sickness | 147 | 43.8 |
Heart disease | 47 | 13.9 |
Sepsis | 40 | 11.9 |
Pulmonary disease | 32 | 9.5 |
Cancer | 28 | 8.3 |
Stroke | 12 | 3.5 |
Trauma | 10 | 3.0 |
Type 2 Diabetes Mellitus | 7 | 2.1 |
Hypertension | 4 | 1.2 |
Multiorgan failure | 3 | 1.0 |
Kidney disease | 2 | 0.6 |
Gastrointestinal disease | 2 | 0.6 |
Liver disease | 1 | 0.3 |
Fever | 1 | 0.3 |
Total | 336 | 100.0 |
Parameters | Alive (n = 1986) | Died (n = 336) | p-Value |
---|---|---|---|
Age (years) | 68.44 ± 5.88 | 72.63 ± 7.03 | <0.001 * |
Gender | <0.001 * | ||
Men | 909 (45.8) | 205 (61.0) | |
Women | 1077 (54.2) | 131 (39.0) | |
Ethnicity | <0.001 * | ||
Malay | 1194 (60.1) | 253 (75.3) | |
Chinese | 681 (34.3) | 69 (20.5) | |
Indian | 106 (5.3) | 14 (4.2) | |
Marital status | <0.001 * | ||
Single/widowed/divorced | 598 (30.1) | 139 (41.4) | |
Married | 1388 (69.9) | 197 (58.6) | |
Years of education | 5.34 ± 4.04 | 3.93 ± 3.40 | <0.001 * |
Household income (RM or USD) | 1368.49 ± 249.57 or 330.75 ± 60.32 | 965.08 ± 351.06 or 233.25 ± 84.85 | <0.001 * |
Living arrangement | 0.046 | ||
Living alone | 200 (10.1) | 46 (13.7) | |
Living with others | 1786 (89.9) | 290 (86.3) | |
Smoking | <0.001 * | ||
Yes | 539 (27.1) | 153 (45.5) | |
No | 1447 (72.9) | 183 (54.5) | |
Alcohol drinker | 0.157 | ||
Yes | 86 (4.3) | 9 (2.7) | |
No | 1900 (95.7) | 327 (97.3) | |
Hypertension | 0.460 | ||
Yes | 912 (45.9) | 147 (43.8) | |
No | 1074 (54.1) | 189 (56.2) | |
Type 2 Diabetes Mellitus | 0.027 * | ||
Yes | 457 (23.0) | 96 (28.6) | |
No | 1529 (77.0) | 240 (71.4) | |
Hyperlipidaemia | 0.491 | ||
Yes | 514 (25.9) | 81 (24.1) | |
No | 1472 (74.1) | 255 (75.9) | |
Stroke | 0.043 | ||
Yes | 21 (1.1) | 8 (2.4) | |
No | 1965 (98.9) | 328 (97.6) | |
Heart disease | 0.004 | ||
Yes | 160 (8.1) | 43 (12.8) | |
No | 1826 (91.9) | 293 (87.2) | |
Chronic kidney disease | 0.488 | ||
Yes | 26 (1.3) | 6 (1.8) | |
No | 1960 (98.7) | 330 (98.2) | |
Gout | 0.011 | ||
Yes | 63 (3.2) | 20 (6.0) | |
No | 1923 (96.8) | 316 (94.0) |
Parameters | Alive (n = 1986) | Died (n = 336) | p-Value |
---|---|---|---|
Systolic blood pressure (mmHg) | 140.84 ± 21.58 | 145.15 ± 23.19 | 0.001 * |
Diastolic blood pressure (mmHg) | 77.31 ± 12.85 | 78.00 ± 13.80 | 0.393 |
Height (cm) | 155.88 ± 8.63 | 155.58 ± 8.84 | 0.557 |
Weight (kg) | 61.06 ± 12.19 | 59.44 ± 12.55 | 0.040 |
Body mass index (kg/m2) | 25.08 ± 4.34 | 24.46 ± 4.83 | 0.030 |
Mid-upper arm circumference (cm) | 28.54 ± 3.38 | 27.66 ± 3.96 | <0.001 * |
Calf circumference (cm) | 33.45 ± 3.75 | 32.15 ± 4.10 | <0.001 * |
Waist circumference (cm) | 88.23 ± 11.09 | 88.37 ± 12.28 | 0.837 |
Hip circumference (cm) | 96.78 ± 9.34 | 94.76 ± 10.41 | <0.001 * |
Waist-hip ratio | 0.91 ± 0.07 | 0.93 ± 0.07 | <0.001 * |
Body fat percentage (%) | 39.23 ± 10.30 | 38.56 ± 9.66 | 0.264 |
Skeletal muscle mass (kg) | 19.41 ± 4.65 | 18.86 ± 4.74 | 0.044 |
Fasting blood sugar (mmol/L) | 6.12 ± 1.86 | 6.59 ± 2.53 | <0.001 * |
Total cholesterol (mmol/L) | 5.41 ± 1.00 | 5.46 ± 1.06 | 0.470 |
HDL cholesterol (mmol/L) | 1.40 ± 0.31 | 1.37 ± 0.33 | 0.131 |
LDL cholesterol (mmol/L) | 3.32 ± 0.90 | 3.38 ± 0.97 | 0.259 |
Triglyceride (mmol/L) | 1.51 ± 0.69 | 1.55 ± 0.67 | 0.309 |
Albumin (g/L) | 42.89 ± 2.38 | 42.35 ± 2.68 | <0.001 * |
Parameters | Alive (n = 1986) | Died (n = 336) | p-Value |
---|---|---|---|
Cognitive tests | |||
Mini mental State examination | 23.13 ± 4.68 | 20.89 ± 5.51 | <0.001 * |
Digit Span | 7.55 ± 2.39 | 7.07 ± 2.52 | 0.001 * |
RAVLT | 37.88 ± 10.05 | 33.79 ± 8.87 | <0.001 * |
Digit Symbol | 5.04 ± 2.46 | 4.24 ± 1.65 | <0.001 * |
Visual Reproduction 1 | 44.01 ± 32.18 | 35.73 ± 29.36 | <0.001 * |
Visual Reproduction 2 | 36.17 ± 34.25 | 26.83 ± 29.60 | <0.001 * |
Fitness tests | |||
Chair sit and reach test | 1.27 ± 11.31 | 3.58 ± 12.92 | 0.002 * |
2-min step test | 62.03 ± 25.01 | 51.42 ± 25.07 | <0.001 * |
Chair stand test | 9.94 ± 2.93 | 8.47 ± 2.83 | <0.001 * |
TUG test | 10.73 ± 3.08 | 12.77 ± 3.57 | <0.001 * |
Back scratch test | 14.60 ± 12.35 | 19.66 ± 12.22 | <0.001 * |
Psychosocial and functional status | |||
Activities of daily livings (ADL) | 6.00 ± 0.02 | 5.98 ± 0.33 | 0.262 |
Instrumental activities of daily living (IADL) | 12.52 ± 2.18 | 11.35 ± 3.14 | <0.001 * |
Geriatric depression scale | 2.67 ± 2.24 | 2.87 ± 2.28 | 0.144 |
WHO Disability Assessment Schedule (WHODAS) | 7.68 ± 10.04 | 7.54 ± 9.65 | 0.820 |
Medical Outcome Study Social Support Survey (MOSS) | 39.48 ± 14.40 | 39.88 ± 15.05 | 0.641 |
Nutrients at Baseline | Alive (n = 1986) | Died (n = 336) | RNI 2017 | p-Value |
---|---|---|---|---|
Energy (kcal) | 1653.78 ± 462.95 | 1592.25 ± 479.47 | 1550–1780 | 0.025 * |
Carbohydrates (g/day) | 224.05 ± 74.68 | 216.79 ± 74.49 | 0.099 | |
Protein (g/day) | 70.55 ± 21.40 | 68.17 ± 21.42 | 50–58 | 0.060 |
Fat (g/day) | 52.60 ± 19.00 | 51.14 ± 24.67 | 0.304 | |
Total fibre (g/day) | 3.98 ± 2.44 | 3.21 ± 1.94 | 20–30 | <0.001 * |
Vitamin A (RE/day) | 1196.29 ± 781.68 | 1163.00 ± 877.75 | 600 | 0.514 |
Vitamin C (mg/day) | 117.26 ± 81.01 | 98.24 ± 73.19 | 70 | <0.001 * |
Vitamin D (mg/day) | 0.34 ± 2.14 | 0.24 ± 1.01 | 0.015–0.02 | 0.418 |
Vitamin E (mg/day) | 11.03 ± 5.43 | 8.63 ± 5.30 | 7.5–10.0 | 0.452 |
Vitamin K (mg/day) | 18.32 ± 6.70 | 11.45 ± 3.94 | 55–65 | 0.068 |
Thiamin (mg/day) | 1.54 ± 3.52 | 1.36 ± 3.15 | 1.1–1.2 | 0.366 |
Riboflavin (mg/day) | 1.22 ± 0.48 | 1.15 ± 0.49 | 1.1–1.3 | 0.008 |
Niacin (mg/day) | 10.33 ± 3.88 | 9.83 ± 3.66 | 14–16 | 0.027 * |
Cobalamine (μg/day) | 3.87 ± 3.56 | 3.89 ± 3.19 | 4.0 | 0.925 |
Pyridoxine (mg/day) | 0.70 ± 0.35 | 0.68 ± 0.38 | 1.5–1.7 | 0.237 |
Folate (µg/day) | 105.53 ± 72.72 | 93.56 ± 66.02 | 400 | 0.005 |
Calcium (mg/day) | 515.98 ± 236.39 | 493.06 ± 252.56 | 1000 | 0.104 |
Iron (mg/day) | 13.41 ± 5.19 | 12.79 ± 5.63 | 11–14 | 0.044 |
Selenium (µg/day) | 24.23 ± 18.08 | 20.36 ± 16.11 | 23 | <0.001 * |
Zinc (mg/day) | 3.60 ± 1.86 | 3.53 ± 2.31 | 4.4 | 0.526 |
Copper (mg/day) | 0.58 ± 0.33 | 0.53 ± 0.33 | 0.9 | 0.006 |
Magnesium (mg/day) | 130.79 ± 63.51 | 120.49 ± 59.57 | 420 | 0.006 |
Predictors of Interest | B | Adj HR (95% CI) | p-Value |
---|---|---|---|
Smoking, yes | 0.273 | 1.314 (1.004–1.721) | 0.047 * |
Presence of diabetes | 0.257 | 1.293 (0.999–1.674) | 0.051 |
Fasting blood sugar | 0.072 | 1.075 (1.029–1.166) | 0.001 * |
Systolic blood pressure | 0.004 | 1.004 (0.999–1.009) | 0.106 |
Mid-upper arm circumference | −0.020 | 0.980 (0.947–1.015) | 0.261 |
Waist-hip ratio | 1.418 | 4.128 (0.817–20.860) | 0.086 |
Serum albumin | −0.055 | 0.947 (0.905–0.990) | 0.017 * |
Mini-mental State Examination | −0.010 | 0.990 (0.964–1.016) | 0.448 |
RAVLT (immediate recall) | −0.005 | 0.995 (0.981–1.009) | 0.495 |
Chair stand test | −0.046 | 0.955 (0.911–1.001) | 0.055 |
TUG test | 0.058 | 1.059 (1.022–1.098) | 0.002 * |
Instrumental Activity Daily Living (IADL) | −0.018 | 0.983 (0.941–1.026) | 0.426 |
Total fibre intake | −0.078 | 0.911 (0.873–0.980) | 0.008 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, Y.X.; Rivan, N.F.M.; Singh, D.K.A.; Rajab, N.F.; Ludin, A.F.M.; Din, N.C.; Chin, A.-V.; Fenech, M.; Kamaruddin, M.Z.A.; Shahar, S. Incidence and Predictors of Mortality among Community-Dwelling Older Adults in Malaysia: A 5 Years Longitudinal Study. Int. J. Environ. Res. Public Health 2022, 19, 8943. https://doi.org/10.3390/ijerph19158943
You YX, Rivan NFM, Singh DKA, Rajab NF, Ludin AFM, Din NC, Chin A-V, Fenech M, Kamaruddin MZA, Shahar S. Incidence and Predictors of Mortality among Community-Dwelling Older Adults in Malaysia: A 5 Years Longitudinal Study. International Journal of Environmental Research and Public Health. 2022; 19(15):8943. https://doi.org/10.3390/ijerph19158943
Chicago/Turabian StyleYou, Yee Xing, Nurul Fatin Malek Rivan, Devinder Kaur Ajit Singh, Nor Fadilah Rajab, Arimi Fitri Mat Ludin, Normah Che Din, Ai-Vyrn Chin, Michael Fenech, Mohd Zul Amin Kamaruddin, and Suzana Shahar. 2022. "Incidence and Predictors of Mortality among Community-Dwelling Older Adults in Malaysia: A 5 Years Longitudinal Study" International Journal of Environmental Research and Public Health 19, no. 15: 8943. https://doi.org/10.3390/ijerph19158943
APA StyleYou, Y. X., Rivan, N. F. M., Singh, D. K. A., Rajab, N. F., Ludin, A. F. M., Din, N. C., Chin, A. -V., Fenech, M., Kamaruddin, M. Z. A., & Shahar, S. (2022). Incidence and Predictors of Mortality among Community-Dwelling Older Adults in Malaysia: A 5 Years Longitudinal Study. International Journal of Environmental Research and Public Health, 19(15), 8943. https://doi.org/10.3390/ijerph19158943