Consumers’ Willingness to Pay for Rice from Remediated Soil: Potential from the Public in Sustainable Soil Pollution Treatment
Abstract
:1. Introduction
2. Hypotheses and Methodology
2.1. Hypotheses
2.2. Choice Experiment and Controlled Trials Design
2.3. Econometric Methods
2.3.1. RPL—Eliciting WTP for Different Attributes
2.3.2. OLS—Understanding Information Impacts and Consumer Heterogeneity
3. Data
3.1. Sample Overview
3.2. Data Description
4. Results
4.1. Positive WTP for Rice with Remediated-Soil Claims
4.2. Opposite Joint Evaluation Effects of Brand and Region of Origin with Remediated-Soil Claim
4.3. Positive Effect of Information Disclosure on WTP for Remediation-Soil Claims
4.4. Screen Consumers through Buying Channels
5. Conclusions
5.1. Results Discussion
5.2. Policy Implications
5.3. Limitations and Future Research Directions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Information Treatment Content
Appendix B
Variables/ Interactions | Joint Model | Joint Model | ||
---|---|---|---|---|
Without Interactions | With Interactions | |||
Mean | SE | Mean | SE | |
Mean Estimation | ||||
Random parameter | ||||
Price | 1 | 0 | 1 | 0 |
Remediated | 1.2 | 0.41 | 9.67 *** | 0.68 |
Uncontaminated | 19.79 *** | 0.51 | 20.32 *** | 0.67 |
Brand | 5.23 *** | 0.21 | 4.18 *** | 0.28 |
North | 3.54 *** | 0.31 | 3.98 *** | 0.40 |
Huhu | 0.14 | 0.27 | −0.67 | 0.37 |
Vietnam | 0.42 | 0.27 | 1.16 * | 0.34 |
US | −2.74 | 0.38 | −2.24 ** | 0.40 |
Non-random parameter | ||||
Brand * Remediated | 0.46 *** | 0.10 | ||
Brand * Uncontaminated | 0.15 *** | 0.05 | ||
North * Remediated | −0.92 *** | 0.10 | ||
North * Uncontaminated | 0.09 | 0.07 | ||
Huhu * Remediated | −0.62 *** | 0.11 | ||
Huhu * Uncontaminated | 0.02 | 0.07 | ||
Optout | −1.92 *** | 0.18 | ||
SD estimation | ||||
Price | 0 | 0 | 0 | 0 |
Remediated | 4.71 *** | 0.39 | 3.41 *** | 0.40 |
Uncontaminated | 4.43 *** | 0.35 | 5.38 *** | 0.42 |
Brand | 0.35 | 0.35 | 0.98 *** | 0.32 |
North | 4.41 *** | 0.33 | 4.58 *** | 0.37 |
Huhu | 2.83 *** | 0.29 | 3.16 *** | 0.31 |
Vietnam | 2.37 *** | 0.28 | 3.25 *** | 0.33 |
US | 6.16 *** | 0.42 | 5.42 *** | 0.41 |
Model statistics | ||||
AIC | 10,285.9 | 10,249.8 | ||
Log likelihood | −5125.97 | −5097.42 | ||
Chi squared | 3775.15 | 3832.23 | ||
Choices | 800 × 8 | 800 × 8 |
References
- Chen, H.; Wang, L.; Hu, B.; Xu, J.; Liu, X. Potential Driving Forces and Probabilistic Health Risks of Heavy Metal Accumulation in the Soils from an E-Waste Area, Southeast China. Chemosphere 2022, 289, 133182. [Google Scholar] [CrossRef] [PubMed]
- Baruah, S.G.; Ahmed, I.; Das, B.; Ingtipi, B.; Boruah, H.; Gupta, S.K.; Nema, A.K.; Chabukdhara, M. Heavy Metal(Loid)s Contamination and Health Risk Assessment of Soil-Rice System in Rural and Peri-Urban Areas of Lower Brahmaputra Valley, Northeast India. Chemosphere 2021, 266, 129150. [Google Scholar] [CrossRef] [PubMed]
- MEP. The Ministry of Environment Protection Report. Available online: http://www.mep.gov.cn/gkml/hbb/qt/201404/t20140417270670.htm (accessed on 28 July 2021).
- Hezbullah, M.; Sultana, S.; Chakraborty, S.R.; Patwary, M.I. Heavy Metal Contamination of Food in a Developing Country like Bangladesh: An Emerging Threat to Food Safety. J. Toxicol. Environ. Health Sci. 2016, 8, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Chaney, R.L. How Does Contamination of Rice Soils with Cd and Zn Cause High Incidence of Human Cd Disease in Subsistence Rice Farmers. Curr. Pollut. Rep. 2015, 1, 13–22. [Google Scholar] [CrossRef]
- Duruibe, J.O.; Ogwuegbu, M.O.C.; Egwurugwu, J.N. Heavy Metal Pollution and Human Biotoxic Effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A Review of Soil Heavy Metal Pollution from Mines in China: Pollution and Health Risk Assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, W.T.; Zhou, X.; Liu, L.; Gu, J.F.; Wang, W.L.; Zou, J.L.; Tian, T.; Peng, P.Q.; Liao, B.H. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment. Int. J. Environ. Res. Public Health 2016, 13, 289. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Zheng, W.; Wang, W.; Dai, F.; Zhang, Z.; Yuan, Y.; Wang, Q. Health Risk Assessment of Chinese Consumers to Cadmium via Dietary Intake. J. Trace Elem. Med. Biol. 2017, 44, 137–145. [Google Scholar] [CrossRef]
- Qian, Y.; Chen, C.; Zhang, Q.; Li, Y.; Chen, Z.; Li, M. Concentrations of Cadmium, Lead, Mercury and Arsenic in Chinese Market Milled Rice and Associated Population Health Risk. Food Control 2010, 21, 1757–1763. [Google Scholar] [CrossRef]
- Ma, Z.; Xu, X.B.; Zhao, H.; Zhu, F.; Chang, D. Finance Demand and Realization Mechanism of Farmland Remediation in the Action Plan on Prevention and Control of Soil Pollution. Environ. Prot. 2017, 45, 43–46. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, Z.; Liu, K. Multi-Evolutionary Game Research on Heavy Metal Pollution Control in Soil: Based on a Third-Party Perspective. Sustainablity 2020, 12, 5306. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, J.; Zeng, H.; Zhang, T.; Chen, X. How Does Soil Pollution Risk Perception Affect Farmers’ pro-Environmental Behavior? The Role of Income Level. J. Environ. Manag. 2020, 270, 110806. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Yao, L.; Wu, M. Farmers’ Attitude towards the Policy of Remediation during Fallow in Soil Fertility Declining and Heavy Metal Polluted Area of China. Land Use Policy 2020, 97, 104741. [Google Scholar] [CrossRef]
- Ward, P.S.; Bell, A.R.; Droppelmann, K.; Benton, T.G. Early Adoption of Conservation Agriculture Practices: Understanding Partial Compliance in Programs with Multiple Adoption Decisions. Land Use Policy 2018, 70, 27–37. [Google Scholar] [CrossRef]
- Hou, D. Divergence in Stakeholder Perception of Sustainable Remediation. Sustain. Sci. 2016, 11, 215–230. [Google Scholar] [CrossRef]
- Braun, A.B.; Trentin, A.W.; Da, S.; Visentin, C.; Thomé, A. Sustainable Remediation through the Risk Management Perspective and Stakeholder Involvement: A Systematic and Bibliometric View of the Literature. Environ. Pollut. 2019, 255, 113221. [Google Scholar] [CrossRef]
- Ahmad, N.; Zhu, Y.; Hongli, L.; Karamat, J.; Waqas, M.; Taskheer Mumtaz, S.M. Mapping the Obstacles to Brownfield Redevelopment Adoption in Developing Economies: Pakistani Perspective. Land Use Policy 2020, 91, 104374. [Google Scholar] [CrossRef]
- Truffer, B.; Markard, J.; Wüstenhagen, R. Eco-Labeling of Electricity—Strategies and Tradeoffs in the Definition of Environmental Standards. Energy Policy 2001, 29, 885–897. [Google Scholar] [CrossRef] [Green Version]
- Nakarado, G.L. A Marketing Orientation Is the Key to a Sustainable Energy Future. Energy Policy 1996, 24, 187–193. [Google Scholar] [CrossRef]
- Bougherara, D.; Combris, P. Eco-Labelled Food Products: What Are Consumers Paying For? Eur. Rev. Agric. Econ. 2009, 36, 321–341. [Google Scholar] [CrossRef]
- Michaud, C.; Llerena, D.; Joly, I. Willingness to Pay for Environmental Attributes of Non-Food Agricultural Products: A Real Choice Experiment. Eur. Rev. Agric. Econ. 2013, 40, 313–329. [Google Scholar] [CrossRef] [Green Version]
- Van Loo, E.J.; Hoefkens, C.; Verbeke, W. Healthy, Sustainable and Plant-Based Eating: Perceived (Mis)Match and Involvement-Based Consumer Segments as Targets for Future Policy. Food Policy 2017, 69, 46–57. [Google Scholar] [CrossRef]
- Grunert, K.G.; Hieke, S.; Wills, J. Sustainability Labels on Food Products: Consumer Motivation, Understanding and Use. Food Policy 2014, 44, 177–189. [Google Scholar] [CrossRef] [Green Version]
- van der Waal, N.E.; Folkvord, F.; Azrout, R.; Meppelink, C.S. Can Product Information Steer towards Sustainable and Healthy Food Choices? A Pilot Study in an Online Supermarket. Int. J. Environ. Res. Public Health 2022, 19, 1107. [Google Scholar] [CrossRef]
- Barrena, R.; Sánchez, M. Neophobia, Personal Consumer Values and Novel Food Acceptance. Food Qual. Prefer. 2013, 27, 72–84. [Google Scholar] [CrossRef]
- McKenzie, K.; Metcalf, D.A.; Saliba, A. Validation of the Food Technology Neophobia Scale in a Chinese Sample Using Exploratory and Confirmatory Factor Analysis. Food Qual. Prefer. 2021, 89, 104148. [Google Scholar] [CrossRef]
- Li, T.; Roy, D. “Choosing Not to Choose”: Preferences for Various Uses of Recycled Water. Ecol. Econ. 2021, 184, 106992. [Google Scholar] [CrossRef]
- Savchenko, O.M.; Kecinski, M.; Li, T.; Messer, K.D. Reclaimed Water and Food Production: Cautionary Tales from Consumer Research. Environ. Res. 2019, 170, 320–331. [Google Scholar] [CrossRef] [Green Version]
- Hui, I.; Cain, B.E. Overcoming Psychological Resistance toward Using Recycled Water in California. Water Environ. J. 2018, 32, 17–25. [Google Scholar] [CrossRef]
- Rozin, P.; Haddad, B.; Nemerof, C.; Slovic, P. Psychological Aspects of the Rejection of Recycled Water: Contamination, Purification and Disgust. Judgm. Decis. Mak. 2015, 10, 50–63. [Google Scholar]
- Kecinski, M.; Messer, K.D. Mitigating Public Concerns About Recycled Drinking Water: Leveraging the Power of Voting and Communication. Water Resour. Res. 2018, 54, 5300–5326. [Google Scholar] [CrossRef]
- Wongprawmas, R.; Canavari, M. Consumers’ Willingness-to-Pay for Food Safety Labels in an Emerging Market: The Case of Fresh Produce in Thailand. Food Policy 2017, 69, 25–34. [Google Scholar] [CrossRef]
- Whiting, A.; Kecinski, M.; Li, T.; Messer, K.D.; Parker, J. The Importance of Selecting the Right Messenger: A Framed Field Experiment on Recycled Water Products. Ecol. Econ. 2019, 161, 1–8. [Google Scholar] [CrossRef]
- Hao, N.; Wang, H.H. Food Consumption and Stigmatization under COVID-19: Evidence from Chinese Consumers’ Aversion to Wuhan Hot Instant Noodles. Agribusiness 2021, 37, 82–90. [Google Scholar] [CrossRef]
- Chen, Q.; Anders, S.; An, H. Measuring Consumer Resistance to a New Food Technology: A Choice Experiment in Meat Packaging. Food Qual. Prefer. 2013, 28, 419–428. [Google Scholar] [CrossRef]
- Cox, D.N.; Evans, G.; Lease, H.J. The Influence of Information and Beliefs about Technology on the Acceptance of Novel Food Technologies: A Conjoint Study of Farmed Prawn Concepts. Food Qual. Prefer. 2007, 18, 813–823. [Google Scholar] [CrossRef]
- Ortega, D.L.; Wang, H.H.; Wu, L.; Olynk, N.J. Modeling Heterogeneity in Consumer Preferences for Select Food Safety Attributes in China. Food Policy 2011, 36, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Fischer, A.R.H.; Frewer, L.J. Consumer Familiarity with Foods and the Perception of Risks and Benefits. Food Qual. Prefer. 2009, 20, 576–585. [Google Scholar] [CrossRef]
- McFadden, J.R.; Huffman, W.E. Consumer Valuation of Information about Food Safety Achieved Using Biotechnology: Evidence from New Potato Products. Food Policy 2017, 69, 82–96. [Google Scholar] [CrossRef] [Green Version]
- Marette, S.; Roosen, J.; Blanchemanche, S.; Feinblatt-Mélèze, E. Functional Food, Uncertainty and Consumers’ Choices: A Lab Experiment with Enriched Yoghurts for Lowering Cholesterol. Food Policy 2010, 35, 419–428. [Google Scholar] [CrossRef]
- Savchenko, O.M.; Kecinski, M.; Li, T.; Messer, K.D.; Xu, H. Fresh Foods Irrigated with Recycled Water: A Framed Field Experiment on Consumer Responses. Food Policy 2018, 80, 103–112. [Google Scholar] [CrossRef]
- Dean, D.H. Brand Endorsement, Popularity, and Event Sponsorship as Advertising Cues Affecting Consumer Pre-Purchase Attitudes. J. Advert. 1999, 28, 1–12. [Google Scholar] [CrossRef]
- Whang, H.; Ko, E.; Zhang, T.; Mattila, P. Brand Popularity as an Advertising Cue Affecting Consumer Evaluation on Sustainable Brands: A Comparison Study of Korea, China, and Russia. Int. J. Advert. 2015, 34, 789–811. [Google Scholar] [CrossRef]
- Chhikara, N.; Jaglan, S.; Sindhu, N.; Anshid, V.; Charan, M.V.S.; Panghal, A. Importance of Traceability in Food Supply Chain for Brand Protection and Food Safety Systems Implementation. Ann. Biol. 2018, 34, 111–118. [Google Scholar]
- Delgado-Ballester, E.; Munuera-Aleman, J.L.; Yague-Guillen, M.J. Development and Validation of a Brand Trust Scale. Int. J. Mark. Res. 2003, 45, 35–58. [Google Scholar]
- Kim, L.H.; Qu, H.; Kim, D.J. A Study of Perceived Risk and Risk Reduction of Purchasing Air-Tickets Online. J. Travel Tour. Mark. 2009, 26, 203–224. [Google Scholar] [CrossRef]
- Teuber, R.; Herrmann, R. Towards a Differentiated Modeling of Origin Effects in Hedonic Analysis: An Application to Auction Prices of Specialty Coffee. Food Policy 2012, 37, 732–740. [Google Scholar] [CrossRef]
- CSMAR. China Stock Market and Accounting Research Database. Available online: https://cn.gtadata.com (accessed on 28 July 2021).
- Wisesearch. Available online: https://wisesearch6.wisers.net/wevo/home (accessed on 28 July 2021).
- Zheng, Q.; Chen, J.; Zhang, R.; Wang, H.H. What Factors Affect Chinese Consumers’ Online Grocery Shopping? Product Attributes, e-Vendor Characteristics and Consumer Perceptions. China Agric. Econ. Rev. 2020, 12, 193–213. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, H.H.; Jin, S.; Delgado, M.S. The Promising Effect of a Green Food Label in the New Online Market. sustainability 2019, 11, 796. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Wang, H.H.; Li, J. A New Market for Pet Food in China: Online Consumer Preferences and Consumption. Chin. Econ. 2021, 54, 430–440. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, X.; Song, P.; Sia, C.L. Consumer Segmentation Analysis of Multichannel and Multistage Consumption: A Latent Class MNL Approach. J. Electron. Commer. Res. 2014, 15, 339–358. [Google Scholar]
- Li, X.P.; Cai, J.; Wang, Q.J.; Wang, X.W. Heterogeneous Public Preferences for Controlling Agricultural Non-Point Source Pollution Based on a Choice Experiment. J. Environ. Manag. 2022, 305, 114413. [Google Scholar] [CrossRef] [PubMed]
- Vásquez, W.F.; Raheem, N.; Quiroga, D.; Ochoa-Herrera, V. Valuing Improved Water Services and Negative Environmental Externalities from Seawater Desalination Technology: A Choice Experiment from the Galápagos. J. Environ. Manag. 2022, 304, 114204. [Google Scholar] [CrossRef] [PubMed]
- Edenbrandt, A.K.; House, L.A.; Gao, Z.; Olmstead, M.; Gray, D. Consumer Acceptance of Cisgenic Food and the Impact of Information and Status Quo. Food Qual. Prefer. 2018, 69, 44–52. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Q.; Mao, R.; Yu, X. Habit Spillovers or Induced Awareness: Willingness to Pay for Eco-Labels of Rice in China. Food Policy 2017, 71, 62–73. [Google Scholar] [CrossRef]
- Noussair, C.; Robin, S.; Ruffieux, B. Do Consumers Really Refuse to Buy Genetically Modified Food? Econ. J. 2004, 114, 102–120. [Google Scholar] [CrossRef] [Green Version]
- Louviere, J.J.; Hensher, D.A.; Swait, J.D. Stated Choice Methods: Analysis and Applications; Cambridge University Press: New York, NY, USA, 2000. [Google Scholar]
- Lancaster, K.J. A new approach to consumer theory. J. Political Econ. 1960, 74, 132–157. [Google Scholar] [CrossRef]
- Kilders, V.; Caputo, V. Is Animal Welfare Promoting Hornless Cattle? Assessing Consumer’s Valuation for Milk from Gene-Edited Cows under Different Information Regimes. J. Agric. Econ. 2021, 72, 735–759. [Google Scholar] [CrossRef]
- Train, K.; Weeks, M. Discrete Choice Models in Preference Space and Willingness-to-Pay Space. In Applications of Simulation Methods in Environmental and Resource Economics; Springer: Dordrecht, The Netherlands, 2005; Volume 3, pp. 1–16. [Google Scholar] [CrossRef] [Green Version]
- Lusk, J.L.; House, L.O.; Valli, C.; Jaeger, S.R.; Moore, M.; Morrow, J.L.; Traill, W.B. Effect of Information about Benefits of Biotechnology on Consumer Acceptance of Genetically Modified Food: Evidence from Experimental Auctions in the United States, England, and France. Eur. Rev. Agric. Econ. 2004, 31, 179–204. [Google Scholar] [CrossRef]
- Antle, J.M. Economic analysis of food safety. Handb. Agric. Econ. 2001, 1, 1083–1136. [Google Scholar]
- Blimpo, M.P. Team Incentives for Education in Developing Countries: A Randomized Field Experiment in Benin. Am. Econ. J. Appl. Econ. 2014, 6, 90–109. [Google Scholar] [CrossRef]
- Caputo, V. Does Information on Food Safety Affect Consumers’ Acceptance of New Food Technologies? The Case of Irradiated Beef in South Korea under a New Labelling System and across Different Information Regimes. Aust. J. Agric. Resour. Econ. 2020, 64, 1003–1033. [Google Scholar] [CrossRef]
- Ortega, D.L.; Chen, M.; Wang, H.H.; Shimokawa, S. Emerging Markets for U.S. Pork in China: Experimental Evidence from Mainland and Hong Kong Consumers. J. Agric. Resour. Econ. 2017, 42, 275–290. [Google Scholar] [CrossRef]
- Lai, J.; Wang, H.H.; Ortega, D.L.; Olynk Widmar, N.J. Factoring Chinese Consumers’ Risk Perceptions into Their Willingness to Pay for Pork Safety, Environmental Stewardship, and Animal Welfare. Food Control 2018, 85, 423–431. [Google Scholar] [CrossRef]
- Heikkurinen, P.; Bonnedahl, K.J. Corporate Responsibility for Sustainable Development: A Review and Conceptual Comparison of Market- and Stakeholder-Oriented Strategies. J. Clean. Prod. 2013, 43, 191–198. [Google Scholar] [CrossRef]
- Hartmann, P.; Apaolaza Ibáñez, V. Managing Customer Loyalty in Liberalized Residential Energy Markets: The Impact of Energy Branding. Energy Policy 2007, 35, 2661–2672. [Google Scholar] [CrossRef]
- Gilmour, D.N.; Bazzani, C.; Nayga, R.M.; Snell, H.A. Do Consumers Value Hydroponics? Implications for Organic Certification. Agric. Econ. 2019, 50, 707–721. [Google Scholar] [CrossRef]
- Johnson, J.P.; Myatt, D.P. On the Simple Economics of Advertising, Marketing, and Product Design. Am. Econ. Rev. 2006, 96, 756–784. [Google Scholar] [CrossRef] [Green Version]
- Fox, J.A.; Hayes, D.J.; Shogren, J.F. Consumer Preferences for Food Irradiation: How Favorable and Unfavorable Descriptions Affect Preferences for Irradiated Pork in Experimental Auctions. J. Risk Uncertain. 2002, 24, 75–95. [Google Scholar] [CrossRef]
- Christopoulos, S.; Horvath, B.; Kull, M. Advancing the Governance of Cross-Sectoral Policies for Sustainable Development: A Metagovernance Perspective. Public Adm. Dev. 2012, 32, 305–323. [Google Scholar] [CrossRef]
- Ren, W.; Xue, B.; Geng, Y.; Sun, L.; Ma, Z.; Zhang, Y.; Mitchell, B.; Zhang, L. Inventorying Heavy Metal Pollution in Redeveloped Brownfield and Its Policy Contribution: Case Study from Tiexi District, Shenyang, China. Land Use Policy 2014, 38, 138–146. [Google Scholar] [CrossRef]
Attributes | Levels | Description |
---|---|---|
Price | 3 RMB/Jin a; 5 RMB/Jin; 10 RMB/Jin. | Average price. |
Soil quality claim | Uncontaminated soil claim; Remediated soil claim; No claim b. | Whether there is a claim for the soil qualified for safe cadmium level or remediated from previous contamination. |
Region of origin and variety | Vietnam long grain; USA short grain; Thailand long grain b; Northern China short grain; Huan/Hubei long grain. | Country and region of origin, each with only one dominating variety. |
Brand | Famous brand; Not famous brand b. | Whether it is a recognizable famous brand. |
Description | Full Sample | Control | Treat | p-Value a | |
---|---|---|---|---|---|
Observation | Number of participants | 800 | 396 | 404 | |
Age | Average age (year) | 34.24 | 34.58 | 33.91 | 0.31 |
Gender | Male (%) | 50.50 | 50.51 | 50.50 | 1.00 |
Female (%) | 49.50 | 49.49 | 49.50 | ||
Educational Level | High-school education (%) | 18.63 | 18.43 | 18.81 | 0.93 |
Undergraduate education (%) | 74.63 | 74.49 | 74.75 | ||
Graduate/professional (%) | 6.75 | 6.82 | 6.19 | ||
Family Annual Income | Under 50,000 RMB (%) | 3.75 | 3.79 | 3.71 | 0.75 |
50,001–100,000 RMB (%) | 14.63 | 15.40 | 13.86 | ||
100,001–200,000 RMB (%) | 33.63 | 43.69 | 45.54 | ||
200,001–500,000 RMB (%) | 33.00 | 33.59 | 32.43 | ||
Over 500,000 RMB (%) | 4.00 | 3.54 | 4.46 |
Variables | Coding and Descriptions | Control (%) | Treat (%) | p-Value a |
---|---|---|---|---|
Knowledge: Who believed that | ||||
hharmq | =1 if cadmium pollution will cause health damage | 75.51 | 75.50 | 0.21 |
=0 if it will not lead to health damage | 24.50 | 24.49 | ||
proftest | =1 if cadmium rice can be detected using professional methods | 9.34 | 6.93 | 1.00 |
=0 if can be detected without using a professional method | 90.66 | 93.07 | ||
soilq | =1 if soil is of vital importance to rice quality | 52.27 | 55.69 | 0.33 |
=0 if is not important to rice quality | 47.73 | 44.31 | ||
Buying channels: | ||||
wetmkt | =1 if usually buy rice in wet market; =0 otherwise | 9.60 | 10.88 | 0.64 |
specs | =1 if usually buy rice in specialty stores; =0 otherwise | 8.84 | 10.50 | |
smallsh | =1 if usually buy rice in small shops; =0 otherwise | 14.90 | 14.88 | |
supermkt | =1 if usually buy rice in supermarkets; =0 otherwise | 59.60 | 57.25 | |
online | =1 if usually buy rice in online stores; =0 otherwise | 6.82 | 6.25 | |
Obs. | 396 | 404 |
Variables/ Interactions | Control | Treat | ||||||
---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | |||||
Mean | SE | Mean | SE | Mean | SE | Mean | SE | |
Mean estimation | ||||||||
Random parameter | ||||||||
Price | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
Remediated | 0.48 | 0.58 | 5.02 *** | 0.71 | 4.22 *** | 0.59 | 8.49 *** | 0.72 |
Uncontaminated | 17.42 *** | 0.63 | 13.94 *** | 0.58 | 20.70 *** | 0.78 | 15.09 *** | 0.67 |
Brand | 5.72 *** | 0.31 | 2.94 *** | 0.30 | 5.35 *** | 0.34 | 2.36 *** | 0.34 |
North | 3.86 *** | 0.43 | 2.20 *** | 0.47 | 4.19 *** | 0.47 | 2.47 *** | 0.46 |
Huhu | 0.42 | 0.37 | −3.69 *** | 0.42 | −0.59 | 0.44 | −0.12 | 0.45 |
Vietnam | 0.57 | 0.40 | 0.36 | 0.40 | 0.49 | 0.40 | 1.82 *** | 0.38 |
US | −3.53 *** | 0.53 | −2.28 *** | 0.48 | −2.89 *** | 0.51 | −0.17 | 0.45 |
Non-random parameter | ||||||||
Brand * Remediated | 1.44 *** | 0.14 | 0.76 *** | 0.15 | ||||
Brand * Uncontaminated | 0.58 *** | 0.08 | 0.54 *** | 0.08 | ||||
North * Remediated | −2.00 *** | 0.14 | −1.30 *** | 0.13 | ||||
North * Uncontaminated | 0.62 *** | 0.10 | 0.66 *** | 0.10 | ||||
Huhu * Remediated | −1.17 *** | 0.17 | −1.12 *** | 0.17 | ||||
Huhu * Uncontaminated | 0.67 *** | 0.10 | 0.10 | 0.11 | ||||
Optout | −2.45 *** | 0.13 | −2.42 *** | 0.24 | −2.52 *** | 0.14 | −2.69 *** | 0.25 |
SD estimation | ||||||||
Price | 0 | 0 | 0 | 0 | ||||
Remediated | 5.03 *** | 0.55 | 5.10 *** | 0.56 | 3.51 *** | 0.50 | 0.14 | 0.51 |
Uncontaminated | 4.25 *** | 0.51 | 4.00 *** | 0.45 | 5.54 *** | 0.56 | 5.26 *** | 0.49 |
Brand | 1.08 *** | 0.37 | 0.28 | 0.38 | 3.18 *** | 0.38 | 2.75 *** | 0.34 |
North | 4.68 *** | 0.47 | 4.63 *** | 0.44 | 4.93 *** | 0.54 | 4.29 *** | 0.44 |
Huhu | 2.52 *** | 0.48 | 2.57 *** | 0.47 | 4.37 *** | 0.49 | 3.51 *** | 0.43 |
Vietnam | 2.01 *** | 0.39 | 2.99 *** | 0.40 | 2.47 *** | 0.45 | 0.20 | 0.38 |
US | 6.22 *** | 0.54 | 5.07 *** | 0.54 | 4.60 *** | 0.51 | 4.08 *** | 0.50 |
Model statistics | ||||||||
AIC | 5042.70 | 4963.10 | 5215.90 | 5197.50 | ||||
Log likelihood | −2504.35 | −2458.57 | −2590.96 | −2575.76 | ||||
Choices | 396 × 8 | 396 × 8 | 404 × 8 | 404 × 8 |
Control | Treat | |||
---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | |
Remediated vs. Uncontaminated | −16.96 *** a | −8.92 *** | −16.48 *** | −6.60 *** |
[−19.68, −14.22] b | [−11.68, −6.14] | [−19.38, −13.56] | [−9.29, −3.90] | |
Brand * Remediated vs. Brand * Uncontaminated | 0.86 *** | 0.22 | ||
[0.26, 1.46] | [−0.40, 0.84] | |||
Remediated * North vs. Remediated * Huhu | −0.86 *** | −0.18 | ||
[−1.45, −0.26] | [−0.70, 0.34] | |||
Uncontaminated * North vs. Uncontaminated * Huhu | −0.04 | 0.56 *** | ||
[−0.46, 0.38] | [0.16, 0.96] |
RMB/Jin | Remediated | Uncontaminated | ||
---|---|---|---|---|
Control | Treat | Control | Treat | |
Only soil claim | 5.02 *** a | 8.49 *** | 13.94 *** | 15.09 *** |
[2.25, 7.81] b | [5.68, 11.32] | [11.66, 16.22] | [12.46, 17.70] | |
+Well-known brand | 9.14 *** | 11.62 *** | 17.46 *** | 18.00 *** |
[6.37,12.45] | [8.59, 14.64] | [14.65,20.27] | [14.93, 21.06] | |
+Northeast | 5.21 *** | 9.66 *** | 16.76 *** | 18.23 *** |
[2.18, 8.25] | [6.56, 12.77] | [13.51,20.02] | [14.59, 21.87] | |
+Hunan/Hubei | 0.19 | 7.24 *** | 10.92 *** | 15.07 *** |
[−2.21, 2.59] | [4.49, 9.99] | [8.37, 13.46] | [11.81, 18.32] | |
+Northeast +Well-known brand | 10.45 *** | 12.96 *** | 20.30 *** | 20.56 *** |
[7.01, 13.90] | [9.44, 16.49] | [16.28, 24.16] | [16.41, 24.75] | |
+Hunan/Hubei +Well-known brand | 4.57 *** | 10.37 *** | 14.43 *** | 17.98 *** |
[1.89, 7.24] | [7.23, 13.50] | [11.38, 17.49] | [14.20, 21.75] |
Variables | WTP for Remediated-Soil Claims | WTP for Uncontaminated-Soil Claims | ||||||
---|---|---|---|---|---|---|---|---|
Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | Model 10 | Model 11 | Model 12 | |
treat | 4.50 *** | 4.55 *** | 0.31 | 0.49 | 0.01 | 0.16 | 5.41 *** | 3.16 |
(0.76) | (0.76) | (1.36) | (1.52) | (0.94) | (0.95) | (1.76) | (1.92) | |
proftest | 1.72 ** | 1.07 | 0.66 | 0.04 | 0.41 | 0.54 | ||
(0.85) | (0.86) | (0.86) | (1.05) | (1.09) | (1.09) | |||
hharm | 0.77 | 0.70 | −0.73 | −0.15 | 0.04 | −0.92 | ||
(0.59) | (0.59) | (1.28) | (0.73) | (0.74) | (1.62) | |||
soilq | −1.82 *** | −1.73 *** | 0.78 | 2.70 *** | 2.66 *** | 0.16 | ||
(0.50) | (0.50) | (0.59) | (0.63) | (0.64) | (0.74) | |||
treat * proftest | −1.28 | −1.19 | −0.95 | −0.82 | −0.66 | 2.09 ** | ||
(1.28) | (1.28) | (0.82) | (1.59) | (1.62) | (1.04) | |||
treat * hharm | −0.98 | −1.00 | −1.76 *** | 2.31 ** | 2.22 ** | 2.50 *** | ||
(0.82) | (0.82) | (0.50) | (1.02) | (1.04) | (0.64) | |||
treat * soilq | 1.47 ** | 1.42 ** | 1.43 ** | 1.37 | 1.18 | 1.30 | ||
(0.71) | (0.71) | (0.70) | (0.88) | (0.89) | (0.89) | |||
wetmkt | −4.34 *** | −3.54 *** | −0.06 | −0.83 | ||||
(1.22) | (1.25) | (1.58) | (1.63) | |||||
specs | −5.38 *** | −5.09 *** | 0.92 | 0.81 | ||||
(1.24) | (1.25) | (1.60) | (1.64) | |||||
smallsh | −3.94 *** | −3.39 *** | 1.33 | 0.91 | ||||
(1.12) | (1.14) | (1.45) | (1.49) | |||||
supermkt | −3.89 *** | −3.20 *** | 2.37 * | 2.14 * | ||||
(0.98) | (0.99) | (1.26) | (1.30) | |||||
treat * wetmkt | 5.13 *** | 5.05 *** | −1.16 | −1.42 | ||||
(1.72) | (1.71) | (2.23) | (2.24) | |||||
treat * specs | 6.42 *** | 6.81 *** | −2.08 | −2.36 | ||||
(1.74) | (1.74) | (2.25) | (2.27) | |||||
treat * smallsh | 4.61 *** | 4.70 *** | −4.20 ** | −4.48 ** | ||||
(1.63) | (1.63) | (2.11) | (2.13) | |||||
treat * supermkt | 3.81 *** | 3.80 *** | −3.21 * | −3.49 * | ||||
(1.43) | (1.44) | (1.86) | (1.88) | |||||
Controls | ||||||||
City FE | N a | Y | N | Y | N | Y | N | Y |
Individual FE | N | Y | N | Y | N | Y | N | Y |
Constant | 0.06 | 0.34 | 3.65 *** | 3.31 ** | 17.30 *** | 17.75 *** | 16.92 *** | 16.80 *** |
(0.53) | (1.37) | (0.92) | (1.61) | (0.66) | (1.72) | (1.20) | (2.03) | |
Obs | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 |
R-squared | 0.18 | 0.23 | 0.19 | 0.25 | 0.13 | 0.15 | 0.06 | 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.H.; Yang, J.; Hao, N. Consumers’ Willingness to Pay for Rice from Remediated Soil: Potential from the Public in Sustainable Soil Pollution Treatment. Int. J. Environ. Res. Public Health 2022, 19, 8946. https://doi.org/10.3390/ijerph19158946
Wang HH, Yang J, Hao N. Consumers’ Willingness to Pay for Rice from Remediated Soil: Potential from the Public in Sustainable Soil Pollution Treatment. International Journal of Environmental Research and Public Health. 2022; 19(15):8946. https://doi.org/10.3390/ijerph19158946
Chicago/Turabian StyleWang, H. Holly, Jing Yang, and Na Hao. 2022. "Consumers’ Willingness to Pay for Rice from Remediated Soil: Potential from the Public in Sustainable Soil Pollution Treatment" International Journal of Environmental Research and Public Health 19, no. 15: 8946. https://doi.org/10.3390/ijerph19158946
APA StyleWang, H. H., Yang, J., & Hao, N. (2022). Consumers’ Willingness to Pay for Rice from Remediated Soil: Potential from the Public in Sustainable Soil Pollution Treatment. International Journal of Environmental Research and Public Health, 19(15), 8946. https://doi.org/10.3390/ijerph19158946