Dynamic Characteristics of Urbanization Based on Nighttime Light Data in China’s “Plain–Mountain Transition Zone”
Abstract
:1. Introduction
2. Study Areas and Data
2.1. Study Areas
2.2. Data Source
2.3. Data Processing
3. Methods
3.1. The Spatial Gradient of Nighttime Light
3.2. The Relationship between Nighttime Light and the Brightness Gradient
3.3. Spatial Partition of Nighttime Light Imagery
3.4. The Relationship between the Classification of Nighttime Lighting Types and Urbanization
4. Results
4.1. Long-Term Temporal Trends in Different Nighttime Lighting Types
4.2. Long-Term Spatiotemporal Trends of Nighttime Light at Different Aspects
4.2.1. Spatiotemporal Trend of the Proportion with Nighttime Lighting Area
4.2.2. Spatiotemporal Trend of the Nighttime Lighting Density
4.2.3. Spatiotemporal Trends of the Nighttime Lighting Types
4.3. Spatiotemporal Transitions of Different Nighttime Lighting Types
5. Relationship between the Spatiotemporal Transitions of Different Nighttime Lighting Types and Terrain
6. Discussion
6.1. Comparison of Different Brightness Gradient Methods
6.2. Urbanization in the Transition Zone
6.3. Light Pollution
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PANDA | prolonged artificial nighttime-light dataset of China |
NTL | nighttime light |
NTLA | nighttime lighting area |
NTLD | nighttime lighting density |
NTLT | nighttime lighting types |
BG | brightness gradient |
DMSP–OLS | Defense Meteorological Satellite Program-Operational Linescane System |
SVM | support vector machine |
NDVI | Normalized Difference Vegetation Index |
NSA | neighborhood statistical analysis |
NPP–VIIIRS | National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite |
SVNG | spatial variation of NTL gradient |
DN | digital number |
LOT | local-optimization thresholding |
ET | empirical thresholding |
ConvLSTM | convolution long-term and short-term memory neural network |
RMSE | root mean square error |
DEM | Digital elevation model |
NASA | National Aeronautics and Space Administration |
SRTM | Shuttle Radar Topography Mission |
SEDAC | Socioeconomic Data and Applications Center |
GDP | Gross National Product |
References
- Montgomery, M.R. The Urban Transformation of the Developing World. Science 2008, 319, 761–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, B. Urbanization in Developing Countries: Current Trends, Future Projections, and Key Challenges for Sustainability. Technol. Soc. 2006, 28, 63–80. [Google Scholar] [CrossRef]
- Dutt, A.K.; Noble, A.G.; Venugopal, G.; Subbiah, S. Challenges to Asian Urbanization in the 21st Century; Springer: Chennai, India, 2004; Volume 75, ISBN 978-1-4020-1576-2. [Google Scholar]
- Jiang, S.; Wei, G.; Zhang, Z.; Wang, Y.; Xu, M.; Wang, Q.; Das, P.; Liu, B. Detecting the Dynamics of Urban Growth in Africa Using DMSP/OLS Nighttime Light Data. Land 2020, 10, 13. [Google Scholar] [CrossRef]
- Lakshmana, C.M. Dynamics of Urban Growth, Resource Degradation and Environmental Pollution in Million Plus Cities of India. Environ. Urban. Asia 2014, 5, 49–61. [Google Scholar] [CrossRef]
- Onanuga, M.Y.; Eludoyin, A.O.; Ofoezie, I.E. Urbanization and Its Effects on Land and Water Resources in Ijebuland, Southwestern Nigeria. Environ. Dev. Sustain. 2022, 24, 592–616. [Google Scholar] [CrossRef]
- Cai, Z.; Li, W.; Cao, S. Driving Factors for Coordinating Urbanization with Conservation of the Ecological Environment in China. Ambio 2021, 50, 1269–1280. [Google Scholar] [CrossRef] [PubMed]
- Meisner, T. Urbanization and the Ecology of the Urban Environment: Risks and Prospects for Sustainable Development. Humanit. South Russ. 2020, 9, 190–201. [Google Scholar] [CrossRef]
- Feng, Y.; He, S.; Li, G. Interaction between Urbanization and the Eco-Environment in the Pan-Third Pole Region. Sci. Total Environ. 2021, 789, 148011. [Google Scholar] [CrossRef]
- Zhu, C.; Ma, C.; Gang, C. An Introduction to Global Change Science, 4th ed.; Science Press: Beijing, China, 2017; ISBN 978-7-03-054390-5. [Google Scholar]
- Li, D.; Hanruo, Y.; Xi, L. The Spatial-Temporal Pattern Analysis of City Development in Countries along the Belt and Road Initiative Based on Nighttime Light Data. Geomaties Inf. Sci. Wuhan Univ. 2017, 42, 711–720. [Google Scholar] [CrossRef]
- Henderson, M.; Yeh, E.T.; Gong, P.; Elvidge, C.; Baugh, K. Validation of Urban Boundaries Derived from Global Night-Time Satellite Imagery. Int. J. Remote Sens. 2003, 24, 595–609. [Google Scholar] [CrossRef]
- Cao, X.; Chen, J.; Imura, H.; Higashi, O. A SVM-Based Method to Extract Urban Areas from DMSP-OLS and SPOT VGT Data. Remote Sens. Environ. 2009, 113, 2205–2209. [Google Scholar] [CrossRef]
- Su, Y.; Chen, X.; Wang, C.; Zhang, H.; Liao, J.; Ye, Y.; Wang, C. A New Method for Extracting Built-up Urban Areas Using DMSP-OLS Nighttime Stable Lights: A Case Study in the Pearl River Delta, Southern China. GIScience Remote Sens. 2015, 52, 218–238. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the Dynamics of Urban Expansion in China Using DMSP-OLS Nighttime Light Data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, Y.; Zhou, C.; Haynie, S.; Pei, T.; Xu, T. Night-Time Light Derived Estimation of Spatio-Temporal Characteristics of Urbanization Dynamics Using DMSP/OLS Satellite Data. Remote Sens. Environ. 2015, 158, 453–464. [Google Scholar] [CrossRef]
- Kamarajugedda, S.A.; Mandapaka, P.V.; Lo, E.Y.M. Assessing Urban Growth Dynamics of Major Southeast Asian Cities Using Night-Time Light Data. Int. J. Remote Sens. 2017, 38, 6073–6093. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Cheng, W.; Huang, K. Mapping Urban Dynamics (1992–2018) in Southeast Asia Using Consistent Nighttime Light Data from DMSP and VIIRS. Remote Sens. Environ. 2020, 248, 111980. [Google Scholar] [CrossRef]
- Li, X.; Zheng, B.; Xiong, Y. Spatio-Temporal Expansion of the Dongting Lake Eco-Economic Zone Urban Agglomeration Based on Nighttime Light Remote Sensing Data. Econ. Geogr. 2021, 41, 92–102. [Google Scholar] [CrossRef]
- Wei, S.; Jinghu, P.; Yongnian, Z.; Dahong, Z. Based on Spatial Evolution of Zhongyuan Urban Agglomeration Based on Dmsp-Ols Nighttime Light Data. Hum. Geogr. 2019, 34, 12. [Google Scholar] [CrossRef]
- Bing, Z. Spatial Pattern Evolution and Influencing Factors of County-Level Economy of Border Regions in Hunan-Hubei-Jiangxi Based on Nighttime Light Data. Sci. Geogr. Sin. 2020, 40, 8. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, M.; Rong, L. Spatial Expansion Characteristics and Driving Forces of Hohhot-Baotou-Ordos Urban Agglomeration Based on Night Light Data. Reg. Res. Dev. 2021, 40, 43–49. [Google Scholar] [CrossRef]
- Wu, K.; Wang, X. Aligning Pixel Values of DMSP and VIIRS Nighttime Light Images to Evaluate Urban Dynamics. Remote Sens. 2019, 7, 1463. [Google Scholar] [CrossRef] [Green Version]
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A Technique for Using Composite DMSP/OLS “City Lights” Satellite Data to Map Urban Area. Remote Sens. Environ. 1997, 61, 361–370. [Google Scholar] [CrossRef]
- Sutton, P. Modeling Population Density with Night-Time Satellite Imagery and GIS. Comput. Environ. Urban Syst. 1997, 21, 227–244. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping City Lights with Nighttime Data from the DMSP Operational Linescan System. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar] [CrossRef]
- Milesi, C.; Elvidge, C.D.; Nemani, R.R.; Running, S.W. Assessing the Impact of Urban Land Development on Net Primary Productivity in the Southeastern United States. Remote Sens. Environ. 2003, 86, 401–410. [Google Scholar] [CrossRef]
- Deng, W.; Shaoyao, Z.; Hao, Z.; Li, P.; Ying, L. Transitional Geospace from the Perspective of Human-Nature Coupling: Concept, Connotations, Attributes, and the Research Framework. Geogr. Res. 2020, 39, 761–771. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, Z.; Chen, B.; Gong, P.; Fu, H.; Xu, B. A Prolonged Artificial Nighttime-Light Dataset of China (1984–2020); National Tibetan Plateau Data Center: Beijing, China, 2021. [Google Scholar]
- Yang, Y.; Li, X.; Dong, W.; Hong, H.; He, Z.; Jin, F.; Liu, Y. Comprehensive Evaluation on China’s Man-Land Relationship: Theoretical Model and Empirical Study. Acta Geogr. Sin. 2019, 74, 1063–1078. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, J. A Spatial Analysis on China’s Regional Economic Growth Clustering. Sci. Geogr. Sin. 2004, 24, 654. [Google Scholar] [CrossRef]
- Liu, Y.; Song, H.; Sun, C.; Song, Y.; Cai, Q.; Liu, R.; Lei, Y.; Li, Q. The 600 mm Precipitation Isoline Distinguishes Tree-Ring-Width Responses to Climate in China. Natl. Sci. Rev. 2019, 6, 359–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Wang, Y.; Hashimoto, H.; Melton, F.S.; Hiatt, S.H.; Zhang, H.; Nemani, R.R. The Variation of Land Surface Phenology From 1982 to 2006 Along the Appalachian Trail. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2087–2095. [Google Scholar] [CrossRef]
- Ren, X. A Comparative Study of Population Economy between the East and the West; Southwestern University of Finance and Economics: Chengdu, China, 2004. [Google Scholar]
- Chinese Academy of Sciences Resource and Environmental Science Data Center. Landuse Dataset in China; National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2019. [Google Scholar]
- Bo, J.; Tongsheng, L.; Boqing, W.; Wenhao, C. Population-Economy Spatial Pattern and Impact Mechanism of the Qinba Mountain Area Based on Topographic Factors. Sci. Geogr. Sin. 2020, 40, 11. [Google Scholar] [CrossRef]
- Liang, L.; Chen, M.; Lu, D. Revisiting the Relationship Between Urbanization and Economic Development in China Since the Reform and Opening-Up. Chin. Geogr. Sci. 2022, 32, 1–15. [Google Scholar] [CrossRef]
- Xu, B.; Watada, J. Identification of Regional Urbanization Gap: Evidence of China. J. Model. Manag. 2008, 3, 7–25. [Google Scholar] [CrossRef]
- Jiang, G.; Song, Y. Comparative Study on Urbanization in Eastern and Western Areas in China. Contemp. Econ. Manag. 2011, 33, 45–48. [Google Scholar] [CrossRef]
- Qin, J. Research on Problems and Countermeasures of China’s Regional Economic Development in the New Era. In Proceedings of the 2018 3rd International Conference on Education Sports, Arts and Management Engineering (ICESAME 2018), Chongqing, China, 26–27 May 2018; pp. 228–233. [Google Scholar]
- Wei, H.; Meng, N.; Le, L.I. China’s Strategies and Policies for Regional Development During the Period of the 14th Five-Year Plan. Chin. J. Urban Environ. Stud. 2020, 8, 2050008. [Google Scholar] [CrossRef]
- Fang, C.; Liu, X. Temporal and Spatial Differences and Imbalance of China’s Urbanization Development during 1950–2006. J. Geogr. Sci. 2009, 19, 719. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, M.; Fan, J.; Jiang, Q.; Chen, J.; Zhang, P. A Comparative Study on the Characteristics of the Urbanization Processes Between China and India from 1992 to 2013 Using DMSP-OLS NTL Images. J. Indian Soc. Remote Sens. 2021, 49, 3059–3070. [Google Scholar] [CrossRef]
- Lefeng, Q.; Yi, P.; Jinxia, Z.; Gabriel, S.A.; Baogen, X. Integrated Analysis of Urbanization-Triggered Land Use Change Trajectory and Implications for Ecological Land Management A Case Study in Fuyang, China. Sci. Total Environ. 2019, 10, 209–217. [Google Scholar] [CrossRef]
- Angel, S.; Sheppard, S.; Civco, D.; Buckley, R.; Chabaeva, A.; Gitlin, L.; Kraley, A.; Parent, J.; Perlin, M. The Dynamics of Global Urban Expansion; World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Seto, K.C.; Giineralp, B.; Hutyra, L.R. Global Forecasts of Urban Expansion to 2030 and Direct Impacts on Biodiversity and Carbon Pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- Ding, S. Employment in Township Urbanization in China. Soc. Sci. China 2015, 36, 152–167. [Google Scholar] [CrossRef]
- Mcdonough, L.K.; Santos, I.R.; Andersen, M.S.; O’Carroll, D.M.; Baker, A. Changes in Global Groundwater Organic Carbon Driven by Climate Change and Urbanization. Nat. Commun. 2020, 11, 1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, Y.; Xu, H.; Zhang, X. Sustainable Urbanization in China: A Comprehensive Literature Review. Cities 2016, 55, 82–93. [Google Scholar] [CrossRef]
- Hölker, F.; Moss, T.; Griefahn, B.; Kloas, W.; Tockner, K. The Dark Side of Light: A Transdisciplinary Research Agenda for Light Pollution Policy. Ecol. Soc. 2010, 15, 634. [Google Scholar] [CrossRef]
- Lyytimäki, J.; Tapio, P.; Assmuth, T. Unawareness in Environmental Protection: The Case of Light Pollution from Traffic. Land Use Policy 2012, 29, 598–604. [Google Scholar] [CrossRef]
- Fu, S.; Wei, X. International Management Experience in Light Pollution Control and Its Enlightenment to China. Environ. Prot. 2021, 49, 71–75. [Google Scholar] [CrossRef]
- Tianyuan, L. Light Pollution Control: A Two-Way Review of Domestic Practice and Foreign Experience. J. Northwest Minzu Univ. Soc. Sci. 2022, 8, 109–116. [Google Scholar] [CrossRef]
Data Type | Time Period | Resolution | Use |
---|---|---|---|
PANDA | 1984–2020 | 30″ | Research urbanization. |
DEM | 2000 | 90 m | Preliminary extraction of the study area boundary and analysis of the response of urbanization to the terrain. |
Administrative division | 2018 | / | Further definition of the study area boundary. |
Land use | 2020 | 1 km | Comparison and verification. |
Population | 2000–2020 | 30″ | Analysis of the relationship between urbanization and population. |
GDP | 2000–2019 | 30″ | Analysis of the relationship between urbanization and GDP. |
Split Points | Nighttime Light (NTL) | Brightness Gradient (BG) |
---|---|---|
P0 (NTL0, BG0) | ||
P1 (NTL1, BG1) | ||
P2 (NTL2, BG2) | ||
P3 (NTL3, BG3) | ||
P4 (NTL4, BG4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Guo, Z.; Ma, C. Dynamic Characteristics of Urbanization Based on Nighttime Light Data in China’s “Plain–Mountain Transition Zone”. Int. J. Environ. Res. Public Health 2022, 19, 9230. https://doi.org/10.3390/ijerph19159230
Li T, Guo Z, Ma C. Dynamic Characteristics of Urbanization Based on Nighttime Light Data in China’s “Plain–Mountain Transition Zone”. International Journal of Environmental Research and Public Health. 2022; 19(15):9230. https://doi.org/10.3390/ijerph19159230
Chicago/Turabian StyleLi, Tingting, Zengzhang Guo, and Chao Ma. 2022. "Dynamic Characteristics of Urbanization Based on Nighttime Light Data in China’s “Plain–Mountain Transition Zone”" International Journal of Environmental Research and Public Health 19, no. 15: 9230. https://doi.org/10.3390/ijerph19159230
APA StyleLi, T., Guo, Z., & Ma, C. (2022). Dynamic Characteristics of Urbanization Based on Nighttime Light Data in China’s “Plain–Mountain Transition Zone”. International Journal of Environmental Research and Public Health, 19(15), 9230. https://doi.org/10.3390/ijerph19159230