The Impact of Interface Design Element Features on Task Performance in Older Adults: Evidence from Eye-Tracking and EEG Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Participants
2.2. Experimental Equipment and Environment
2.3. Experimental Stimulus Materials
2.4. Experimental Procedure
3. Results
3.1. Eye Movement Data Analysis
3.1.1. Task Completion Time
3.1.2. Average Fixation Duration
3.1.3. Mean Pupil Diameter
3.1.4. Eye Tracking Diagram
3.1.5. Page Heat Map
3.2. EEG Data Analysis
3.2.1. Statistical Analysis of Electrode Amplitude
3.2.2. Statistical Analysis of Brain Area Amplitude
4. Discussion
5. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APP | Application |
ECG | Electrocardiography |
EMG | Electromyography |
EEG | Electroencephalography |
References
- Bao, J.; Zhou, L.; Liu, G.; Tang, J.; Lu, X.; Cheng, C.; Jin, Y.; Bai, J. Current state of care for the elderly in China in the context of an aging population. Biosci. Trends 2022, 16, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Fiebig, D.G. Internet use and cognition among middle-aged and older adults in China: A cross-lagged panel analysis. J. Econ. Ageing 2020, 17, 100262. [Google Scholar] [CrossRef]
- Hafez, A.; Wang, Y.K. A Training Social Media Mobile App Prototype for the Elderly: A Pilot Study. In International Conference on Applied Human Factors and Ergonomics; Springer: Berlin/Heidelberg, Germany, 2019; pp. 188–197. [Google Scholar] [CrossRef]
- Donizzetti, A.R.; Lagacé, M. COVID-19 and the Elderly’s Mental Illness: The Role of Risk Perception, Social Isolation, Loneliness and Ageism. Int. J. Environ. Res. Public Health 2022, 19, 4513. [Google Scholar] [CrossRef] [PubMed]
- Naeim, M.; Rezaeisharif, A.; Kamran, A. COVID-19 has made the elderly lonelier. Dement. Geriatr. Cogn. Disord. Extra 2021, 11, 26–28. [Google Scholar] [CrossRef]
- Gauthier, A.; Lagarde, C.; Mourey, F.; Manckoundia, P. Use of Digital Tools, Social Isolation, and Lockdown in People 80 Years and Older Living at Home. Int. J. Environ. Res. Public Health 2022, 19, 2908. [Google Scholar] [CrossRef]
- Chai, X. How Has the Nationwide Public Health Emergency of the COVID-19 Pandemic Affected Older Chinese Adults’ Health Literacy, Health Behaviors and Practices, and Social Connectedness? Qualitative Evidence From Urban China. Front. Public Health 2021, 9, 774675. [Google Scholar] [CrossRef]
- Guo, Z.; Zhu, B. Does Mobile Internet Use Affect the Loneliness of Older Chinese Adults? An Instrumental Variable Quantile Analysis. Int. J. Environ. Res. Public Health 2022, 19, 5575. [Google Scholar] [CrossRef]
- Jeon, B.J.; Park, K.H. The Impact of Social Network Characteristics on Health among Community-Dwelling Older Adults in Korea: Application of Social Network Analysis. Int. J. Environ. Res. Public Health 2022, 19, 4013. [Google Scholar] [CrossRef]
- Chou, M.C.; Liu, C.H. Mobile instant messengers and middle-aged and elderly adults in Taiwan: Uses and gratifications. Int. J. Hum. Comput. Interact. 2016, 32, 835–846. [Google Scholar] [CrossRef]
- Chen, P.H.; Lin, T.C.; Liang, Y.H. Internet browser interface design suitable for the elderly to use. In Proceedings of the 2014 International Symposium on Computer, Consumer and Control, Taichung, Taiwan, 10–12 June 2014; pp. 982–985. [Google Scholar] [CrossRef]
- Wang, S.F. Research on Web Interface barrier-free Design for Elderly People. In Proceedings of the 2020 International Conference on Intelligent Design (ICID), Xi’an, China, 11–13 December 2020; pp. 157–159. [Google Scholar] [CrossRef]
- Mei, X.; Men, D. Study on the Visual Experience of Senior People Shopping Website Interface. In International Conference on Applied Human Factors and Ergonomics; Springer: Cham, Switzerland, 2018; pp. 383–388. [Google Scholar] [CrossRef]
- Tsuchiya, L.D.; Braga, L.F.; de Faria Oliveira, O.; de Bettio, R.W.; Greghi, J.G.; Freire, A.P. Design and evaluation of a mobile smart home interactive system with elderly users in Brazil. Pers. Ubiquitous Comput. 2021, 25, 281–295. [Google Scholar] [CrossRef]
- Cho, M.E.; Kim, M.J. Characterizing the interaction design in healthy smart home devices for the elderly. Indoor Built Environ. 2014, 23, 141–149. [Google Scholar] [CrossRef]
- Chen, Y.; Li, M. Smart TV Terminal Interface Design for the Elderly Based on User Experience. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Luoyang, China, 17–19 May 2019; Volume 573, p. 012056. [Google Scholar] [CrossRef]
- Lin, N.; Shen, T.; Zhao, C. The usability of interactive interfaces design of intelligent household appliances: Take smart sweeping robots as an example. In International Conference on Applied Human Factors and Ergonomics; Springer: Cham, Switzerland, 2019; pp. 291–301. [Google Scholar] [CrossRef]
- Salman, H.M.; Wan Ahmad, W.F.; Sulaiman, S. A design framework of a smartphone user interface for elderly users. Univers. Access Inf. Soc. 2022. [Google Scholar] [CrossRef]
- Kong, Q.; Guo, Q. Comprehensive evaluation method of interface elements layout aesthetics based on improved AHP. In International Conference on Applied Human Factors and Ergonomics; Springer: Cham, Switzerland, 2018; pp. 509–520. [Google Scholar] [CrossRef]
- Xiao, L.; Mao, H.; Wang, S. Research on mobile marketing recommendation method incorporating layout aesthetic preference for sustainable m-commerce. Sustainability 2020, 12, 2496. [Google Scholar] [CrossRef] [Green Version]
- Gao, R.Z.; Ni, M.N.; Chen, S. The analytical study of large shopping website interface layout rationality based on eye tracker. Appl. Mech. Mater. 2014, 513, 1649–1652. [Google Scholar] [CrossRef]
- Li, Q.; Luximon, Y. Older adults’ use of mobile device: Usability challenges while navigating various interfaces. Behav. Inf. Technol. 2020, 39, 837–861. [Google Scholar] [CrossRef]
- Wu, Z.; Li, Z.; Li, X.; Li, H. Research on Aging Design of News APP Interface Layout Based on Perceptual Features. In International Conference on Human-Computer Interaction; Springer: Cham, Switzerland, 2021; pp. 138–152. [Google Scholar] [CrossRef]
- Su, X.Y.; Li, M.; Lu, S.F.; Zhou, Y.; Liu, P.F.; Zhong, N. An eye tracking study on visual search and browse strategies of elderly people on web pages. Appl. Mech. Mater. 2014, 556, 6154–6158. [Google Scholar] [CrossRef]
- Zhang, M.; Hou, G.; Chen, Y.C. Effects of interface layout design on mobile learning efficiency: A comparison of interface layouts for mobile learning platform. Libr. Hi Tech 2022. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Li, Y.J. Optimization Research in Colour Semantics of Smart Phone Interface Icons for the Elderly. In Proceedings of the 3rd International Conference on Material Engineering and Application (ICMEA 2016), Shanghai, China, 12–13 November 2016; pp. 116–124. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.Y.; Zhao, Y.Q.; Li, Y.J. An Experimental Study on Intelligent Kitchen Appliances’ Interface Information Preference Based on Visual Characteristics of the Elderly. In International Conference on Human Aspects of IT for the Aged Population; Springer: Cham, Switzerland, 2018; pp. 463–482. [Google Scholar] [CrossRef]
- Backhaus, N.; Trapp, A.K.; Thüring, M. Skeuomorph versus flat design: User experience and age-related preferences. In International Conference of Design, User Experience, and Usability; Springer: Cham, Switzerland, 2018; pp. 527–542. [Google Scholar] [CrossRef]
- Wu, J.; Jiao, D.; Lu, C.; Li, C.; Huang, X.; Weng, S. How Do Older Adults Process Icons in Visual Search Tasks? The Combined Effects of Icon Type and Cognitive Aging. Int. J. Environ. Res. Public Health 2022, 19, 4525. [Google Scholar] [CrossRef]
- Shen, Z.; Xue, C.; Li, J.; Zhou, X. Effect of icon density and color contrast on users’ visual perception in human computer interaction. In International Conference on Engineering Psychology and Cognitive Ergonomics; Springer: Cham, Switzerland, 2015; pp. 66–76. [Google Scholar] [CrossRef]
- Kalimullah, K.; Sushmitha, D. Influence of design elements in mobile applications on user experience of elderly people. Procedia Comput. Sci. 2017, 113, 352–359. [Google Scholar] [CrossRef]
- Tang, X.T.; Yao, J.; Hu, H.F. Visual search experiment on text characteristics of vital signs monitor interface. Displays 2020, 62, 101944. [Google Scholar] [CrossRef]
- Yu, N.; Ouyang, Z.; Wang, H.; Tao, D.; Jing, L. The Effects of Smart Home Interface Touch Button Design Features on Performance among Young and Senior Users. Int. J. Environ. Res. Public Health 2022, 19, 2391. [Google Scholar] [CrossRef] [PubMed]
- Bergstrom, J.C.R.; Olmsted-Hawala, E.L.; Jans, M.E. Age-related differences in eye tracking and usability performance: Website usability for older adults. Int. J. Hum. Comput. Interact. 2013, 29, 541–548. [Google Scholar] [CrossRef]
- Zagermann, J.; Pfeil, U.; Reiterer, H. Studying eye movements as a basis for measuring cognitive load. In Proceedings of the Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; pp. 1–6. [Google Scholar]
- Beatty, J. Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychol. Bull. 1982, 91, 276. [Google Scholar] [CrossRef] [PubMed]
- Partala, T.; Surakka, V. Pupil size variation as an indication of affective processing. Int. J. Hum. Comput. Stud. 2003, 59, 185–198. [Google Scholar] [CrossRef]
- Pfleging, B.; Fekety, D.K.; Schmidt, A.; Kun, A.L. A model relating pupil diameter to mental workload and lighting conditions. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 5776–5788. [Google Scholar]
- Abdulin, E.; Komogortsev, O. User eye fatigue detection via eye movement behavior. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, Seoul, Korea, 18–23 April 2015; pp. 1265–1270. [Google Scholar]
- Sengupta, A.; Tiwari, A.; Routray, A. Analysis of cognitive fatigue using EEG parameters. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, 11–15 July 2017; pp. 2554–2557. [Google Scholar]
- Draganova, R.; Popivanov, D. Assessment of EEG frequency dynamics using complex demodulation. Physiol. Res. 1999, 48, 157–165. [Google Scholar]
- Rabbi, A.F.; Ivanca, K.; Putnam, A.V.; Musa, A.; Thaden, C.B.; Fazel-Rezai, R. Human performance evaluation based on EEG signal analysis: A prospective review. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 1879–1882. [Google Scholar]
- Zhang, F.; Yu, H.; Jiang, J.; Wang, Z.; Qin, X. Brain–computer control interface design for virtual household appliances based on steady-state visually evoked potential recognition. Vis. Inform. 2020, 4, 1–7. [Google Scholar] [CrossRef]
- Hsieh, T.J. Multiple roles of color information in the perception of icon-type images. Color Res. Appl. 2017, 42, 740–752. [Google Scholar] [CrossRef]
- Borges, L.R.; Alves, C.M.; Rezende, A.R.; Zambalde, E.P.; Naves, E.L.M. Analysis of Complementary Colors Through Brain Response and Human Perception. In XXVI Brazilian Congress on Biomedical Engineering; Springer: Singapore, 2019; pp. 531–536. [Google Scholar] [CrossRef]
- Wang, S.; Xu, C.; Xiao, L.; Ding, A.S. The Implicit Aesthetic Preference for Mobile Marketing Interface Layout—An ERP Study. Front. Hum. Neurosci. 2021, 15, 728895. [Google Scholar] [CrossRef]
- Ding, M.; Ding, T.; Chen, X.; Shi, F. Using event-related potentials to identify user’s moods induced by product color stimuli with different attributes. Displays 2022, 74, 102198. [Google Scholar] [CrossRef]
- Jingar, M.; Lindgren, H.; Blusi, M. Exploring Limitations of User Interface Design to Understanding the Gap Between Technology and Seniors. Stud. Health Technol. Inform. 2021, 281, 931–935. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Qiu, H.; Shen, L. Visual Characteristics Study of Traditional Round-Backed Armchair Based on Eye-Tracking. In International Conference on Man-Machine-Environment System Engineering; Springer: Singapore, 2017; pp. 95–104. [Google Scholar] [CrossRef]
- Negi, S.; Mitra, R. Fixation duration and the learning process: An eye tracking study with subtitled videos. J. Eye Mov. Res. 2020, 13. [Google Scholar] [CrossRef]
- Tang, N.; Dong, Z.; Liu, L. Expressing mixed emotions via gradient color: An interactive online chat interface design based on affective recognition. In International Conference on Human-Computer Interaction; Springer: Cham, Switzerland, 2018; pp. 190–199. [Google Scholar] [CrossRef]
- Jahn, G.; Krems, J.F. Skill acquisition with text-entry interfaces: Particularly older users benefit from minimized information-processing demands. J. Appl. Gerontol. 2013, 32, 605–626. [Google Scholar] [CrossRef]
- Jin, W.; He, R. An exploratory study of fit assessment of the virtual reality glasses. J. Ambient. Intell. Humaniz. Comput. 2021. [Google Scholar] [CrossRef]
- Bell, M.A.; Fox, N.A. Cognition and affective style: Individual differences in brain electrical activity during spatial and verbal tasks. Brain Cogn. 2003, 53, 441–451. [Google Scholar] [CrossRef]
- Kalayciog’lu, C.; Nalçaci, E. Accordance between EEG alpha power and dual task performance for different visual cognitive tasks. Int. J. Neurosci. 2001, 109, 227–244. [Google Scholar] [CrossRef]
- Yu, N.; Ouyang, Z.; Wang, H. Study on Smart Home Interface Design Characteristics Considering the Influence of Age Difference: Focusing on Sliders. Front. Psychol. 2022, 13, 828545. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, J.; Wang, G.; Reng, S.; Yan, H. Furniture Online Consumer Experience: A Literature Review. BioResources 2022, 17, 1627–1642. [Google Scholar] [CrossRef]
- Hu, J.; Liu, Y.; Wu, Z. Structural color for wood coloring: A Review. BioResources 2020, 15, 9917. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, W. Toward interface optimization of transparent wood with wood color and texture by silane coupling agent. J. Mater. Sci. 2022, 57, 5825–5838. [Google Scholar] [CrossRef]
- Li, R.; Chen, J.; Wang, X.A. Prediction of the color variation of moso bamboo during CO2 laser thermal modification. Bioresources 2020, 15, 5049–5057. [Google Scholar] [CrossRef]
- Jiang, L.; Cheung, V.; Westland, S.; Rhodes, P.A.; Shen, L.; Xu, L. The impact of color preference on adolescent children’s choice of furniture. Color Res. Appl. 2020, 45, 754–767. [Google Scholar] [CrossRef]
- Jin, W.; Shan, X.; Ma, K. Research on Information Visualization Design for Public Health Security Emergencies. In International Conference on Human-Computer Interaction; Springer: Cham, Switzerland, 2021; pp. 325–336. [Google Scholar] [CrossRef]
Participants | ||
---|---|---|
Male | Female | |
Number | 7 | 9 |
Mean ± SD | 60.57 ± 6.58 | 62.33 ± 8.28 |
Applications | ANOVA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Group A (n = 16) | Group B (n = 16) | Group C (n = 16) | Group D (n = 16) | |||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | F | P | |
Task Completion time (s) | 25.50 | 15.81 | 24.44 | 21.58 | 20.55 | 18.21 | 21.23 | 12.34 | 3.240 | 0.093 |
Applications | ANOVA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Group A (n = 16) | Group B (n = 16) | Group C (n = 16) | Group D (n = 16) | |||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | F | P | |
Fixation duration (s) | 6.39 | 6.33 | 7.36 | 9.11 | 6.47 | 6.42 | 4.84 | 5.97 | 1.667 | 0.007 |
Applications | ANOVA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Group A (n = 16) | Group B (n = 16) | Group C (n = 16) | Group D (n = 16) | |||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | F | P | |
Mean Pupli diameter (mm) | 3.04 | 0.44 | 2.46 | 1.28 | 2.82 | 0.84 | 2.67 | 1.14 | 0.931 | 0.008 |
Electrodes | Mean | SD | Number | Electrodes | Mean | SD | Number | ||
---|---|---|---|---|---|---|---|---|---|
Fpz | A | 0.004665 | 27.31288 | 16 | F7 | A | −0.02338 | 20.20405 | 16 |
B | 0.134871 | 21.20736 | 16 | B | 0.093055 | 16.96126 | 16 | ||
C | 0.474146 | 26.35667 | 16 | C | 0.857294 | 23.63811 | 16 | ||
D | −0.06103 | 17.80065 | 16 | D | −0.010486 | 13.98773 | 16 | ||
Total | 0.138163 | 23.16939 | 64 | Total | 0.916483 | 18.69779 | 64 | ||
Electrodes | Mean | SD | Number | Electrodes | Mean | SD | Number | ||
F4 | A | −0.02202 | 14.76019 | 16 | F8 | A | −0.03429 | 12.74355 | 16 |
B | 0.113233 | 13.24345 | 16 | B | 0.108794 | 12.79345 | 16 | ||
C | 0.538435 | 23.20325 | 16 | C | 0.708056 | 19.00214 | 16 | ||
D | −0.02329 | 11.67699 | 16 | D | 0.040016 | 10.13491 | 16 | ||
Total | 0.15159 | 15.72097 | 64 | Total | 0.205644 | 13.66815 | 64 | ||
Electrodes | Mean | SD | Number | Electrodes | Mean | SD | Number | ||
C4 | A | −0.01727 | 11.89204 | 16 | P7 | A | −0.01281 | 12.46189 | 16 |
B | 0.060629 | 10.98026 | 16 | B | 0.051005 | 14.20482 | 16 | ||
C | 0.424661 | 15.35449 | 16 | C | 0.381196 | 22.86642 | 16 | ||
D | −0.01441 | 10.28045 | 16 | D | −0.05949 | 12.55813 | 16 | ||
Total | 0.113403 | 12.12681 | 64 | Total | 0.089975 | 15.52282 | 64 | ||
Electrodes | Mean | SD | Number | Electrodes | Mean | SD | Number | ||
P3 | A | −0.01503 | 17.14472 | 16 | O1 | A | −0.03526 | 18.31962 | 16 |
B | 0.05162 | 12.82255 | 16 | B | 0.0478 | 16.6618 | 16 | ||
C | 0.351402 | 17.40791 | 16 | C | 0.401782 | 17.03462 | 16 | ||
D | −0.07309 | 11.5843 | 16 | D | −0.08066 | 12.17158 | 16 | ||
Total | 0.078726 | 14.73987 | 64 | Total | 0.083416 | 16.04691 | 64 |
Within-Subject Effects | Mauchly | Approximate Chi-Square | Degrees of Freedom | P | Epsilon | ||
---|---|---|---|---|---|---|---|
Greenhouse- Geisser | Cyn Feldt | Lower Limit | |||||
brain area | 0.164 | 3694.900 | 27 | 0.000 | 0.664 | 0.666 | 0.143 |
Class III Sum of Squares | Degrees of Freedom | Mean Square | F | P | |
---|---|---|---|---|---|
Intercept | 34.563 | 1 | 34.563 | 0.023 | 0.880 |
Different Apps | 2002.538 | 3 | 667.513 | 0.443 | 0.722 |
Errors | 3,085,338.250 | 2048 | 1506.513 |
Value | F | Assumption Degrees of Freedom | Error Degrees of Freedom | P | ||
---|---|---|---|---|---|---|
Intercept | Billy trajectory | 0.002 | 0.618 | 7.000 | 2042.000 | 0.000 |
Wilke Lambda | 0.998 | 0.618 | 7.000 | 2042.000 | 0.000 | |
Hotelling track | 0.002 | 0.618 | 7.000 | 2042.000 | 0.000 | |
Roy Max Root | 0.002 | 0.618 | 7.000 | 2042.000 | 0.000 | |
Intercept × Apps | Billy trajectory | 0.011 | 1.027 | 21.000 | 6132.000 | 0.425 |
Wilke Lambda | 0.990 | 1.027 | 21.000 | 5864.072 | 0.425 | |
Hotelling track | 0.011 | 1.027 | 21.000 | 6122.000 | 0.426 | |
Roy Max Root | 0.005 | 1.466 | 7.000 | 2044.000 | 0.175 |
Brain Area | Mean | SD | Number | |
---|---|---|---|---|
Frontal Lobe Area | C-Life Senior Care APP | 0.5363 | 10.49246 | 16 |
Senior Living APP | 0.0364 | 17.20792 | 16 | |
Senior Care Manager APP | −0.3559 | 19.38743 | 16 | |
Smart Aging APP | −0.3800 | 10.83575 | 16 | |
Total | −0.408 | 14.98940 | 64 | |
Brain Area | Mean | SD | Number | |
Parietal Area | C-Life Senior Care APP | 0.1480 | 10.28221 | 16 |
Senior Living APP | 0.3940 | 16.71846 | 16 | |
Senior Care Manager APP | 0.0752 | 21.89155 | 16 | |
Smart Aging APP | −0.752 | 13.09230 | 16 | |
Total | 0.0258 | 16.08620 | 64 | |
Brain Area | Mean | SD | Number | |
Temporal Lobe Area | C-Life Senior Care APP | 0.2992 | 8.87934 | 16 |
Senior Living APP | 0.2720 | 15.38968 | 16 | |
Senior Care Manager APP | −0.0673 | 13.48589 | 16 | |
Smart Aging APP | −0.6464 | 10.60769 | 16 | |
Total | 0.0356 | 12.34672 | 64 | |
Brain Area | Mean | SD | Number | |
Occipital Area | C-Life Senior Care APP | −0.0270 | 15.71846 | 16 |
Senior Living APP | 0.5609 | 19.61370 | 16 | |
Senior Care Manager APP | 0.2936 | 17.44823 | 16 | |
Smart Aging APP | −0.7069 | 12.71110 | 16 | |
Total | 0.1166 | 16.56066 | 64 |
Within-Subject Effects | Mauchly | Approximate Chi-Square | Degrees of Freedom | P | Epsilon | ||
---|---|---|---|---|---|---|---|
Greenhouse- Geisser | Cyn Feldt | Lower Limit | |||||
brain area | 0.670 | 820.670 | 14 | 0.000 | 0.437 | 0.463 | 0.200 |
Class III Sum of Squares | Degrees of Freedom | Mean Square | F | p | |
---|---|---|---|---|---|
Intercept | 24.581 | 1 | 24.581 | 0.035 | 0.857 |
Different Apps | 1122.500 | 3 | 374.167 | 0.526 | 0.665 |
Errors | 1,457,707.584 | 2048 | 711.711 |
Value | F | Assumption Degrees of Freedom | Error Degrees of Freedom | p | ||
---|---|---|---|---|---|---|
Intercept | Billy trajectory | 0.000 | 0.044 | 3.000 | 2046.000 | 0.000 |
Wilke Lambda | 1.000 | 0.044 | 3.000 | 2046.000 | 0.000 | |
Hotelling track | 0.000 | 0.044 | 3.000 | 2046.000 | 0.000 | |
Roy Max Root | 0.000 | 0.044 | 3.000 | 2046.000 | 0.000 | |
Intercept × Apps | Billy trajectory | 0.002 | 0.434 | 9.000 | 6144.000 | 0.918 |
Wilke Lambda | 0.998 | 0.434 | 9.000 | 4969.577 | 0.918 | |
Hotelling track | 0.002 | 0.433 | 9.000 | 6134.000 | 0.918 | |
Roy Max Root | 0.002 | 1.057 | 3.000 | 2048.000 | 0.366 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Yuan, F.; Huang, T.; Zhang, Y.; Kaner, J. The Impact of Interface Design Element Features on Task Performance in Older Adults: Evidence from Eye-Tracking and EEG Signals. Int. J. Environ. Res. Public Health 2022, 19, 9251. https://doi.org/10.3390/ijerph19159251
Zhou C, Yuan F, Huang T, Zhang Y, Kaner J. The Impact of Interface Design Element Features on Task Performance in Older Adults: Evidence from Eye-Tracking and EEG Signals. International Journal of Environmental Research and Public Health. 2022; 19(15):9251. https://doi.org/10.3390/ijerph19159251
Chicago/Turabian StyleZhou, Chengmin, Fangfang Yuan, Ting Huang, Yurong Zhang, and Jake Kaner. 2022. "The Impact of Interface Design Element Features on Task Performance in Older Adults: Evidence from Eye-Tracking and EEG Signals" International Journal of Environmental Research and Public Health 19, no. 15: 9251. https://doi.org/10.3390/ijerph19159251
APA StyleZhou, C., Yuan, F., Huang, T., Zhang, Y., & Kaner, J. (2022). The Impact of Interface Design Element Features on Task Performance in Older Adults: Evidence from Eye-Tracking and EEG Signals. International Journal of Environmental Research and Public Health, 19(15), 9251. https://doi.org/10.3390/ijerph19159251