Effects of Market Incentives and Livelihood Dependence on Farmers’ Multi-Stage Pesticide Application Behavior—A Case Study of Four Provinces in China
Abstract
:1. Introduction
2. Theoretical Analysis and Hypotheses
2.1. The Impact of Market Incentives on Farmers’ Multi-Stage Pesticide Application Behavior
2.2. The Impact of Livelihood Dependence on Farmers’ Multi-Stage Pesticide Application Behavior
2.3. The Impact of the Interaction between Market Incentives and Livelihood Dependence on Farmers’ Multi-Stage Pesticide Application Behavior
3. Materials and Methods
3.1. Data Sources
3.2. Model Construction
3.2.1. Farmers’ Decisions of Pesticide Application
3.2.2. Farmers Choose the Type of Pesticide Application
3.2.3. Farmers’ Choice of Pesticide Application Rate
3.3. Variables and Descriptive Statistics
3.3.1. Farmers’ Multi-Stage Pesticide Application Behavior
3.3.2. Core Independent Variables
3.3.3. Control Variables
4. Results
4.1. Empirical Results and Analysis of whether Farmers Apply Pesticides
4.1.1. Core Variables
4.1.2. Control Variables
4.2. Empirical Results and Analysis of Farmers’ Choice of Pesticide Application Types
4.2.1. Core Variables
4.2.2. Control Variables
4.3. Empirical Results and Analysis of Farmers’ Choice of Pesticide Application Rate
4.3.1. Farmers’ Choice of Conventional Pesticide Dosage
4.3.2. Farmers Choose the Dosage of Green and Low-Toxic Pesticides
4.4. Robustness Test
5. Discussions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Williamson, S.; Ball, A.; Pretty, J. Trends in Pesticide Use and Drivers for Safer Pest Management in Four African Countries. Crop Prot. 2008, 27, 1327–1334. [Google Scholar] [CrossRef]
- Ping, H.; Wang, B.; Li, C.; Li, Y.; Ha, X.; Jia, W.; Li, B.; Ma, Z. Potential Health Risk of Pesticide Residues in Greenhouse Vegetables under Modern Urban Agriculture: A Case Study in Beijing, China. J. Food Compos. Anal. 2022, 105, 104222. [Google Scholar] [CrossRef]
- Hou, B.; Wu, L. Safety Impact and Farmer Awareness of Pesticide Residues. Food Agric. Immunol. 2010, 21, 191–200. [Google Scholar] [CrossRef]
- Sharma, A.; Shukla, A.; Attri, K.; Kumar, M.; Kumar, P.; Suttee, A.; Singh, G.; Barnwal, R.P.; Singla, N. Global Trends in Pesticides: A Looming Threat and Viable Alternatives. Ecotoxicol. Environ. Saf. 2020, 201, 110812. [Google Scholar] [CrossRef] [PubMed]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Jacquet, F.; Jeuffroy, M.-H.; Jouan, J.; Le Cadre, E.; Litrico, I.; Malausa, T.; Reboud, X.; Huyghe, C. Pesticide-Free Agriculture as a New Paradigm for Research. Agron. Sustain. Dev. 2022, 42, 8. [Google Scholar] [CrossRef]
- Singh, A.; Dhiman, N.; Kar, A.K.; Singh, D.; Purohit, M.P.; Ghosh, D.; Patnaik, S. Advances in Controlled Release Pesticide Formulations: Prospects to Safer Integrated Pest Management and Sustainable Agriculture. J. Hazard. Mater. 2020, 385, 121525. [Google Scholar] [CrossRef]
- Tong, R.; Wang, Y.; Zhu, Y.; Wang, Y. Does the Certification of Agriculture Products Promote the Adoption of Integrated Pest Management among Apple Growers in China? Environ. Sci. Pollut. Res. 2022, 29, 29808–29817. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Sarkar, A.; Qian, L. Does Organizational Participation Affect Farmers’ Behavior in Adopting the Joint Mechanism of Pest and Disease Control? A Study of Meixian County, Shaanxi Province. Pest Manag. Sci. 2020, 77, 1428–1443. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Zheng, H. Heterogeneous Impacts of Information Technology Adoption on Pesticide and Fertiliser Expenditures: Evidence from Wheat Farmers in China. Aust. J. Agric. Resour. Econ. 2022, 66, 72–92. [Google Scholar] [CrossRef]
- Cai, J.; Xiong, J.; Hong, Y.; Hu, R. Pesticide Overuse in Apple Production and Its Socioeconomic Determinants: Evidence from Shaanxi and Shandong Provinces, China. J. Clean. Prod. 2021, 315, 128179. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, R. Impact of Farm Size on Intensity of Pesticide Use: Evidence from China. Sci. Total Environ. 2021, 753, 141696. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Hu, R.; Zhang, C.; Chen, K. Effect of Agricultural Extension Services in the Post-Reform Era since the Mid-2000s on Pesticide Use in China: Evidence from Rice Production. Int. J. Agric. Sustain. 2022, 1, 1–12. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, Z.; Wachenheim, C.J. Technology Adoption among Farmers in Jilin Province, China: The Case of Aerial Pesticide Application. China Agric. Econ. Rev. 2019, 11, 206–216. [Google Scholar] [CrossRef]
- Li, H.; Yuan, K.; Cao, A.; Zhao, X.; Guo, L. The Role of Crop Insurance in Reducing Pesticide Use: Evidence from Rice Farmers in China. J. Environ. Manag. 2022, 306, 114456. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Damalas, C.A. Farmers’ Perceptions of Pesticide Efficacy: Reflections on the Importance of Pest Management Practices Adoption. J. Sustain. Agric. 2010, 35, 69–85. [Google Scholar] [CrossRef]
- Sarkar, A.; Wang, H.; Rahman, A.; Qian, L.; Memon, W.H. Evaluating the Roles of the Farmer’s Cooperative for Fostering Environmentally Friendly Production Technologies-a Case of Kiwi-Fruit Farmers in Meixian, China. J. Environ. Manag. 2022, 301, 113858. [Google Scholar] [CrossRef] [PubMed]
- Wachenheim, C.; Fan, L.; Zheng, S. Adoption of Unmanned Aerial Vehicles for Pesticide Application: Role of Social Network, Resource Endowment, and Perceptions. Technol. Soc. 2021, 64, 101470. [Google Scholar] [CrossRef]
- Udimal, T.B.; Peng, Z.; Cao, C.; Luo, M.; Liu, Y.; Mensah, N.O. Compliance with Pesticides’ Use Regulations and Guidelines among Vegetable Farmers: Evidence from the Field. Clean. Eng. Technol. 2022, 6, 100399. [Google Scholar] [CrossRef]
- Zilberman, D.; Millock, K. Financial Incentives and Pesticide Use. Food Policy 1997, 22, 133–144. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, C.; Gu, H.; Yue, C. Market Incentive, Government Regulation and the Behavior of Pesticide Application of Vegetable Farmers in China. Food Control 2018, 85, 308–317. [Google Scholar] [CrossRef]
- Thrupp, L.A. Inappropriate Incentives for Pesticide Use: Agricultural Credit Requirements in Developing Countries. Agric. Hum. Values 1990, 7, 62–69. [Google Scholar] [CrossRef]
- Brewer, M.J.; Goodell, P.B. Approaches and Incentives to Implement Integrated Pest Management That Addresses Regional and Environmental Issues. Annu. Rev. Entomol. 2012, 57, 41–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Möhring, N.; Finger, R. Pesticide-Free but Not Organic: Adoption of a Large-Scale Wheat Production Standard in Switzerland. Food Policy 2022, 106, 102188. [Google Scholar] [CrossRef]
- Möhring, N.; Finger, R. Data on the Adoption of Pesticide-Free Wheat Production in Switzerland. Data Brief 2022, 41, 107867. [Google Scholar] [CrossRef]
- Muriithi, B.W.; Menale, K.; Diiro, G.; Muricho, G. Does Gender Matter in the Adoption of Push-Pull Pest Management and Other Sustainable Agricultural Practices? Evidence from Western Kenya. Food Secur. 2018, 10, 253–272. [Google Scholar] [CrossRef]
- Veisi, H. Exploring the Determinants of Adoption Behaviour of Clean Technologies in Agriculture: A Case of Integrated Pest Management. Asian J. Technol. Innov. 2012, 20, 67–82. [Google Scholar] [CrossRef]
- Mugambi, I.; Karanja, L.; Macharia, I.; Kaguongo, W.; Ngundo, G.; Amata, R.; Makale, F.; Wanjiku, J.; Chacha, D.; Nyongesa, M.; et al. What Influences Uptake of Alternative Pest Management Practices by Potato Farmers? Evidence from Six Counties in Kenya. J. Dev. Agric. Econ. 2021, 13, 205–214. [Google Scholar] [CrossRef]
- Pan, D.; He, M.; Kong, F. Risk Attitude, Risk Perception, and Farmers’ Pesticide Application Behavior in China: A Moderation and Mediation Model. J. Clean. Prod. 2020, 276, 124241. [Google Scholar] [CrossRef]
- Jallow, M.F.A.; Awadh, D.G.; Albaho, M.S.; Devi, V.Y.; Thomas, B.M. Pesticide Risk Behaviors and Factors Influencing Pesticide Use among Farmers in Kuwait. Sci. Total Environ. 2017, 574, 490–498. [Google Scholar] [CrossRef]
- Yawson, D.O. Pesticide Use Culture among Food Crop Farmers: Implications for Subtle Exposure and Management in Barbados. Agriculture 2022, 12, 288. [Google Scholar] [CrossRef]
- Yang, M.; Zhao, X.; Meng, T. What Are the Driving Factors of Pesticide Overuse in Vegetable Production? Evidence from Chinese Farmers. China Agric. Econ. Rev. 2019, 11, 672–687. [Google Scholar] [CrossRef]
- Liu, T.; Wu, G. Does Agricultural Cooperative Membership Help Reduce the Overuse of Chemical Fertilizers and Pesticides? Evidence from Rural China. Environ. Sci. Pollut. Res. 2022, 29, 7972–7983. [Google Scholar] [CrossRef] [PubMed]
- Jayasooriya, H.J.C.; Aheeyar, M.M.M. Adoption and Factors Affecting on Adoption of Integrated Pest Management among Vegetable Farmers in Sri Lanka. Procedia Food Sci. 2016, 6, 208–212. [Google Scholar] [CrossRef] [Green Version]
- Midingoyi, S.G.; Kassie, M.; Muriithi, B.; Diiro, G.; Ekesi, S. Do Farmers and the Environment Benefit from Adopting Integrated Pest Management Practices? Evidence from Kenya. J. Agric. Econ. 2019, 70, 452–470. [Google Scholar] [CrossRef]
- Zhang, H.; Potts, S.G.; Breeze, T.; Bailey, A. European Farmers’ Incentives to Promote Natural Pest Control Service in Arable Fields. Land Use Policy 2018, 78, 682–690. [Google Scholar] [CrossRef]
- Möhring, N.; Ingold, K.; Kudsk, P.; Martin-Laurent, F.; Niggli, U.; Siegrist, M.; Studer, B.; Walter, A.; Finger, R. Pathways for Advancing Pesticide Policies. Nat. Food 2020, 1, 535–540. [Google Scholar] [CrossRef]
- Baker, B.P.; Green, T.A.; Loker, A.J. Biological Control and Integrated Pest Management in Organic and Conventional Systems. Biol. Control 2020, 140, 104095. [Google Scholar] [CrossRef]
- Hu, Z. What Socio-Economic and Political Factors Lead to Global Pesticide Dependence? A Critical Review from a Social Science Perspective. Int. J. Environ. Res. Public. Health 2020, 17, 8119. [Google Scholar] [CrossRef]
- Chalermphol, J.; Bastakoti, G.B.; Bastakoti, R.C. Adoption of Improved Varieties of Vegetable Crops with Pesticide Use in Chiang Mai Province, Northern Thailand. Procedia Environ. Sci. 2014, 20, 418–424. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Shi, R.; Peng, Y.; Wang, W.; Fu, X. Impacts of Technology Training Provided by Agricultural Cooperatives on Farmers’ Adoption of Biopesticides in China. Agriculture 2022, 12, 316. [Google Scholar] [CrossRef]
- Chepchirchir, F.; Muriithi, B.W.; Langat, J.; Mohamed, S.A.; Ndlela, S.; Khamis, F.M. Knowledge, Attitude, and Practices on Tomato Leaf Miner, Tuta Absoluta on Tomato and Potential Demand for Integrated Pest Management among Smallholder Farmers in Kenya and Uganda. Agriculture 2021, 11, 1242. [Google Scholar] [CrossRef]
- Kehinde, A.D.; Tijani, A.A. Effects of Access to Livelihood Capitals on Adoption of European Union (EU) Approved Pesticides among Cocoa Producing Households in Osun State, Nigeria. Agric. Trop. Subtrop. 2021, 54, 57–70. [Google Scholar] [CrossRef]
- Staudacher, P.; Fuhrimann, S.; Farnham, A.; Mora, A.M.; Atuhaire, A.; Niwagaba, C.; Stamm, C.; Eggen, R.I.; Winkler, M.S. Comparative Analysis of Pesticide Use Determinants Among Smallholder Farmers from Costa Rica and Uganda. Environ. Health Insights 2020, 14, 1178630220972417. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.W. How Effective Are Common Household Preparations on Removing Pesticide Residues from Fruit and Vegetables? A Review. J. Sci. Food Agric. 2018, 98, 2857–2870. [Google Scholar] [CrossRef] [PubMed]
- Pearson, M.; Metcalfe, C.; Jayamanne, S.; Gunnell, D.; Weerasinghe, M.; Pieris, R.; Priyadarshana, C.; Knipe, D.W.; Hawton, K.; Dawson, A.H.; et al. Effectiveness of Household Lockable Pesticide Storage to Reduce Pesticide Self-Poisoning in Rural Asia: A Community-Based, Cluster-Randomised Controlled Trial. Lancet 2017, 390, 1863–1872. [Google Scholar] [CrossRef] [Green Version]
- Schreinemachers, P.; Wu, M.; Uddin, M.N.; Ahmad, S.; Hanson, P. Farmer Training in Off-Season Vegetables: Effects on Income and Pesticide Use in Bangladesh. Food Policy 2016, 61, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Grovermann, C.; Schreinemachers, P.; Riwthong, S.; Berger, T. ‘Smart’ Policies to Reduce Pesticide Use and Avoid Income Trade-Offs: An Agent-Based Model Applied to Thai Agriculture. Ecol. Econ. 2017, 132, 91–103. [Google Scholar] [CrossRef]
- Feng, J.; Tang, H.; Chen, D.; Li, L. Monitoring and Risk Assessment of Pesticide Residues in Tea Samples from China. Hum. Ecol. Risk Assess. Int. J. 2015, 21, 169–183. [Google Scholar] [CrossRef]
- Chen, H.; Hao, Z.; Wang, Q.; Jiang, Y.; Pan, R.; Wang, C.; Liu, X.; Lu, C. Occurrence and Risk Assessment of Organophosphorus Pesticide Residues in Chinese Tea. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 28–38. [Google Scholar] [CrossRef]
- Zheng, R.; Zhan, J.; Liu, L.; Ma, Y.; Wang, Z.; Xie, L.; He, D. Factors and Minimal Subsidy Associated with Tea Farmers’ Willingness to Adopt Ecological Pest Management. Sustainability 2019, 11, 6190. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.-Y.; Zhao, Z.-H.; Shen, Z.-R. Experiences with Implementation and Adoption of Integrated Pest Management in China. In Integrated Pest Management: Experiences with Implementation, Global Overview; Peshin, R., Pimentel, D., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 4, pp. 307–330. ISBN 978-94-007-7802-3. [Google Scholar]
- Zhang, M.; Jin, Y.; Qiao, H.; Zheng, F. Product Quality Asymmetry and Food Safety: Investigating the “One Farm Household, Two Production Systems” of Fruit and Vegetable Farmers in China. China Econ. Rev. 2017, 45, 232–243. [Google Scholar] [CrossRef]
- Lewis, S.E.; Silburn, D.M.; Kookana, R.S.; Shaw, M. Pesticide Behavior, Fate, and Effects in the Tropics: An Overview of the Current State of Knowledge. J. Agric. Food Chem. 2016, 64, 3917–3924. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Handique, G.; Muraleedharan, N.; Dashora, K.; Roy, S.M.; Mukhopadhyay, A.; Babu, A. Use of Plant Extracts for Tea Pest Management in India. Appl. Microbiol. Biotechnol. 2016, 100, 4831–4844. [Google Scholar] [CrossRef]
- Zongmao, C.; Haibin, W. Factors Affecting Residues of Pesticides in Tea. Pestic. Sci. 1988, 23, 109–118. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Yin, Y.; Cui, F.; Cai, J.; Chen, Z.; Jin, Y.; Robson, M.G.; Li, M.; Ren, Y.; et al. Neurological Effects of Pesticide Use among Farmers in China. Int. J. Environ. Res. Public. Health 2014, 11, 3995–4006. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Ren, Y.; Luning, P.A. Factors Influencing Chinese Farmers’ Proper Pesticide Application in Agricultural Products—A Review. Food Control 2021, 122, 107788. [Google Scholar] [CrossRef]
- Yarpuz-Bozdogan, N. The Importance of Personal Protective Equipment in Pesticide Applications in Agriculture. Curr. Opin. Environ. Sci. Health 2018, 4, 1–4. [Google Scholar] [CrossRef]
- Khan, M.; Damalas, C.A. Farmers’ Willingness to Pay for Less Health Risks by Pesticide Use: A Case Study from the Cotton Belt of Punjab, Pakistan. Sci. Total Environ. 2015, 530, 297–303. [Google Scholar] [CrossRef]
- Atreya, K. Farmers’ Willingness to Pay for Community Integrated Pest Management Training in Nepal. Agric. Hum. Values 2007, 24, 399–409. [Google Scholar] [CrossRef]
- Stallman, H.R.; James, H.S. Determinants Affecting Farmers’ Willingness to Cooperate to Control Pests. Ecol. Econ. 2015, 117, 182–192. [Google Scholar] [CrossRef]
- Jin, J.; Wang, W.; He, R.; Gong, H. Pesticide Use and Risk Perceptions among Small-Scale Farmers in Anqiu County, China. Int. J. Environ. Res. Public. Health 2017, 14, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrescu-Mag, R.M.; Banatean-Dunea, I.; Vesa, S.C.; Copacinschi, S.; Petrescu, D.C. What Do Romanian Farmers Think about the Effects of Pesticides? Perceptions and Willingness to Pay for Bio-Pesticides. Sustainability 2019, 11, 3628. [Google Scholar] [CrossRef] [Green Version]
- Palis, F.G.; Flor, R.J.; Warburton, H.; Hossain, M. Our Farmers at Risk: Behaviour and Belief System in Pesticide Safety. J. Public Health 2006, 28, 43–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kpadé, C.P.; Mensah, E.R.; Fok, M.; Ndjeunga, J. Cotton Farmers’ Willingness to Pay for Pest Management Services in Northern Benin. Agric. Econ. 2017, 48, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Oyetunde-Usman, Z.; Olagunju, K.O.; Ogunpaimo, O.R. Determinants of Adoption of Multiple Sustainable Agricultural Practices among Smallholder Farmers in Nigeria. Int. Soil Water Conserv. Res. 2021, 9, 241–248. [Google Scholar] [CrossRef]
- Maguza-Tembo, F.; Mangison, J.; Edris, A.K.; Kenamu, E. Determinants of Adoption of Multiple Climate Change Adaptation Strategies in Southern Malawi: An Ordered Probit Analysis. J. Dev. Agric. Econ. 2017, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Pilarova, T.; Bavorova, M.; Kandakov, A. Do Farmer, Household and Farm Characteristics Influence the Adoption of Sustainable Practices? The Evidence from the Republic of Moldova. Int. J. Agric. Sustain. 2018, 16, 367–384. [Google Scholar] [CrossRef]
- Kanyenji, G.M.; Oluoch-Kosura, W.; Onyango, C.M.; Ng’ang’a, S.K. Prospects and Constraints in Smallholder Farmers’ Adoption of Multiple Soil Carbon Enhancing Practices in Western Kenya. Heliyon 2020, 6, e03226. [Google Scholar] [CrossRef]
- Musafiri, C.M.; Kiboi, M.; Macharia, J.; Ng’etich, O.K.; Kosgei, D.K.; Mulianga, B.; Okoti, M.; Ngetich, F.K. Adoption of Climate-Smart Agricultural Practices among Smallholder Farmers in Western Kenya: Do Socioeconomic, Institutional, and Biophysical Factors Matter? Heliyon 2022, 8, e08677. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.H.; Rainis, R. Adoption and Intensity of Integrated Pest Management (IPM) Vegetable Farming in Bangladesh: An Approach to Sustainable Agricultural Development. Environ. Dev. Sustain. 2015, 17, 1413–1429. [Google Scholar] [CrossRef]
- Sharma, A.; Bailey, A.; Fraser, I. Technology Adoption and Pest Control Strategies Among UK Cereal Farmers: Evidence from Parametric and Nonparametric Count Data Models. J. Agric. Econ. 2011, 62, 73–92. [Google Scholar] [CrossRef] [Green Version]
- Van Ho, B.; Nanseki, T.; Chomei, Y. Profit Efficiency of Tea Farmers: Case Study of Safe and Conventional Farms in Northern Vietnam. Environ. Dev. Sustain. 2019, 21, 1695–1713. [Google Scholar] [CrossRef]
- Mubushar, M.; Aldosari, F.O.; Baig, M.B.; Alotaibi, B.M.; Khan, A.Q. Assessment of Farmers on Their Knowledge Regarding Pesticide Usage and Biosafety. Saudi J. Biol. Sci. 2019, 26, 1903–1910. [Google Scholar] [CrossRef]
- Lekei, E.E.; Ngowi, A.V.; London, L. Farmers’ Knowledge, Practices and Injuries Associated with Pesticide Exposure in Rural Farming Villages in Tanzania. BMC Public Health 2014, 14, 389. [Google Scholar] [CrossRef] [Green Version]
- Dewi, Y.A.; Yulianti, A.; Hanifah, V.W.; Jamal, E.; Sarwani, M.; Mardiharini, M.; Anugrah, I.S.; Darwis, V.; Suib, E.; Herteddy, D.; et al. Farmers’ Knowledge and Practice Regarding Good Agricultural Practices (GAP) on Safe Pesticide Usage in Indonesia. Heliyon 2022, 8, e08708. [Google Scholar] [CrossRef]
- Bagheri, A.; Emami, N.; Damalas, C.A. Farmers’ Behavior towards Safe Pesticide Handling: An Analysis with the Theory of Planned Behavior. Sci. Total Environ. 2021, 751, 141709. [Google Scholar] [CrossRef]
- Bagheri, A.; Bondori, A.; Allahyari, M.S.; Damalas, C.A. Modeling Farmers’ Intention to Use Pesticides: An Expanded Version of the Theory of Planned Behavior. J. Environ. Manag. 2019, 248, 109291. [Google Scholar] [CrossRef]
- Su, X.; Shi, J.; Wang, T.; Shen, Q.; Niu, W.; Xu, Z. More Income, Less Pollution? How Income Expectation Affects Pesticide Application. Int. J. Environ. Res. Public. Health 2022, 19, 5136. [Google Scholar] [CrossRef]
- Govindharaj, G.-P.-P.; Gowda, B.; Sendhil, R.; Adak, T.; Raghu, S.; Patil, N.; Mahendiran, A.; Rath, P.C.; Kumar, G.A.K.; Damalas, C.A. Determinants of Rice Farmers’ Intention to Use Pesticides in Eastern India: Application of an Extended Version of the Planned Behavior Theory. Sustain. Prod. Consum. 2021, 26, 814–823. [Google Scholar] [CrossRef]
- Pertot, I.; Caffi, T.; Rossi, V.; Mugnai, L.; Hoffmann, C.; Grando, M.S.; Gary, C.; Lafond, D.; Duso, C.; Thiery, D.; et al. A Critical Review of Plant Protection Tools for Reducing Pesticide Use on Grapevine and New Perspectives for the Implementation of IPM in Viticulture. Crop Prot. 2017, 97, 70–84. [Google Scholar] [CrossRef]
- Hillocks, R.J. Farming with Fewer Pesticides: EU Pesticide Review and Resulting Challenges for UK Agriculture. Crop Prot. 2012, 31, 85–93. [Google Scholar] [CrossRef]
- Ngowi, A.V.F.; Mbise, T.J.; Ijani, A.S.M.; London, L.; Ajayi, O.C. Smallholder Vegetable Farmers in Northern Tanzania: Pesticides Use Practices, Perceptions, Cost and Health Effects. Crop Prot. 2007, 26, 1617–1624. [Google Scholar] [CrossRef] [Green Version]
- Mengistie, B.T.; Mol, A.P.J.; Oosterveer, P. Pesticide Use Practices among Smallholder Vegetable Farmers in Ethiopian Central Rift Valley. Environ. Dev. Sustain. 2017, 19, 301–324. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Sarkar, A.; Rahman, A.; Li, X.; Xia, X. Exploring the Drivers of Green Agricultural Development (GAD) in China: A Spatial Association Network Structure Approaches. Land Use Policy 2021, 112, 105827. [Google Scholar] [CrossRef]
- Sule, R.O.; Condon, L.; Gomes, A.V. A Common Feature of Pesticides: Oxidative Stress—The Role of Oxidative Stress in Pesticide-Induced Toxicity. Oxid. Med. Cell. Longev. 2022, 2022, e5563759. [Google Scholar] [CrossRef]
- Oluwole, O.; Cheke, R.A. Health and Environmental Impacts of Pesticide Use Practices: A Case Study of Farmers in Ekiti State, Nigeria. Int. J. Agric. Sustain. 2009, 7, 153–163. [Google Scholar] [CrossRef]
- Jabbour, R.; Noy, S. The Promise of a Multi-Disciplinary, Mixed-Methods Approach to Inform Insect Pest Management: Evidence from Wyoming Alfalfa. Front. Sustain. Food Syst. 2020, 4, 548545. [Google Scholar] [CrossRef]
- Vurro, M.; Miguel-Rojas, C.; Pérez-de-Luque, A. Safe Nanotechnologies for Increasing the Effectiveness of Environmentally Friendly Natural Agrochemicals. Pest Manag. Sci. 2019, 75, 2403–2412. [Google Scholar] [CrossRef]
- Lefebvre, M.; Langrell, S.R.H.; Gomez-y-Paloma, S. Incentives and Policies for Integrated Pest Management in Europe: A Review. Agron. Sustain. Dev. 2015, 35, 27–45. [Google Scholar] [CrossRef]
- Palardy, N.; Centner, T.J. Improvements in Pesticide Drift Reduction Technology (DRT) Call for Improving Liability Provisions to Offer Incentives for Adoption. Land Use Policy 2017, 69, 439–444. [Google Scholar] [CrossRef]
- Andersson, E.; Isgren, E. Gambling in the Garden: Pesticide Use and Risk Exposure in Ugandan Smallholder Farming. J. Rural Stud. 2021, 82, 76–86. [Google Scholar] [CrossRef]
- Feng, S.; Han, Y.; Qiu, H. Does Crop Insurance Reduce Pesticide Usage? Evidence from China. China Econ. Rev. 2021, 69, 101679. [Google Scholar] [CrossRef]
- Zhao, Q.; Pan, Y.; Xia, X. Internet Can Do Help in the Reduction of Pesticide Use by Farmers: Evidence from Rural China. Environ. Sci. Pollut. Res. 2021, 28, 2063–2073. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.; Zhang, W.; Nou, K. Pesticide Use and Cooperative Management of Natural Enemy Habitat in a Framed Field Experiment. Agric. Syst. 2016, 143, 1–13. [Google Scholar] [CrossRef]
- Wilkins, J.L.; Hillers, V.N. Influences of Pesticide Residue and Environmental Concerns on Organic Food Preference among Food Cooperative Members and Non-Members in Washington State. J. Nutr. Educ. 1994, 26, 26–33. [Google Scholar] [CrossRef]
- Wang, W.; Jin, J.; He, R.; Gong, H. Gender Differences in Pesticide Use Knowledge, Risk Awareness and Practices in Chinese Farmers. Sci. Total Environ. 2017, 590, 22–28. [Google Scholar] [CrossRef]
- Afata, T.N.; Mekonen, S.; Shekelifa, M.; Tucho, G.T. Prevalence of Pesticide Use and Occupational Exposure Among Small-Scale Farmers in Western Ethiopia. Environ. Health Insights 2022, 16, 11786302211072950. [Google Scholar] [CrossRef]
- Schreinemachers, P.; Chen, H.; Nguyen, T.T.L.; Buntong, B.; Bouapao, L.; Gautam, S.; Le, N.T.; Pinn, T.; Vilaysone, P.; Srinivasan, R. Too Much to Handle? Pesticide Dependence of Smallholder Vegetable Farmers in Southeast Asia. Sci. Total Environ. 2017, 593, 470–477. [Google Scholar] [CrossRef]
- Tijani, A.A. Pesticide Use Practices and Safety Issues: The Case of Cocoa Farmers in Ondo State, Nigeria. J. Hum. Ecol. 2006, 19, 183–190. [Google Scholar] [CrossRef]
- Chalermphol, J.; Shivakoti, G.P. Pesticide Use and Prevention Practices of Tangerine Growers in Northern Thailand. J. Agric. Educ. Ext. 2009, 15, 21–38. [Google Scholar] [CrossRef]
Variable | Variable Meaning | Mean | Std. | |
---|---|---|---|---|
Dependent variable | ||||
Whether to spray | Yes = 1; No = 0 | 0.841 | 0.366 | |
Choice of spray yype | Conventional pesticides = 0; Green low-toxicity pesticides = 1 | 0.669 | 0.471 | |
Choice of dosage | Conventional pesticide dosage | Decrease = 1; Unchanged = 2; Increase = 3 | 2.211 | 0.732 |
Dosage of green and ow-toxic pesticides | Decrease = 1; Unchanged = 2; Increase = 3 | 2.155 | 0.796 | |
Core variable | ||||
Market incentives | Yes = 1; No = 0 | 0.305 | 0.461 | |
Subsistence dependence | Proportion of tea revenue | Tea revenue/Total revenue | 0.255 | 0.250 |
Planting years | Tea planting time as of 2017 (year) | 25.372 | 12.654 | |
Control variable | ||||
Head of household characteristics | Age | Actual age (years) | 57.832 | 9.693 |
Educational level | Actual cultural level | 6.128 | 3.461 | |
Family characteristics | Labor force | Number of labor force (person) | 2.189 | 0.851 |
Family income level | (10,000 Yuan) | 6.342 | 8.970 | |
Field endowment | Tea garden area | Actual planting area (Mu) | 7.194 | 21.639 |
Garden elevation | (100 m) | 4.342 | 2.401 | |
Road condition | Good traffic conditions = 0; Poor traffic conditions = 1 | 0.918 | 0.275 | |
Pesticide awareness | Pesticide yield effect | Will the reduction in pesticides lead to a reduction in production? Below 10% = 1; 10–20% = 2; 20–30% = 3; 30–40% = 4; 40–50% = 5; Above 60 = 6 | 3.097 | 1.862 |
Pesticide brand effect | Will pesticide use damage the brand of origin? Strongly Disagree = 1; Somewhat Disagree = 2; Moderately = 3; Somewhat Agree = 4; Strongly Agree = 5 | 3.110 | 0.981 | |
Environmental effects of pesticides | Will pesticides cause soil and water pollution? Strongly Disagree = 1; Somewhat Disagree = 2; Moderately = 3; Somewhat Agree = 4; Strongly Agree = 5 | 2.257 | 1.006 | |
External support | Technical training | Yes = 1; No = 0 | 0.202 | 0.402 |
Area | Shaanxi | Shaanxi = 1; Other = 0 | 0.360 | 0.480 |
Zhejiang | Zhejiang = 1; Other = 0 | 0.154 | 0.361 | |
Anhui | Anhui = 1; Others = 0 | 0.232 | 0.423 |
Variable | Model 1 | Model 2 | |||
---|---|---|---|---|---|
Cof. | Std. | Cof. | Std. | ||
Core variable | |||||
Market incentives | −0.271 ** | 0.135 | −0.302 ** | 0.139 | |
Subsistence dependence | Proportion of tea revenue | 0.568 * | 0.316 | 0.614 ** | 0.329 |
Planting years | 0.077 | 0.099 | 0.067 | 0.099 | |
Market incentives × livelihood dependence | Market incentive × proportion of tea income | - | - | −0.084 | 0.062 |
Market incentive × planting years | - | - | 0.104 ** | 0.048 | |
Control variable | |||||
Head of household characteristics | Age of head of household | 0.209 | 0.367 | 0.245 | 0.368 |
Education level of the head of the household | 0.040 ** | 0.019 | 0.042 ** | 0.019 | |
Family characteristics | Labor force | 0.037 | 0.071 | 0.038 | 0.071 |
Family income level | −0.037 | 0.113 | −0.033 | 0.116 | |
Field endowment | Tea garden area | 0.033 | 0.093 | 0.038 | 0.092 |
Tea garden elevation | −0.084 * | 0.049 | −0.091 * | 0.049 | |
Road condition | 0.200 | 0.204 | 0.165 | 0.210 | |
Effect cognition | Pesticide yield effect | 0.219 *** | 0.039 | 0.215 *** | 0.039 |
Pesticide brand effect | −0.153 ** | 0.061 | −0.151 ** | 0.062 | |
Environmental effects of pesticides | 0.128 | 0.080 | 0.130 * | 0.087 | |
External support | Technical training | −0.061 | 0.149 | −0.051 | 0.149 |
Regional variable | Yes | Yes | |||
Sample size | 766 | 766 | |||
Wald chi2 | 75.69 | 82.25 | |||
Prob > chi2 | 0.000 | 0.000 |
Variable | Model 3 | Model 4 | |||
---|---|---|---|---|---|
Cof. | Std. | Cof. | Std. | ||
Core independent variable | |||||
Market incentives | −0.348 *** | 0.129 | −0.389 *** | 0.131 | |
Subsistence dependence | Proportion of tea revenue | 0.562 ** | 0.283 | 0.597 ** | 0.284 |
Planting years | −0.277 *** | 0.097 | −0.283 *** | 0.097 | |
Market incentives × livelihood dependence | Market incentive × proportion of tea income | - | - | −0.039 | 0.058 |
Market incentive × planting years | - | - | −0.339 | 0.323 | |
Control variable | |||||
Head of household characteristics | Age of head of household | −0.367 | 0.359 | −0.344 | 0.360 |
Education level of the head of the household | 0.030 * | 0.018 | 0.030 * | 0.018 | |
Family characteristics | Labor force | −0.022 | 0.064 | −0.020 | 0.064 |
Family income level | 0.072 | 0.106 | 0.094 | 0.107 | |
Field endowment | Tea garden area | −0.073 | 0.093 | −0.082 | 0.093 |
Tea garden elevation | 0.062 | 0.047 | 0.063 | 0.047 | |
Road condition | 0.252 | 0.205 | 0.252 | 0.204 | |
Effect cognition | Pesticide yield effect | 0.057 * | 0.031 | 0.056 * | 0.031 |
Pesticide brand effect | 0.264 *** | 0.059 | 0.264 *** | 0.059 | |
Environmental effects of pesticides | −0.102 | 0.071 | −0.095 | 0.061 | |
External support | Technical training | 0.516 *** | 0.156 | 0.504 *** | 0.156 |
Regional variable | Yes | Yes | |||
Sample size | 644 | 644 | |||
Wald chi2 | 98.62 | 99.11 | |||
Prob | 0.000 | 0.000 |
Variable | Model 5 | Model 6 | Model 7 | Model 8 | |||||
---|---|---|---|---|---|---|---|---|---|
Conventional Pesticide Dosage | Dosage of Green and Low-Toxic Pesticides | ||||||||
Cof. | Std. | Cof. | Std. | Cof. | Std. | Cof. | Std. | ||
Core independent variable | |||||||||
Market incentives | −0.038 | 0.174 | 0.094 | 0.183 | −0.313 ** | 0.150 | −0.237 | 0.154 | |
Subsistence dependence | Proportion of tea revenue | −0.518 | 0.490 | −0.405 | 0.488 | 0.056 | 0.259 | 0.008 | 0.259 |
Planting years | 0.490 *** | 0.133 | 0.489 *** | 0.133 | 0.116 | 0.108 | 0.136 | 0.109 | |
Market incentives × livelihood dependence | Market incentive × proportion of tea income | - | - | −0.091 | 0.104 | - | - | −0.017 | 0.059 |
Market incentive × planting years | - | - | −0.309 | 0.483 | - | - | 0.802 ** | 0.367 | |
Control variable | |||||||||
Head of household characteristics | Age of head of household | −0.057 | 0.516 | −0.005 | 0.516 | 0.070 | 0.367 | 0.046 | 0.368 |
Education level of the head of the household | −0.018 | 0.026 | −0.019 | 0.025 | 0.028 | 0.019 | 0.025 | 0.019 | |
Family characteristics | Labor force | 0.023 | 0.100 | 0.034 | 0.100 | 0.071 | 0.070 | 0.065 | 0.069 |
Family income level | 0.036 | 0.162 | 0.057 | 0.163 | 0.234 ** | 0.109 | 0.213 * | 0.112 | |
Field endowment | Tea garden area | −0.231 * | 0.132 | −0.243 * | 0.145 | −0.221 ** | 0.103 | −0.208 ** | 0.104 |
Tea garden elevation | 0.011 | 0.061 | 0.013 | 0.060 | −0.058 | 0.054 | −0.065 | 0.054 | |
Road condition | −0.512 * | 0.271 | −0.517 * | 0.270 | −0.208 | 0.239 | −0.178 | 0.240 | |
Pesticide awareness | Pesticide yield effect | 0.095 ** | 0.048 | 0.088 * | 0.048 | 0.050 | 0.034 | 0.050 | 0.034 |
Pesticide brand effect | −0.252 ** | 0.101 | −0.243 ** | 0.103 | −0.152 ** | 0.060 | −0.148 ** | 0.060 | |
Environmental effects of pesticides | −0.105 | 0.089 | −0.085 | 0.090 | −0.078 | 0.066 | −0.084 | 0.065 | |
External support | Technical training | −0.555 ** | 0.243 | −0.617 ** | 0.251 | −0.047 | 0.151 | −0.057 | 0.152 |
Regional variable | Yes | Yes | Yes | Yes | |||||
Wald chi2 | 55.86 | 54.19 | 43.67 | 46.67 | |||||
Prob | 0.000 | 0.000 | 0.000 | 0.000 | |||||
Sample size | 213 | 213 | 431 | 431 |
Variable | Model 9 | Model 10 | Model 11 | Model 12 | Model 13 | Model 14 | Model 15 | Model 16 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Whether to Spray | Type of Application | Conventional Pesticide Dosage | Dosage of Green and Low-Toxic Pesticides | |||||||||||||
Cof. | Std. | Cof. | Std. | Cof. | Std. | Cof. | Std. | Cof. | Std. | Cof. | Std. | Cof. | Std. | Cof. | Std. | |
Market Incentives | −0.444 * | 0.245 | −0.520 ** | 0.256 | −0.586 *** | 0.214 | −0.658 *** | 0.216 | −0.079 | 0.297 | −0.206 | 0.323 | −0.510 ** | 0.256 | −0.390 | 0.264 |
Proportion of Tea Revenue | 0.911 * | 0.508 | 1.032 * | 0.602 | 0.945 ** | 0.482 | 1.019 ** | 0.485 | −0.791 | 0.854 | −0.622 | 0.831 | 0.033 | 0.424 | −0.029 | 0.429 |
Planting Years | 0.125 | 0.180 | 0.107 | 0.179 | −0.464 *** | 0.166 | −0.471 *** | 0.165 | 0.831 *** | 0.229 | 0.831 *** | 0.232 | 0.215 | 0.187 | 0.251 | 0.190 |
Market Incentive × Proportion of Tea Income | - | - | −0.153 | 0.115 | - | - | −0.081 | 0.097 | - | - | −0.200 | 0.197 | - | - | −0.027 | 0.098 |
Market Incentive × Planting Years | - | - | 0.164 ** | 0.083 | - | - | −0.551 | 0.539 | - | - | −0.597 | 0.848 | - | - | 1.295 ** | 0.631 |
Control Variable | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | ||||||||
Sample Size | 766 | 766 | 644 | 644 | 213 | 213 | 431 | 431 | ||||||||
Wald Chi2 | 71.85 | 77.10 | 93.01 | 92.74 | 50.95 | 48.10 | 41.63 | 48.79 | ||||||||
Prob | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Sarkar, A.; Li, L.; Li, H.; Lu, Q. Effects of Market Incentives and Livelihood Dependence on Farmers’ Multi-Stage Pesticide Application Behavior—A Case Study of Four Provinces in China. Int. J. Environ. Res. Public Health 2022, 19, 9431. https://doi.org/10.3390/ijerph19159431
Ding X, Sarkar A, Li L, Li H, Lu Q. Effects of Market Incentives and Livelihood Dependence on Farmers’ Multi-Stage Pesticide Application Behavior—A Case Study of Four Provinces in China. International Journal of Environmental Research and Public Health. 2022; 19(15):9431. https://doi.org/10.3390/ijerph19159431
Chicago/Turabian StyleDing, Xiuling, Apurbo Sarkar, Lipeng Li, Hua Li, and Qian Lu. 2022. "Effects of Market Incentives and Livelihood Dependence on Farmers’ Multi-Stage Pesticide Application Behavior—A Case Study of Four Provinces in China" International Journal of Environmental Research and Public Health 19, no. 15: 9431. https://doi.org/10.3390/ijerph19159431
APA StyleDing, X., Sarkar, A., Li, L., Li, H., & Lu, Q. (2022). Effects of Market Incentives and Livelihood Dependence on Farmers’ Multi-Stage Pesticide Application Behavior—A Case Study of Four Provinces in China. International Journal of Environmental Research and Public Health, 19(15), 9431. https://doi.org/10.3390/ijerph19159431