Pollution and Risk Assessments of Heavy Metal(loid)s in the Soil around Lead-Zinc Smelteries via Data Integration Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Geo-Accumulation Index (Igeo)
2.3. Nemerow Integrated Pollution Index (NIPI)
2.4. Risk Assessment
2.4.1. Potential Ecological Risk (PER)
2.4.2. Health Risk Assessment
2.5. Data Analysis
3. Results and Discussions
3.1. Characteristics of Heavy Metal(loid)s in Soils near Pb–Zn Smelteries
3.2. Global Distribution of Heavy Metal(loid)s in Soils around Pb–Zn Smelteries
3.3. Impacts of Land Use on Heavy Metal(loid)s in the Soil around Smelteries
3.4. Priority Pollutants Based on National Environmental Standards
3.5. Priority Pollutants Based on National Environmental Standards
3.5.1. Potential Ecological Risk Assessment
3.5.2. Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, F.; Liao, R.M.; Ali, A.; Mahar, A.; Guo, D.; Li, R.; Sun, X.N.; Awasthi, M.K.; Wang, Q.; Zhang, Z.Q.; et al. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng county, China. Ecotoxicol. Environ. Saf. 2017, 139, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.B. Present situation and development trend of zinc smelting technology at home and abroad. World Nonferrous Met. 2018, 15, 5–6. (In Chinese) [Google Scholar]
- Wang, C.Y.; Gao, W.; Yin, F. Lead smelting technology home and abroad and its developing trend. Nonferrous Met. (Extr. Metall.) 2012, 4, 1–5. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, Z.C.; Guo, Z.H.; Peng, C.; Liu, X.; Zhou, Z.R.; Xiao, X.Y. Heavy metals in soils around non-ferrous smelteries in China: Status, health risks and control measures. Environ. Pollut. 2021, 282, 117038. [Google Scholar] [CrossRef] [PubMed]
- Ettler, V.; Konecny, L.; Kovarova, L.; Mihaljevic, M.; Sebek, O.; Kribek, B.; Majer, V.; Veselovsky, F.; Penizek, V.; Vanek, A.; et al. Surprisingly contrasting metal distribution and fractionation patterns in copper smelter-affected tropical soils in forested and grassland areas (mufulira, zambian copperbelt). Sci. Total Environ. 2014, 473–474, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Ettler, V. Soil contamination near non-ferrous metal smelters: A review. Appl. Geochem. 2016, 64, 56–74. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Nian, J.N.; Wang, X.Y.; Zhang, P.; Zhang, H.Q.; Liu, M. Assessment and characteristics of heavy metal contamination in soil around some Pb-Zn smelting plant in Shanxi province. Environ. Dev. 2019, 31, 109–111. (In Chinese) [Google Scholar] [CrossRef]
- Wang, J.; Liu, S.Y.; Wei, X.D.; Beiyuan, J.Z.; Wang, L.L.; Liu, J.; Sun, H.; Zhang, G.S.; Xiao, T.F. Uptake, organ distribution and health risk assessment of potentially toxic elements in crops in abandoned in digenous smelting region. Chemosphere 2022, 292, 133231. [Google Scholar] [CrossRef]
- Ji, K.; Kim, J.; Lee, M.; Park, S.; Kwon, H.J.; Cheong, H.K.; Jang, J.Y.; Kim, D.S.; Yu, S.; Kim, Y.W.; et al. Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environ. Pollut. 2013, 178, 322–328. [Google Scholar] [CrossRef]
- Luo, X.S.; Ding, J.; Xu, B.; Wang, Y.J.; Li, H.B.; Yu, S. Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Sci. Total Environ. 2012, 424, 88–96. [Google Scholar] [CrossRef]
- Li, F.; Huang, J.H.; Zeng, G.G.; Liu, W.C.; Huang, X.L.; Huang, B.; Gu, Y.L.; Shi, L.X.; He, X.X.; He, Y. Toxic metals in topsoil under different land uses from Xiandao District, middle China: Distribution, relationship with soil characteristics, and health risk assessment. Environ. Sci. Pollut. Res. Int. 2015, 22, 12261–12275. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.N.; Long, J.; Liu, L.F.; Wu, Q.S.; Huang, B.C.; Zhang, J.M. Characterization and assessment of the heavy metal pollution in soils of different land use patterns around a typical lead-zinc mineralization area. Earth Environ. 2018, 46, 461–570. (In Chinese) [Google Scholar] [CrossRef]
- Chrastny, V.; Vanek, A.; Teper, L.; Cabala, J.; Prochazka, J.; Pechar, L.; Drahota, P.; Penizek, V.; Komarek, M.; Novak, M. Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: Effects of land use, type of contamination and distance from pollution source. Environ. Monit. Assess. 2012, 184, 2517–2536. [Google Scholar] [CrossRef] [PubMed]
- Stefanowicz, A.M.; Niklinska, M.; Kapusta, P.; Szarek-Lukaszewska, G. Pine forest and grassland differently influence the response of soil microbial communities to metal contamination. Sci. Total Environ. 2010, 408, 6134–6141. [Google Scholar] [CrossRef]
- Carlon, C. Derivation Methods of Soil Screening Values in Europe. A Review and Evaluation of National Procedures towards Harmonization [eur 22805en,2007.306]; European Commission Joint Research Centre, Ed.; European Commission Joint Research Centre: Ispra, Italy, 2007. [Google Scholar]
- Sun, Y.; Wang, J.; Guo, G.; Li, H.; Jones, K. A comprehensive comparison and analysis of soil screening values derived and used in China and the UK. Environ. Pollut. 2020, 256, 113404. [Google Scholar] [CrossRef]
- Provoost, J.; Reijnders, L.; Swartjes, F.; Bronders, J.; Carlon, C.; D’Alessandro, M.; Cornelis, C. Parameters causing variation between soil screening values and the effect of harmonization. J. Soil Sediments 2008, 8, 298–311. [Google Scholar] [CrossRef]
- Wei, B.; Yang, L.S. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Islam, S.; Ahmed, K.; Habibullah, A.M.; Masunaga, S. Potential ecological risk of hazardous elements in different land-use urban soils of Bangladesh. Sci. Total Environ. 2015, 512–513, 94–102. [Google Scholar] [CrossRef]
- NCR (National Research Council Edition). Risk Assessment in the Federal Government: Man Aging the Process; National Research Council Edition: Washington, DC, USA, 1983. [Google Scholar]
- Ma, Y.; Liu, A.; Egodawatta, P.; Mcgree, J.; Goonetilleke, A. Quantitative assessment of human health risk posed by polycyclic aromatic hydrocarbons in urban road dust. Sci. Total Environ. 2017, 575, 895–904. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, A.; Egodawatta, P.; Mcgree, J.; Goonetilleke, A. Assessment and management of human health risk from toxic metals and polycyclic aromatic hydrocarbons in urban stormwater arising from anthropogenic activities and traffic congestion. Sci. Total Environ. 2017, 579, 202–211. [Google Scholar] [CrossRef]
- Šajn, R.; Aliu, M.; Stafilov, T.; Alijagić, J. Heavy metal contamination of topsoil around a lead and zinc smelter in Kosovska Mitrovica/Mitrovicë, Kosovo/Kosovë. J. Geochem. Explor. 2013, 134, 1–16. [Google Scholar] [CrossRef]
- Ettler, V.; Mihaljevic, M.; Kribek, B.; Majer, V.; Sebek, O. Tracing the spatial distribution and mobility of metal/metalloid contaminants in Oxisols in the vicinity of the Nkana copper smelter, Copperbelt province, Zambia. Geoderma 2011, 164, 73–84. [Google Scholar] [CrossRef]
- Li, S.; Zhao, B.; Jin, M.; Hu, L.; Zhong, H.; He, Z. A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter. J. Hazard. Mater. 2020, 400, 123255. [Google Scholar] [CrossRef] [PubMed]
- Lei, K.; Giubilato, E.; Critto, A.; Pan, H.; Lin, C. Contamination and human health risk of lead in soils around lead/zinc smelting areas in China. Environ. Sci. Pollut. Res. Int. 2016, 23, 13128–13136. [Google Scholar] [CrossRef] [PubMed]
- Behrouz, R.; Azam, S.K.; Saeid, K.; Mahdi, H.; Masoumeh, B.N. Contamination Assessment of Lead, Zinc, Copper, Cadmium, Arsenic and Antimony in Ahangaran Mine Soils, Malayer, West of Iran. Soil Sediment Contam. 2010, 19, 573–586. [Google Scholar] [CrossRef]
- Xin, X.; Zhang, J.X.; Wang, H.B.; Han, X.X.; Ma, J.; Ma, Y.; Luan, H.J. Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: A global meta-analysis. Sci. Total Environ. 2020, 713, 135292. [Google Scholar] [CrossRef]
- Lee, C.S.; Li, X.; Shi, W.; Cheng, S.C.; Thornton, I. Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Sci. Total Environ. 2006, 356, 45–61. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Wang, A.; Kong, L.; He, M. Calculation and application of sb toxicity coefficient for potential ecological risk assessment. Sci. Total Environ. 2018, 610–611, 167–174. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, M.; Peng, C.; Alatalo, J.M. Impacts of urbanization on the distribution of heavy metals in soils along the Huangpu river, the drinking water source for Shanghai. Environ. Sci. Pollut. Res. Int. 2016, 23, 5222–5231. [Google Scholar] [CrossRef]
- USEPA (United States Environmental Protection Agency). Regional Screening Levels (Rsls)-Generic Tables D.C. United States Environmental Protection Agency Washington, Editor. 2011. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 2 August 2021).
- USEPA (United States Environmental Protection Agency). Regional Screening Levels (Rsls)-User’s Guide, D.C. Washington, Editor. 2021. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide (accessed on 2 August 2021).
- Nogawa, K. Changing Metal Cycles and Human Health; Springer: Berlin, Germany, 1984. [Google Scholar]
- Pelfrene, A.; Waterlot, C.; Mazzuca, M.; Nisse, C.; Bidar, G.; Douay, F. Assessing Cd, Pb, Zn human bioaccessibility in smelter-contaminated agricultural topsoils (Northern France). Environ. Geochem. Health 2011, 33, 477–493. [Google Scholar] [CrossRef]
- Wang, S.X.; Song, J.X.; Li, G.H.; Wu, Y.; Zhang, L.; Wan, Q.; Streets, D.G.; Chin, C.K.; Hao, J.M. Estimating mercury emissions from a zinc smelter in relation to China’s mercury control policies. Environ. Pollut. 2010, 158, 3347–3353. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.J.; Hu, D.; Wang, H.H.; Chen, L.; Xie, H.; Zhang, W.; Deng, C.Y.; Wang, X.J. Atmospheric mercury emissions from China’s primary nonferrous metal (Zn, Pb and Cu) smelting during 1949–2010. Atmos. Environ. 2015, 103, 331–338. [Google Scholar] [CrossRef]
- Wen, H.J.; Zhang, Y.X.; Cloquet, C.; Zhu, C.W.; Fan, H.F.; Luo, C.G. Tracing sources of pollution in soils from the Jinding Pb–Zn mining district in China using cadmium and lead isotopes. Appl. Geochem. 2015, 52, 147–154. [Google Scholar] [CrossRef]
- Huang, P.; Cao, M.; Liu, Q. Selective depression of sphalerite by chitosan in differential Pb Zn flotation. Int. J. Miner. Process. 2013, 122, 29–35. [Google Scholar] [CrossRef]
- Bonnet, J. Ga, Ge and Cd Distribution in Sphalerite: Mvt Deposits in Tennessee USA; Jonsson, E., Ed.; Sgu-Sveriges Geologiska Undersokning-Geology Survey Sweden: Uppsala, Sweden, 2013; pp. 1691–1693. [Google Scholar]
- Li, X.D.; Thornton, I. Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Appl. Geochem. 2001, 16, 1693–1706. [Google Scholar] [CrossRef]
- Niemeyer, J.; Moreira-Santos, M.; Nogueira, M.; Carvalho, G.M.; Ribeiro, R.; Da Silva, E.M.; Sousa, J.P. Environmental risk assessment of a metal-contaminated area in the tropics. Tier i: Screening phase. J. Soils Sediments 2010, 10, 1557–1571. [Google Scholar] [CrossRef]
- Vidic, T.; Jogan, N.; Drobne, D.; Vilhar, B. Natural revegetation in the vicinity of the former lead smelter in Zerjav, Slovenia. Environ. Sci. Technol. 2006, 40, 4119–4125. [Google Scholar] [CrossRef]
- Siebielec, S.; Siebielec, G.; Stuczynski, T.; Sugier, P.; Grzeda, E.; Grzadziel, J. Long term insight into biodiversity of a smelter wasteland reclaimed with biosolids and by-product lime. Sci. Total Environ. 2018, 636, 1048–1057. [Google Scholar] [CrossRef]
- Dulias, R. The Impact of Mining on the Landscape: A Study of the Upper Silesian Coal Basin in Poland; Springer: Cham, Switzerland, 2016; pp. 1–30. [Google Scholar]
- International Lead and Zinc Study Group. Lead and Zinc New Mine and Smelter Projects. 2019. Available online: https://ilzsg.org/static/home.aspx (accessed on 4 August 2021).
- Zhang, L.; Wang, S.; Wu, Q.; Meng, Y.; Yang, H.; Wang, F.; Hao, J. Were mercury emission factors for chinese non-ferrous metal smelters overestimated? Evidence from on site measurements in six smelters. Environ. Pollut. 2012, 171, 109–117. [Google Scholar] [CrossRef]
- Jiang, S.Q.; Xu, Y.; Sun, S.X. Global distribution of lead-zinc resources. Geol. Resour. 2020, 29, 224–232. (In Chinese) [Google Scholar] [CrossRef]
- Li, G.; Klein, B.; Sun, C.; Kou, J. Insight in ore grade heterogeneity and potential of bulk ore sorting application for block cave mining. Miner. Eng. 2021, 170, 106999. [Google Scholar] [CrossRef]
- Anaman, R.; Peng, C.; Jiang, Z.C.; Liu, X.; Zhou, Z.R.; Guo, Z.H.; Xiao, X.Y. Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF. Sci. Total Environ. 2022, 823, 153759. [Google Scholar] [CrossRef]
- Qu, X.S.; Liang, X.Y.; Wang, Y.J. Hazard analysis of emissions node from lead and zinc smelting process. Nonferrous Met. (Extr. Metall.) 2014, 12, 45–49. (In Chinese) [Google Scholar] [CrossRef]
- Jin, S.Y. Discussion on emission standard of waste gas pollutants for lead and zinc smelting. Nonferrous Met. (Extr. Metall.) 2019, 6, 72–75. (In Chinese) [Google Scholar] [CrossRef]
- Yang, X.S.; Liu, F.B. Treatment of comprehensive waste water from lead and zinc smelting with high density sludge. Nonferrous Met. Eng. 2009, 61, 166–169. (In Chinese) [Google Scholar] [CrossRef]
- Ming, L.; Zhang, M.F. Nf process treating lead and zinc industrial wastewater for reusing. Technol. Water Treat. 2010, 36, 110–113. (In Chinese) [Google Scholar] [CrossRef]
- Ma, Z.W.; Wu, Y.G.; Fu, T.L.; Zhang, K.Y. Distribution characteristics of heavy metals of different particle sizes in lead-zinc slag. Environ. Sci. Technol. 2015, 38, 149–154. (In Chinese) [Google Scholar] [CrossRef]
- Li, H.W.; An, J.J.; Wang, S.L. Study on comprehensive utilization of historical left lead and zinc smelting slag. Environ. Eng. 2016, 34, 661–665. (In Chinese) [Google Scholar]
- Chrastny, V.; Vanek, A.; Komarek, M.; Farkas, J.; Drabek, O.; Vokurkova, P.; Nemcova, J. Incubation of air-pollution-control residues from secondary Pb smelter in deciduous and coniferous organic soil horizons: Leachability of lead, cadmium and zinc. J. Hazard. Mater. 2012, 209–210, 40–47. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Z.G.; Wang, C.J.; Zhang, X.S. The soil displacement measurement of mercury emission flux of the sewage irrigation farmlands in Northern China. Ecosyst. Health Sust. 2019, 5, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Ray, P.; Datta, S.P.; Dwivedi, B.S. Long-term irrigation with zinc smelter effluent affects important soil properties and heavy metal content in food crops and soil in Rajasthan, India. Soil Sci. Plant Nutr. 2017, 63, 628–637. [Google Scholar] [CrossRef] [Green Version]
- Hong Kong SAR Government Environmental Protection Department. Guidance Manual for Use of Risk–Based Remediation Goals for Contaminated Land Management; Hong Kong SAR Government Environmental Protection Department: Hong Kong, China, 2007.
- USEPA (United States Environmental Protection Agency). Guidance for Developing Ecological Soil Screening Levels; D.C. United States Environmental Protection Agency Washington, Ed.; USEPA: Washington, DC, USA, 2003.
- CCME (Canadian Council of Ministers of the Environment). Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health, Canadian Council of Ministers of the Environment, Editor. 2001. Available online: http://ceqg-rcqe.ccme.ca/ (accessed on 4 August 2021).
- Bacon, J.R.; Dinev, N.S. Isotopic characterisation of lead in contaminated soils from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria. Environ. Pollut. 2005, 134, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Feng, X.; Yang, Y.; Qiu, G.; Li, G.; Li, F.; Liu, T.; Fu, Z.; Jin, Z. Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, western Guizhou, China. Environ. Int. 2006, 32, 883–890. [Google Scholar] [CrossRef]
- Chen, B.; Qiu, H.Y.; Guo, Y.N.; Wang, L.Y.; Wang, X. Heavy metal contamination and health risk assessment in the zinc mine set area of Youxi, China. Jouenal Xiamen Univ. (Nat. Sci.) 2012, 51, 245–250. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=XDZK201202021&DbName=CJFQ2012 (accessed on 4 August 2021). (In Chinese).
- Cortada, U.; Hidalgo, M.C.; Martínez, J.; Rey, J. Impact in soils caused by metal(loid)s in lead metallurgy. The case of La Cruz Smelter (Southern Spain). J. Geochem. Explor. 2018, 190, 302–313. [Google Scholar] [CrossRef]
- Cui, Y.J.; Zhu, Y.G.; Zhai, R.H.; Chen, D.Y.; Huang, Y.Z.; Qiu, Y.; Liang, J.Z. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ. Int. 2004, 30, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.H.; Chai, L.Y.; Yang, Z.H. Study of the characteristics of heavy metal pollution at Pb/Zn smelting slag site. Ecol. Environ. Sci. 2015, 24, 1534–1539. (In Chinese) [Google Scholar] [CrossRef]
- Douay, F.; Pruvot, C.; Roussel, H.; Ciesielski, H.; Fourrier, H.; Proix, N.; Waterlot, C. Contamination of urban soils in an area of Northern France polluted by dust emissions of two smelters. Water Air Soil Pollut. 2007, 188, 247–260. [Google Scholar] [CrossRef]
- Douay, F.; Roussel, H.; Fourrier, H.; Heyman, C.; Chateau, G. Investigation of heavy metal concentrations on urban soils, dust and vegetables nearby a former smelter site in Mortagne Du Nord, Northern France. J. Soil. Sediment. 2007, 7, 143–146. [Google Scholar] [CrossRef]
- Dumoulin, D.; Billon, G.; Proix, N.; Frérot, H.; Pauwels, M.; Saumitou-Laprade, P. Impact of a zinc processing factory on surrounding surficial soil contamination. J. Geochem. Explor. 2017, 172, 142–150. [Google Scholar] [CrossRef]
- Friesl, W.; Friedl, J.; Platzer, K.; Horak, O.; Gerzabek, M.H. Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: Batch, pot and field experiments. Environ. Pollut. 2006, 144, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Gallini, L.; Ajmone-Marsan, F.; Scalenghe, R. The contamination legacy of a decommissioned iron smelter in the Italian Alps. J. Geochem. Explor. 2018, 186, 121–128. [Google Scholar] [CrossRef]
- Gao, X.L.; Xing, W.Q.; Ran, Y.L.; Zhou, W.D.; Li, L.P. Effects of accumulation of heavy metals in soils on enzyme activities. Asian J. Ecotoxicol. 2012, 7, 331–336. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=STDL201203017&DbName=CJFQ2012 (accessed on 4 August 2021). (In Chinese).
- Ghayoraneh, M.; Qishlaqi, A. Concentration, distribution and speciation of toxic metals in soils along a transect around a Zn/Pb smelter in the northwest of Iran. J. Geochem. Explor. 2017, 180, 1–14. [Google Scholar] [CrossRef]
- Gutiérrez-Ruiz, M.E.; Ceniceros-Gómez, A.E.; Villalobos, M.; Romero, F.; Santiago, P. Natural arsenic attenuation via metal arsenate precipitation in soils contaminated with metallurgical wastes: Ii. Cumulative evidence and identification of minor processes. Appl. Geochem. 2012, 27, 2204–2214. [Google Scholar] [CrossRef]
- Departement Du Sol Et Des Dechets-Direction De La Protection Des Sols Et Direction De L’Assainissement Des Sols. Rappel des Conditions Standard D’établissement des Valeurs Limites VSN, VIN, VSnappe et VInappe (MCS Standard) et Présentation des Valeurs. Rapport Spaque: Document de Con Sultation. 2004. Available online: https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fsol.environnement.wallonie.be%2Ffiles%2FDocument%2FCWBP%2FV03%2FGRER%2FPARTIE%2520C%2FGRER_Annexe-C-1-V03.doc&wdOrigin=BROWSELINK/ (accessed on 5 August 2021).
- Hu, X.F.; Jiang, Y.F.; Zhan, H.Y.; Zhu, K. Study on transformation of heavy metal in soil from typical Pb-Zn smelting areas. Environ. Monit. 2015, 31, 92–97. (In Chinese) [Google Scholar] [CrossRef]
- Jamal, A.; Delavar, M.A.; Naderi, A.; Nourieh, N.; Medi, B.; Mahvi, A.H. Distribution and health risk assessment of heavy metals in soil surrounding a lead and zinc smelting plant in Zanjan, Iran. Hum. Ecol Risk. Assess. 2018, 25, 1018–1033. [Google Scholar] [CrossRef]
- Jelecevic, A.; Horn, D.; Eigner, H.; Sager, M.; Liebhard, P.; Moder, K.; Vollprecht, D. Kinetics of lead release from soils at historic mining and smelting sites, determined by a modified electro-ultrafiltration. Plant. Soil. Environ. 2019, 65, 298–306. [Google Scholar] [CrossRef]
- Kim, H.R.; Kim, K.H.; Yu, S.; Moniruzzaman, M.; Hwang, S.; Lee, G.T.; Yun, S.T. Better assessment of the distribution of As and Pb in soils in a former smelting area, using ordinary co-kriging and sequential gaussian co-simulation of portable X-ray fluorescence (PXRF) and ICP-AES data. Geoderma 2019, 341, 26–38. [Google Scholar] [CrossRef]
- Komarek, M.; Chrastny, V.; Stichova, J. Metal/metalloid contamination and isotopic composition of lead in edible mushrooms and forest soils originating from a smelting area. Environ. Int. 2007, 33, 677–684. [Google Scholar] [CrossRef]
- Li, J.Y.; Yang, Y.Z.; Li, Z.L.; Chen, J.M.; Jiang, Y.X. In-situ heavy-metal pollution and health risks in the vegetables in Datun Town, Gejiu City, Yunnan. J. Saf. Environ. 2013, 13, 91–96. (In Chinese) [Google Scholar] [CrossRef]
- Li, P.; Lin, C.; Cheng, H.; Duan, X.; Lei, K. Contamination and health risks of soil heavy metals around a lead/zinc smelter in Southwestern China. Ecotoxicol. Environ. Saf. 2015, 113, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.G.; Feng, X.B.; Li, G.H.; Bi, X.Y.; Sun, G.G.; Zhu, J.M.; Qin, H.B.; Wang, J.X. Mercury and other metal and metalloid soil contamination near a Pb/Zn smelter in east Hunan Province, China. Appl. Geochem. 2011, 26, 160–166. [Google Scholar] [CrossRef]
- Lin, W.J.; Xiao, T.F.; Zhou, W.C.; Ao, Z.Q. Environmental concerns on geochemical mobility of lead-zinc and cadmium from zinc smelting areas: Western Guizhou, China. Environ. Sci. 2009, 30, 2065–2070. (In Chinese) [Google Scholar] [CrossRef]
- Liu, T.Z.; Yang, Y.G.; Bi, X.Y.; Li, F.L.; Fu, Z.Y.; Jin, Z.S. The distribution characters and chemical speciation variations of lead in the soil induced by local zinc smelting activities in Hezhang County Province. Earth Environ. 2007, 35, 123–127. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=DZDQ200702005&DbName=CJFQ2007 (accessed on 4 August 2021). (In Chinese).
- Liu, X.Y.; Chen, M.B.; Li, L.Z.; Hu, G.C.; Huang, J.H.; Liu, S.; Zhang, L.J.; Yu, Y.J. Contaminant characteristics and health risk assessment of heavy metals in soils from lead-zincs melting plant in Huize County, Yunnan Province, China. J. Agric. Resour. Environ. 2016, 33, 221–229. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.J.; Feng, T. Contamination assessment and spatial distribution of heavy metals in lead-zinc smelting plant. J. Northwest Univ. (Nat. Sci. Ed.) 2014, 44. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.J.; Liu, H.Y.; Ma, H.Z.; Zhang, Q.H.; Feng, T.; Sun, D.L. Spatial distribution and ecological risk assessment of heavy metals in soil around a lead and zinc smelter. Chin. J. Environ. Eng. 2015, 9, 477–484. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=HJJZ201501079&DbName=CJFQ2015 (accessed on 4 August 2021).
- Liu, Z.F.; Hu, S.B.; Song, F.M. Pollution characteristics and speciation analysis of heavy metals in soils around a lead-zinc smelter area in Shaanxi Province, China. J. Agro-Environ. Sci. 2019, 38, 818–826. (In Chinese) [Google Scholar] [CrossRef]
- Loska, K.; Wiechuła, D.; Korus, I. Metal contamination of farming soils affected by industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef]
- Luo, Y.H. Investigation of soil pollution from heavy metals and assessment of its ecological risk around a smelting plant in Shaoguan. J. Anhui Agric. Sci. 2016, 44, 133–136. (In Chinese) [Google Scholar] [CrossRef]
- Ma, J.; Lei, M.; Weng, L.; Li, Y.; Chen, Y.; Islam, M.S.; Zhao, J.; Chen, T. Fractions and colloidal distribution of arsenic associated with iron oxide minerals in lead-zinc mine-contaminated soils: Comparison of tailings and smelter pollution. Chemosphere 2019, 227, 614–623. [Google Scholar] [CrossRef] [PubMed]
- MEEPRC (Ministry of Ecology and Environment of the People’s Republic of China). Soil Environmental Quality-Risk Control Standard for Soil Contaminate of Agricultural Land. 2018. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/trhj/201807/t20180703_446029.shtml (accessed on 2 August 2021).
- MEEPRC (Ministry of Ecology and Environment of the People’s Republic of China). Soil Environmental Quality-Risk Control Standard for Soil Contaminate of Development Land. 2018. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/trhj/201807/t20180703_446027.shtml (accessed on 2 August 2021).
- Menrath, W.; Zakaria, Y.; El-Safty, A.; Clark, C.S.; Roda, S.M.; Elsayed, E.; Lind, C.; Pesce, J.; Peng, H. Use of a field portable X-ray fluorescence analyzer for environmental exposure assessment of a neighborhood in Cairo, Egypt adjacent to the site of a former secondary lead smelter. J. Occup. Environ. Hyg. 2015, 12, 555–563. [Google Scholar] [CrossRef]
- Michalkova, Z.; Komarek, M.; Sillerova, H.; Della Puppa, L.; Joussein, E.; Bordas, F.; Vanek, A.; Vanek, O.; Ettler, V. Evaluating the potential of three Fe- and Mn-(nano)oxides for the stabilization of Cd, Cu and Pb in contaminated soils. J. Environ. Manag. 2014, 146, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Nahmani, J.; Hodson, M.E.; Black, S. Effects of metals on life cycle parameters of the earthworm eisenia fetida exposed to field-contaminated, metal-polluted soils. Environ. Pollut. 2007, 149, 44–58. [Google Scholar] [CrossRef]
- NZME (New Zealand Ministry of the Environment). Proposed National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health. 2011. Available online: https://environment.govt.nz/assets/Publications/Files/propsed-nes-assess-manage-contaminants-in-soil.pdf (accessed on 3 August 2021).
- Prapaipong, P.; Enssle, C.W.; Morris, J.D.; Shock, E.L.; Lindvall, R.E. Rapid transport of anthropogenic lead through soils in Southeast Missouri. Appl. Geochem. 2008, 23, 2156–2170. [Google Scholar] [CrossRef]
- Rieuwerts, J.S.; Farago, M.; CikrtI, M.; Bencko, V. Heavy metal concentrations in and around households near a secondary lead smelter. Environ. Monit. Assess. 1997, 58, 317–335. [Google Scholar] [CrossRef]
- Rieuwerts, J.S.; Farago, M.; CikrtI, M.; Bencko, V. Differences in lead bioavailablity between a smelting and a mining area. Water Air Soil Pollut. 2000, 122, 203–229. [Google Scholar] [CrossRef]
- Sivry, Y.; Riotte, J.; Sonke, J.E.; Audry, S.; Schäfer, J.; Viers, J.; Blanc, G.; Freydier, R.; Dupré, B. Zn isotopes as tracers of anthropogenic pollution from Zn-ore smelters The Riou Mort–Lot River system. Chem. Geol. 2008, 255, 295–304. [Google Scholar] [CrossRef]
- Stafilov, T.; Sajn, R.; Pancevski, Z.; Boev, B.; Frontasyeva, M.V.; Strelkova, L.P. Heavy metal contamination of topsoils around a lead and zinc smelter in the Republic of Macedonia. J. Hazard. Mater. 2010, 175, 896–914. [Google Scholar] [CrossRef]
- Sterckeman, T.; Douay, F.; Proix, N.; Fourrier, H.; Perdrix, E. Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of France. Water Air Soil Pollut. 2002, 135, 173–194. [Google Scholar] [CrossRef]
- Tembo, B.D.; Sichilongo, K.; Cernak, J. Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe Town in Zambia. Chemosphere 2006, 63, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Tosza, E.; Dumnicka, E.; Niklińska, M.; Rożen, A. Enchytraeid and earthworm communities along a pollution gradient near Olkusz (Southern Poland). Eur. J. Soil. Biol. 2010, 46, 218–224. [Google Scholar] [CrossRef]
- USEPA(United States Environmental Protection Agency). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; USEPA: Washington, DC, USA, 2001.
- USEPA(United States Environmental Protection Agency). Ecological Soil Screening Levels for Cadmium Interim Final; D.C. United States Environmental Protection Agency Washington, 2005. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/eco-ssl_cadmium.pdf (accessed on 2 August 2021).
- Wang, L.J.; Lu, X.W.; Jing, Q.; Ren, C.H.; Chen, C.C.; Li, X.X.; Luo, D.C. Heavy metals pollution in soil around the lead-zinc smelting plant in Changqing Town of Baoji City, China. J. Agro-Environ. Sci. 2012, 31, 325–330. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=NHBH201202019&DbName=CJFQ2012 (accessed on 2 August 2021). (In Chinese).
- Wu, J.; Long, J.; Liu, L.; Li, J.; Liao, H.; Zhang, M.; Zhao, C.; Wu, Q. Risk assessment and source identification of toxic metals in the agricultural soil around a Pb/Zn mining and smelting area in Southwest China. Int. J. Environ. Res. Public Health 2018, 15, 1838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, R.; Shen, F.; Du, J.; Li, R.; Lahori, A.H.; Zhang, Z. Screening of native plants from wasteland surrounding a Zn smelter in Feng county China, for phytoremediation. Ecotoxicol. Environ. Saf. 2018, 162, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Zheng, Y.; Scheckel, K.G.; Luo, Y.; Li, L. Spatial distribution of smelter emission heavy metals on farmland soil. Environ. Monit. Assess. 2019, 191, 115. [Google Scholar] [CrossRef]
- Xu, Y.X.; Wang, Q.H.; Xue, L.; Peng, Y.K.; Wang, H.B. The characteristics of heavy metals in soil around the lead and zinc smelter in Western Guanzhon. Chin. J. Soil Sci. 2013, 44, 1240–1244. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Liu, C.; Lu, J.; Qin, Y.; Mo, Y.; Xiao, P.; Liu, Y. Identification of the heavy metal pollution sources in the rhizosphere soil of farmland irrigated by the yellow river using PMF analysis combined with multiple analysis methods-using Zhongwei City, Ningxia, as an example. Environ. Sci. Pollut. Res. Int. 2020, 27, 16203–16214. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Ding, X.M.; Liu, H.L. Study on microstructure of the heavy metal contaminated soil under an abandoned lead smelting factory in Chongqing. J. Disaster Prev. Mitigration Eng. 2018, 38, 809–814. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, T.S.; Pan, L.B.; Wang, M.X.; Liu, K.; Zhong, B.Q.; Zhang, J.L. Lead contents and distribution characteristics of soils and vegetables around an abandoned lead smeltery. J. Agric. Resour. Environ. 2016, 33, 376–383. (In Chinese) [Google Scholar] [CrossRef]
n | Min | Median | Max | Mean | SD | CV% | UCC a | |
---|---|---|---|---|---|---|---|---|
Sampling radius 0–2 km | ||||||||
As | 22 | 8.7 | 46.9 | 1442.0 | 208.3 | 398.9 | 190 | 5.7 |
Cd | 39 | 0.7 | 12.0 | 163.0 | 26.6 | 33.3 | 130 | 0.1 |
Cu | 30 | 19.7 | 75.3 | 1321.3 | 191.8 | 285.3 | 150 | 27.0 |
Pb | 48 | 35.2 | 666.3 | 45,272.0 | 4192.6 | 8242.7 | 200 | 25.0 |
Zn | 36 | 67.9 | 1074.1 | 19,859.0 | 2787.7 | 4710.9 | 170 | 75.0 |
Sampling radius 2–20 km | ||||||||
As | 10 | 5.2 | 16.0 | 57.1 | 19.7 | 15.3 | 80 | 5.7 |
Cd | 20 | 0.6 | 6.0 | 48.7 | 11.6 | 13.4 | 120 | 0.1 |
Cu | 20 | 8.5 | 46.5 | 271.7 | 96.1 | 91.1 | 90 | 27.0 |
Pb | 23 | 39.8 | 250.1 | 1738.0 | 420.8 | 456.9 | 110 | 25.0 |
Zn | 22 | 62.5 | 449.4 | 2333.3 | 789.2 | 746.6 | 90 | 75.0 |
Country | Standard Value of Soil Environment (mg/kg) | PI for Standard Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
As | Cd | Cu | Pb | Zn | As | Cd | Cu | Pb | Zn | |
Forest land | ||||||||||
U.S.A. | 18 | 32 | 70 | 120 | 160 | 4.79 | 0.69 | 4.09 | 73.22 | 3.41 |
Belgium | 926 | 2.7 | 362 | 581 | 721 | 0.09 | 8.12 | 0.79 | 15.12 | 0.76 |
Farmland | ||||||||||
China | 40 | 0.3 | 50 | 90 | 200 | 4.60 | 67.57 | 7.67 | 27.60 | 11.57 |
Belgium | 820 | 12 | 587 | 2492 | 4156 | 0.22 | 1.69 | 0.65 | 1.00 | 0.56 |
Canada | 12 | 1.4 | 63 | 70 | 200 | 15.35 | 14.48 | 6.09 | 35.48 | 11.57 |
Japan | 15 | 125 | 12.28 | 3.07 | ||||||
Czech | 65 | 10 | 250 | 1500 | 2.83 | 2.03 | 1.53 | 1.54 | ||
Smelting area | ||||||||||
China | 60 | 65 | 18,000 | 800 | 5.83 | 0.56 | 0.02 | 8.05 | ||
U.S.A. | 1 | 0.4 | 620 | 349.86 | 91.21 | 5.97 | ||||
Belgium | 917 | 19 | 594 | 1837 | 2953 | 0.38 | 1.92 | 0.65 | 3.51 | 1.25 |
Canada | 12 | 22 | 91 | 600 | 360 | 29.15 | 1.66 | 4.22 | 10.74 | 10.28 |
New Zealand | 70 | 13 | 3300 | 5.00 | 0.03 | 1.95 | ||||
Living area | ||||||||||
China | 20 | 20 | 2000 | 400 | 0.85 | 1.02 | 0.03 | 1.65 | ||
U.S.A. | 1 | 0 | 620 | 17.08 | 51.20 | 5.27 | ||||
Belgium | 683 | 10 | 489 | 2077 | 3646 | 0.03 | 2.05 | 0.13 | 0.32 | 0.90 |
Canada | 12 | 10 | 63 | 140 | 200 | 1.42 | 2.05 | 1.00 | 4.72 | 16.34 |
New Zealand | 20 | 3 | 210 | 0.85 | 6.83 | 3.14 |
Land Use | ER a-As | ER-Cd | ER-Cu | ER-Pb | ER-Zn | RI |
---|---|---|---|---|---|---|
Forest land | 151 | 10,967 | 53 | 1757 | 7 | 12,935 |
(42–326) | (1530–42,425) | (5–136) | (42–5054) | (0.9–22) | ||
Farmland | 323 | 10,135 | 17 | 497 | 31 | 11,004 |
(15–2256) | (355–81,500) | (4–936) | (7–4037) | (1–265) | ||
Smelting area | 708 | 18,242 | 71 | 1289 | 49 | 20,359 |
(26–2529) | (3845–52,830) | (4–245) | (40–9054) | (2–244) | ||
Living area | 30 | 10,240 | 12 | 132 | 44 | 10,457 |
(22–37) | (1320–26,700) | (10–14) | (65–260) | (6–98) | ||
Average | 381 | 12,669 | 38 | 853 | 35 | 13,976 |
(15–2529) | (355–81,500) | (4–245) | (7–9054) | (0.9–265) |
Land Use | CR a-As(×10−6) | NCR b-Cd | NCR-Cu | NCR-Pb | NCR-Zn | Total NCR |
---|---|---|---|---|---|---|
Forest land | 126.7 | 0.3 | 0.1 | 22.0 | 0.02 | 22.3 |
(35.3–273.5) | (0.04–1.2) | (0.01–0.2) | (0.5–63.2) | (0.003–0.07) | (0.6–63.4) | |
Farmland | 270.9 | 0.3 | 0.03 | 6.2 | 0.1 | 6.5 |
(12.8–1891.2) | (0.01–2.3) | (0.01–0.2) | (0.1–50.5) | (0.01–0.9) | (0.1–50.5) | |
Smelting area | 514.5 | 0.5 | 0.1 | 16.1 | 0.2 | 16.8 |
(22.1–2120.6) | (0.1–1.5) | (0.01–0.4) | (0.5–113.2) | (0.02–0.8) | (0.5–113.5) | |
Living area | 25.1 | 0.3 | 0.02 | 1.7 | 0.1 | 2.0 |
(19.1–31.1) | (0.04–0.8) | (0.016–0.024) | (0.8–3.3) | (0.02–0.3) | (0.9–4.3) | |
Average | 1701.3 | 0.3 | 0.1 | 22.0 | 0.02 | 11.9 |
(12.8–2120.6) | (0.01–2.3) | (0.01–0.4) | (0.05–57.0) | (0.003–0.9) | (0.1–113.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Peng, C.; Liu, X.; Jiang, Z.; Guo, Z.; Xiao, X. Pollution and Risk Assessments of Heavy Metal(loid)s in the Soil around Lead-Zinc Smelteries via Data Integration Analysis. Int. J. Environ. Res. Public Health 2022, 19, 9698. https://doi.org/10.3390/ijerph19159698
Zhou Z, Peng C, Liu X, Jiang Z, Guo Z, Xiao X. Pollution and Risk Assessments of Heavy Metal(loid)s in the Soil around Lead-Zinc Smelteries via Data Integration Analysis. International Journal of Environmental Research and Public Health. 2022; 19(15):9698. https://doi.org/10.3390/ijerph19159698
Chicago/Turabian StyleZhou, Ziruo, Chi Peng, Xu Liu, Zhichao Jiang, Zhaohui Guo, and Xiyuan Xiao. 2022. "Pollution and Risk Assessments of Heavy Metal(loid)s in the Soil around Lead-Zinc Smelteries via Data Integration Analysis" International Journal of Environmental Research and Public Health 19, no. 15: 9698. https://doi.org/10.3390/ijerph19159698
APA StyleZhou, Z., Peng, C., Liu, X., Jiang, Z., Guo, Z., & Xiao, X. (2022). Pollution and Risk Assessments of Heavy Metal(loid)s in the Soil around Lead-Zinc Smelteries via Data Integration Analysis. International Journal of Environmental Research and Public Health, 19(15), 9698. https://doi.org/10.3390/ijerph19159698