Rhamnolipid-Enhanced ZVI-Activated Sodium Persulfate Remediation of Pyrene-Contaminated Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Supply Soil and Preparation of Contaminated Soil
2.3. Solubilization and Oxidation Experiments
2.4. Analytical Methods
3. Results
3.1. Optimization of RL Elution Conditions
3.1.1. Effect of RL Concentration on Elution Rate
3.1.2. Effect of Temperature and Number of Drenching on Elution Rate
3.2. ZVI Activates Na2S2O8 to Degrade Pyrene in Drench Solution
3.2.1. Effect of ZVI Addition on Degradation Rate
3.2.2. Reaction Kinetics Study of Na2S2O8 Activation Using Two Particle Sizes of ZVI
3.2.3. Effect of Na2S2O8 Concentration and Temperature on the Degradation Rate
3.2.4. Analysis of Surface Morphology Changes and Reaction Products of ZVI
3.2.5. Possible Intermediates and Approaches of Pyrene Degradation
4. Conclusions
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, F.S.; Zhang, G.X.; Liao, X.Y. Negative role of biochars in the dissipation and vegetable uptake of polycyclic aromatic hydrocarbons (PAHs) in an agricultural soil: Cautions for application of biochars to remediate PAHs-contaminated soil. Ecotoxicol. Environ. Saf. 2021, 213, 112075. [Google Scholar] [CrossRef] [PubMed]
- Cristaldi, A.; Conti, G.O.; Jho, E.H.; Zuccarello, P.; Ferrante, M. Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ. Technol. Innov. 2017, 8, 309–326. [Google Scholar] [CrossRef]
- Xu, L.L.; Yu, J.; Wan, G.; Sun, L.S. Emission characteristics and source identification of polycyclic aromatic hydrocarbons (PAHs) from used mineral oil combustion. Fuel 2021, 304, 121357. [Google Scholar] [CrossRef]
- Akhbarizadeh, R.; Dobaradaran, S.; Torkmahalleh, M.A.; Saeedi, R.; Aibaghi, R.; Ghasemi, F.F. Suspended fine particulate matter (PM2.5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: Their possible relationships and health implications. Environ. Res. 2021, 192, 110339. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liao, X.; Huling, S.G.; Xue, T.; Liu, Q.; Cao, H.; Lin, Q. The combined effects of surfactant solubilization and chemical oxidation on the removal of polycyclic aromatic hydrocarbon from soil. Sci. Total Environ. 2019, 647, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Huguenot, D.; Mousset, E.; Hullebusch, E.; Oturan, M.A. Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons. J. Environ. Manag. 2015, 153, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, C.; Zhu, N.; Yuan, H.; Shen, Y. The extent of sludge solubilization allows to estimate the efficacy of ozonation for removal of polycyclic aromatic hydrocarbons (PAHs) in municipal sewage sludge. J. Hazard. Mater. 2021, 413, 125404. [Google Scholar] [CrossRef]
- Min, C.; Zeng, G.; Huang, D.; Cui, L.; Yang, L. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chem. Eng. J. 2016, 284, 582–598. [Google Scholar]
- Wang, Y.L.; Huang, Y.; Xi, P.Y.; Qiao, X.L.; Chen, J.W.; Cai, X.Y. Interrelated effects of soils and compounds on persulfate oxidation of petroleum hydrocarbons in soils. J. Hazard. Mater. 2021, 408, 124845. [Google Scholar] [CrossRef]
- Pardo, F.; Rosas, J.M.; Santos, A.; Romero, A. Remediation of a Biodiesel Blend-Contaminated Soil with Activated Persulfate by Different Sources of Iron. Water Air Soil Pollut. 2015, 226, 17. [Google Scholar] [CrossRef]
- Baciocchi, R.; D’Aprile, L.; Innocenti, I.; Massetti, F.; Verginelli, I. Development of technical guidelines for the application of in-situ chemical oxidation to groundwater remediation. J. Clean. Prod. 2014, 77, 47–55. [Google Scholar] [CrossRef]
- Ji, Y.; Shi, Y.; Wei, D.; Xin, W.; Jiang, M.; Lu, J. Thermo-Activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution—ScienceDirect. Chem. Eng. J. 2016, 298, 225–233. [Google Scholar] [CrossRef]
- Santos, A.; Fernandez, J.; Rodriguez, S.; Dominguez, C.M.; Lominchar, M.A.; Lorenzo, D.; Romero, A. Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate. Sci. Total Environ. 2018, 615, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, A.; Jafari, N.; Ebrahimpour, K.; Karimi, M.; Abdolahnejad, A. A novel ternary heterogeneous TiO2/BiVO4/NaY-Zeolite nanocomposite for photocatalytic degradation of microcystin-leucine arginine (MC-LR) under visible light. Ecotoxicol. Environ. Saf. 2021, 210, 111862. [Google Scholar] [CrossRef]
- Han, M.L.; Zhang, J.; Chu, W.; Zhou, G.F.; Chen, J.H. Surface-Modified Sewage Sludge-Derived Carbonaceous Catalyst as a Persulfate Activator for Phenol Degradation. Int. J. Environ. Res. Public Health 2020, 17, 3286. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Thavamani, P.; Venkateswarlu, K.; Lee, Y.B.; Naidu, R.; Megharaj, M. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere 2016, 168, 944–968. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Y.Y.; Zhong, S.; Zhang, L.S. AOPs-Based remediation of petroleum hydrocarbons-contaminated soils: Efficiency, influencing factors and environmental impacts. Chemosphere 2020, 246, 125726. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, J.J.; Gaston, L.A.; Li, J.F.; Fultz, L.M.; DeLaune, R.D.; Dodla, S.K. Remediation of crude oil-contaminated coastal marsh soil: Integrated effect of biochar, rhamnolipid biosurfactant and nitrogen application. J. Hazard. Mater. 2020, 396, 122595. [Google Scholar] [CrossRef]
- Cazals, F.; Huguenot, D.; Crampon, M.; Colombano, S.; Betelu, S.; Galopin, N.; Perrault, A.; Simonnot, M.-O.; Ignatiadis, I.; Rossano, S. Production of Biosurfactant Using the Endemic Bacterial Community of a PAHs Contaminated Soil, and Its Potential Use for PAHs Remobilization. Sci. Total Environ. 2020, 709, 136143. [Google Scholar] [CrossRef]
- Christopher, J.M.; Sridharan, R.; Somasundaram, S.; Ganesan, S. Bioremediation of Aromatic Hydrocarbons Contaminated Soil from Industrial Site Using Surface Modified Amino Acid Enhanced Biosurfactant. Environ. Pollut. 2021, 289, 117917. [Google Scholar] [CrossRef]
- Zhu, H.; Aitken, M.D. Surfactant-enhanced desorption and biodegradation of polycyclic aromatic hydrocarbons in contaminated soil. Environ. Sci. Technol. 2010, 44, 7260–7265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lominchar, M.A.; Lorenzo, D.; Romero, A.; Santos, A. Remediation of soil contaminated by PAHs and TPH using alkaline activated persulfate enhanced by surfactant addition at flow conditions. J. Chem. Technol. Biotechnol. 2018, 93, 1270–1278. [Google Scholar] [CrossRef]
- Qi, C.; Liu, X.; Lin, C.; Zhang, X.; Ma, J.; Tan, H. Degradation of sulfamethoxazole by microwave-activated persulfate: Kinetics, mechanism and acute toxicity. Chem. Eng. J. 2014, 249, 6–14. [Google Scholar] [CrossRef]
- Xu, J.-C.; Yang, L.-H.; Yuan, J.-X.; Li, S.-Q.; Peng, K.-M.; Lu, L.-J.; Huang, X.-F.; Liu, J. Coupling Surfactants with ISCO for Remediating of NAPLs: Recent Progress and Application Challenges. Chemosphere 2022, 303, 135004. [Google Scholar] [CrossRef]
- Chulhwan, K.; Wan, L.D.; Mok, H.Y.; Hanbyul, L.; Yeonjae, Y.; Gyuhyeok, K.; Jaejin, K. Desorption and solubilization of anthracene by a rhamnolipid biosurfactant from Rhodococcus fascians. Water Environ. Res. 2019, 91, 739–747. [Google Scholar]
- Costa, S.; Déziel, E.; Lépine, F. Characterization of rhamnolipid production by Burkholderia glumae. Lett. Appl. Microbiol. 2011, 53, 620–627. [Google Scholar] [CrossRef]
- Ram, G.; Joe, M.M.; Devraj, S.; Benson, A. Rhamnolipid production using Shewanella seohaensis BS18 and evaluation of its efficiency along with phytoremediation and bioaugmentation for bioremediation of hydrocarbon contaminated soils. Int. J. Phytoremediat. 2019, 21, 1375–1383. [Google Scholar] [CrossRef]
- Joe, M.; Gomathi, R.; Benson, A.; Shalini, D.; Rengasamy, P.; Henry, A.; Truu, J.; Truu, M.; Sa, T. Simultaneous Application of Biosurfactant and Bioaugmentation with Rhamnolipid-Producing Shewanella for Enhanced Bioremediation of Oil-Polluted Soil. Appl. Sci. 2019, 9, 3773. [Google Scholar] [CrossRef]
- Chang, J.H.; Qiang, Z.; Huang, C.P.; Ellis, A.V. Phenanthrene removal in unsaturated soils treated by electrokinetics with different surfactants—Triton X-100 and rhamnolipid. Colloids Surf. 2009, 348, 157–163. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, J.; Dick, R.P.; Li, H.; Shen, D.; Gao, Y.; Waigi, M.G.; Ling, W. Rhamnolipid Influences Biosorption and Biodegradation of Phenanthrene by Phenanthrene-Degrading Strain Pseudomonas Sp. Ph6. Environ. Pollut. 2018, 240, 359–367. [Google Scholar] [CrossRef]
- Wang, X.; Sun, L.; Wang, H.; Wu, H.; Chen, S.; Zheng, X. Surfactant-Enhanced bioremediation of DDTs and PAHs in contaminated farmland soil. Environ. Technol. 2018, 39, 1733–1744. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.H.; Xu, M.L.; Sun, Z.Q.; Li, H.L. Remediation of PAH-Contaminated Soil by Combining Surfactant Enhanced Soil Washing and Iron-Activated Persulfate Oxidation Process. Int. J. Environ. Res. Public. Health 2019, 16, 441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.M.; Lai, L.; Lu, Q.Y.; Mei, P.; Wang, Y.Q.; Cheng, L.; Liu, Y. Comparative studies on the surface/interface properties and aggregation behavior of mono-rhamnolipid and di-rhamnolipid. Colloids Surf. B 2019, 181, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Huang, C.F.; Mohanty, N.; Kurakalva, R.M. A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere 2008, 73, 1540–1543. [Google Scholar] [CrossRef]
- Posada-Baquero, R.; Grifoll, M.; Ortega-Calvo, J.-J. Rhamnolipid-Enhanced solubilization and biodegradation of PAHs in soils after conventional bioremediation. Sci. Total Environ. 2019, 668, 790–796. [Google Scholar] [CrossRef]
- Lamichhane, S.; Krishna, K.C.B.; Sarukkalige, R. Surfactant-Enhanced remediation of polycyclic aromatic hydrocarbons: A review. J. Environ. Manag. 2017, 199, 46–61. [Google Scholar] [CrossRef]
- Farzaneh, G.; Kalantary, R.; Nasseri, R.; Esrafili, S.; Azari, A. Reuse of polycyclic aromatic hydrocarbons (PAHs) contaminated soil washing effluent by bioaugmentation/biostimulation process. Sep. Purif. Technol. 2016, 168, 248–256. [Google Scholar]
- López-Vizcaíno, R.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. The use of a combined process of surfactant-aided soil washing and coagulation for PAH-contaminated soils treatment. Sep. Purif. Technol. 2012, 88, 46–51. [Google Scholar] [CrossRef]
- Ma, X.H.; Zhao, L.; Lin, Z.R.; Dong, Y.H. Soil washing in combination with homogeneous Fenton-like oxidation for the removal of 2,4,4′-trichlorodiphenyl from soil contaminated with capacitor oil. Environ. Sci. Pollut. 2016, 23, 7890–7898. [Google Scholar] [CrossRef]
- Pal, P.; Corpuz, A.G.; Hasan, S.W.; Sillanpaa, M.; Banat, F. Treatment of polycyclic aromatic hydrocarbons (PAHs) from aqueous solutions by flotation using colloidal gas aphrons. Sep. Purif. Technol. 2022, 285, 120367. [Google Scholar] [CrossRef]
- Ni, J.Z.; Luo, Y.M.; Wei, R.; Li, X.H. Distribution of polycyclic aromatic hydrocarbons in particle-size separates and density fractions of typical agricultural soils in the Yangtze River Delta, east China. Eur. J. Soil Sci. 2010, 59, 1020–1026. [Google Scholar] [CrossRef]
- Zhou, W.; Zhu, L. Efficiency of surfactant-enhanced desorption for contaminated soils depending on the component characteristics of soil-surfactant—PAHs system. Environ. Pollut. 2007, 147, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-M.; Huang, C.-P.; Lam, S.S.; Chen, C.-W.; Dong, C.-D. The removal of polycyclic aromatic hydrocarbons (PAHs) from marine sediments using persulfate over a nano-sized iron composite of magnetite and carbon black activator. J. Environ. Chem. Eng. 2020, 8, 104440. [Google Scholar] [CrossRef]
- Oh, S.Y.; Shin, D.S. Treatment of Diesel-Contaminated Soil by Fenton and Persulfate Oxidation with Zero-Valent Iron. Soil Sediment Contam. 2014, 23, 180–193. [Google Scholar] [CrossRef]
- Chen, S.; Liu, X.D.; Gao, S.Y.; Chen, Y.C.; Rao, L.J.; Yao, Y.Y.; Wu, Z.W. CuCo2O4 supported on activated carbon as a novel heterogeneous catalyst with enhanced peroxymonosulfate activity for efficient removal of organic pollutants. Environ. Res. 2020, 183, 109245. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Zhou, S.; Deng, J.; Tan, C.; Shao, Y. Zero-Valent iron/persulfate (Fe0/PS) oxidation acetaminophen in water. Int. J. Environ. Sci. Technol. 2014, 11, 881–890. [Google Scholar]
- Liang, Z.; Lin, H.Z.; Qi, J.Q.; Xu, X.Y.; Qi, H.Y. Effect of H2 on reductive transformation of p-ClNB in a combined ZVI-anaerobic sludge system. Water Res. 2012, 46, 6291–6299. [Google Scholar]
- Li, H.; Wan, J.; Ma, Y.; Wang, Y.; Huang, M. Influence of particle size of zero-valent iron and dissolved silica on the reactivity of activated persulfate for degradation of acid orange 7. Chem. Eng. J. 2014, 237, 487–496. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, H.Y.; Gao, S.H.; Han, S.F.; Tu, R.J.; Wei, W.; Cai, C.; Liu, P.; Jin, W.B.; Wang, Q.L. Effects of particle size of zero-valent iron (ZVI) on peroxydisulfate-ZVI enhanced sludge dewaterability. Korean J. Chem. Eng. 2017, 34, 2672–2677. [Google Scholar] [CrossRef]
- Lei, Y.J.; Zhang, J.; Tian, Y.; Yao, J.; Zuo, W. Enhanced degradation of total petroleum hydrocarbons in real soil by dual-frequency ultrasound-activated persulfate. Sci. Total Environ. 2020, 748, 141414. [Google Scholar] [CrossRef]
- Olmez-Hanci, T.; Arslan-Alaton, I.; Genc, B. Bisphenol A treatment by the hot persulfate process: Oxidation products and acute toxicity. J. Hazard. Mater. 2013, 263, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.Q.; Gao, N.Y.; Fu, D.F.; Qu, L.S.; Cui, S.B. Efficient degradation of paracetamol by UV/Persulfate and heat/persulfate systems. Fresenius Environ. Bull. 2018, 27, 5201–5211. [Google Scholar]
- Zeng, J.W.; Hu, L.L.; Tan, X.Q.; He, C.; He, Z.Y.; Pan, W.Q.; Hou, Y.H.; Shu, D. Elimination of methyl mercaptan in ZVI-S2O82− system activated with in-situ generated ferrous ions from zero valent iron. Catal. Today 2017, 281, 520–526. [Google Scholar] [CrossRef]
- Liu, Z.H.; Guo, W.L.; Han, X.M.; Li, X.H.; Zhang, K.; Qiao, Z.M. In situ remediation of ortho-nitrochlorobenzene in soil by dual oxidants (hydrogen peroxide/persulfate). Environ. Sci. Pollut. 2016, 23, 19707–19712. [Google Scholar] [CrossRef]
- Kang, J.; Wu, W.C.; Liu, W.X.; Li, J.H.; Dong, C.X. Zero-Valent iron (ZVI) Activation of Persulfate (PS) for Degradation of Para-Chloronitrobenzene in Soil. Bull. Environ. Contam. Toxicol. 2019, 103, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Orberger, B.; Wagner, C.; Wirth, R.; Quirico, E.; Gallien, J.P.; Derre, C.; Montagnac, G.; Noret, A.; Jayananda, M.; Massault, M.; et al. Origin of iron oxide spherules in the banded iron formation of the Bababudan Group, Dharwar Craton, Southern India. J. Asian Earth Sci. 2012, 52, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wan, J.; Ma, Y.; Huang, M.; Wang, Y.; Chen, Y. New insights into the role of zero-valent iron surface oxidation layers in persulfate oxidation of dibutyl phthalate solutions. Chem. Eng. J. 2014, 250, 137–147. [Google Scholar] [CrossRef]
- Li, Y.S.; Church, J.S.; Woodhead, A.L. Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications. J. Magn. Magn. Mater. 2012, 324, 1543–1550. [Google Scholar] [CrossRef]
- Makos, P.; Przyjazny, A.; Boczkaj, G. Methods of assaying volatile oxygenated organic compounds in effluent samples by gas chromatography—A review. J. Chromatogr. A 2019, 1592, 143–160. [Google Scholar] [CrossRef]
- Li, D.; Zhao, Y.Q.; Wang, L.P.; Wei, S.H.; Huang, S.M. Remediation of phenanthrene contaminated soil through persulfate oxidation coupled microbial fortification. J. Environ. Chem. Eng. 2021, 9, 106098. [Google Scholar] [CrossRef]
- Bai, X.X.; Wang, Y.; Zheng, X.; Zhu, K.M.; Long, A.H.; Wu, X.G.; Zhang, H. Remediation of phenanthrene contaminated soil by coupling soil washing with Tween 80, oxidation using the UV/S2O82− process and recycling of the surfactant. Chem. Eng. J. 2019, 369, 1014–1023. [Google Scholar] [CrossRef]
- Wu, D.; Kan, H.S.; Zhang, Y.; Wang, T.C.; Qu, G.Z.; Zhang, P.; Jia, H.Z.; Sun, H.W. Pyrene contaminated soil remediation using microwave/magnetite activated persulfate oxidation. Chemosphere 2022, 286, 131787. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Yang, F.; Jian, H.X.; Zhen, K.; Zhang, P.; Tang, X.J.; Fu, Z.; Xu, W.; Wang, C.P.; Sun, H.W. Pyrene degradation in an aqueous system using ferrous citrate complex activated persulfate over a wide pH range. J. Environ. Chem. Eng. 2021, 9, 106733. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.Y.; Li, L.; Lin, C.B.; Dong, W.L.; Shen, W.R.; Yong, X.Y.; Jia, H.H.; Wu, X.Y.; Zhou, J. Anaerobic biodegradation of pyrene by Klebsiella sp. LZ6 and its proposed metabolic pathway. Environ. Technol. 2020, 41, 2130–2139. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Wang, X.; Zhang, H.; Shi, Q.; Liu, H. Rhamnolipid-Enhanced ZVI-Activated Sodium Persulfate Remediation of Pyrene-Contaminated Soil. Int. J. Environ. Res. Public Health 2022, 19, 11518. https://doi.org/10.3390/ijerph191811518
Wang W, Wang X, Zhang H, Shi Q, Liu H. Rhamnolipid-Enhanced ZVI-Activated Sodium Persulfate Remediation of Pyrene-Contaminated Soil. International Journal of Environmental Research and Public Health. 2022; 19(18):11518. https://doi.org/10.3390/ijerph191811518
Chicago/Turabian StyleWang, Wenyang, Xiyuan Wang, Hao Zhang, Qingdong Shi, and Huapeng Liu. 2022. "Rhamnolipid-Enhanced ZVI-Activated Sodium Persulfate Remediation of Pyrene-Contaminated Soil" International Journal of Environmental Research and Public Health 19, no. 18: 11518. https://doi.org/10.3390/ijerph191811518
APA StyleWang, W., Wang, X., Zhang, H., Shi, Q., & Liu, H. (2022). Rhamnolipid-Enhanced ZVI-Activated Sodium Persulfate Remediation of Pyrene-Contaminated Soil. International Journal of Environmental Research and Public Health, 19(18), 11518. https://doi.org/10.3390/ijerph191811518