Application of New Sources of Bioactive Substances (Perilla frutescens L. and Tagetes erecta L.) in the Chosen Cookies Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Batter Preparation and Muffin Baking
2.3. Oil-Holding Capacity (OHC) of Extracts
2.4. Color Measurement of Plant Extract
2.5. Cooking Yield
- CY: cooking yield (%)
- Wb: weight of sample before baking (g)
- Wa: weight of sample after baking and cooling (g)
2.6. Specific Volume
2.7. Water Activity
2.8. Color
2.9. Texture
2.10. Total Phenol Content (TPC)
2.11. DPPH Free Radical Scavenging Activity
2.12. Consumer Acceptance
2.13. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Selected Properties of MEx and PEx Extracts
3.2. Cooking Yield
3.3. Specific Volume
3.4. Water Activity
3.5. Texture
3.6. Color
3.7. Total Polyphenol Content
3.8. DPPH Free Radical Scavenging Capacity
3.9. Consumer Acceptance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, A.S.; Jana, A.H.; Aparnathi, K.D.; Pinto, S.V. Evaluating sago as a functional ingredient in dietetic mango ice cream. J. Food Sci. Technol. 2010, 47, 582–585. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.; Ghosal, D.; Mehra, A. Characterization of bread dough: Rheological properties and microstructure. J. Food Eng. 2012, 109, 104–113. [Google Scholar] [CrossRef]
- Mamat, H.; Akanda, J.M.H.; Zainol, M.K.; Ling, Y.A. The influence of seaweed composite flour on the physicochemical properties of muffin. J. Aquat. Food Prod. Technol. 2018, 27, 635–642. [Google Scholar] [CrossRef]
- Karp, S.; Wyrwisz, J.; Kurek, M.; Wierzbicka, A. Physical properties of muffins sweetened with steviol glycosides as the sucrose replacement. Food Sci. Biotechnol. 2016, 25, 1591–1596. [Google Scholar] [CrossRef] [PubMed]
- Karp, S.; Wyrwisz, J.; Kurek, M.A.; Wierzbicka, A. Combined use of cocoa dietary fibre and steviol glycosides in low-calorie muffins production. Int. J. Food Sci. Technol. 2017, 52, 944–953. [Google Scholar] [CrossRef]
- Rutkowska, J.; Antoniewska, A.; Martinez-Pineda, M.; Nawirska-Olszańska, A.; Zbikowska, A.; Baranowski, D. Black chokeberry fruit polyphenols: A valuable addition to reduce oxidation of muffins containing xylitol. Antioxidants 2020, 9, 394. [Google Scholar] [CrossRef]
- Javanmardi, F.; Mousavi, M.M.; Ghazani, A.T.; Mahmoudpour, M.; Taram, F.; Pilevar, Z. Study on the Effect of Xylitol and Maltitol as Alternative Sweeteners in Sponge Cakes. Curr. Res. Nutr. Food Sci. 2020, 16, 403–409. [Google Scholar] [CrossRef]
- Kozłowska, M.; Żbikowska, A.; Szpicer, A.; Półtorak, A. Oxidative stability of lipid fractions of sponge-fat cakes after green tea extracts applicationn. J. Food Sci. Technol. 2019, 56, 2628–2638. [Google Scholar] [CrossRef]
- Żbikowska, A.; Szymańska, I.; Marciniak-Łukasiak, K.; Udarcić, Ż.; Kowalska, M. Wpływ udziału zielonej herbaty Matcha na wybrane wyróżniki jakości bezglutenowych biszkoptowo–tłuszczowych wyrobów ciastkarskich. Żyw. N. Techol. Jak. 2019, 1, 79–94. [Google Scholar] [CrossRef]
- Abdel-Naeem, H.H.S.; Mohamed, H.M.H. Improving the physico-chemical and sensory characteristics of camel meat burger patties using ginger extract and papain. Meat Sci. 2016, 118, 52–60. [Google Scholar] [CrossRef]
- Kozłowska, M.; Żbikowska, A.; Gruczyńska, E.; Żontała, K.; Półtorak, A. Effects of spice extracts on lipid fraction oxidative stability of cookies investigated by DSC. J. Therm. Anal. Calorim. 2014, 118, 1697–1705. [Google Scholar] [CrossRef]
- El–Sayed, S.M.; Youssef, A.M. Potential application of herbs and spices and their effects in functional dairy products. Heliyon 2019, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Siriamornpun, S.; Kaisoon, O.; Meeso, N. Changes in colour, antioxidant activities and carotenoids (lycopene, b-carotene, lutein) of marigold flower (Tagetes erecta L.) resulting from different drying processes. J. Funct. Foods 2012, 4, 757–766. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, K.H.; Lee, M.-H.; Kim, H.-T.; Seo, W.D.; Kim., J.Y.; Baek, I.-Y.; Jang, D.S.; Ha, T.J. Identification, characterisation, and quantification of phenolic compounds in the antioxidant activity-containing fraction from the seeds of Korean perilla (Perilla frutescens) cultivars. Food Chem. 2013, 136, 843–852. [Google Scholar] [CrossRef]
- Padalia, H.; Chanda, S. Antimicrobial Efficacy of Different Solvent Extracts of Tagetes erecta L. Flower, Alone and in Combination with Antibiotics. Appl. Microbiol. 2015, 1, 1000106. [Google Scholar] [CrossRef]
- Wang, X.-F.; Li, H.; Jiang, K.; Wang, Q.-Q.; Zheng, Y.-H.; Tang, W.; Tan, C.-H. Anti-inflammatory constituents from Perilla frutescens on lipopolysaccharide-stimulated RAW264.7 cells. Fitoterapia 2018, 130, 61–65. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Gupta, A.; Naraniwal, M.; Kothar, V. Modern extraction methods for preparation of bioactive plant extracts. J. Appl. Nat. Sci. 2012, 1, 8–26. [Google Scholar]
- Ćetković, G.S.; Djilas, S.M.; Ćanadanović-Brunet, J.M.; Tumbas, V.T. Antioxidant properties of marigold extracts. Food Res. Int. 2004, 37, 643–650. [Google Scholar] [CrossRef]
- Salehi, B.; Valussi, M.; Morias-Braga, M.F.B.; Carneiro, J.N.P.; Leal, A.L.A.B.; Coutinho, H.D.M.; Vitalini, S.; Kręgiel, D.; Antolak, H.; Sharifi-Rad, M.; et al. Tagetes spp. Essential oils and other extracts: Chemical characterization and biological activity. Molecules 2018, 23, 2847. [Google Scholar] [CrossRef]
- Romero, C.M.; Vivacqua, C.G.; Abdulhamid, M.B.; Baigori, M.D.; Slanis, A.C.; de Allori, M.C.G.; Tereschuk, M.L. Biofilm inhibition activity of traditional medicinal plants from Northwestern Argentina against native pathogen and environmental microorganisms. Rev. Soc. Bras. Med. Trop. 2016, 49, 703–712. [Google Scholar] [CrossRef]
- Wanzala, W.; Ogoma, S.B. Chemical Composition and Mosquito Repellency of Essential Oil of Tagetes minuta from the Southern Slopes of Mount Elgon in Western Kenya. J. Essent. Oil-Bear. Plants 2013, 16, 216–232. [Google Scholar] [CrossRef]
- Heo, J.C.; Nam, D.Y.; Seo, M.S.; Lee, S.H. Alleviation of atopic dermatitis-related symptoms by Perilla frutescens Britton. Int. J. Mol. Med. 2011, 28, 733–737. [Google Scholar] [PubMed]
- Oh, H.-A.; Park, C.-S.; Ahn, H.-J.; Park, Y.S.; Kim, H.-M. Effect of Perilla frutescens var. acuta Kudo and rosmarinic acid on allergic inflammatory reactions. Exp. Biol. Med. 2011, 236, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Nitta, M.; Lee, J.K.; Ohnishi, O. Asian perilla crops and their weedy forms: Their cultivation, utilization and genetic relationships. Econ. Bot. 2003, 57, 245–253. [Google Scholar] [CrossRef]
- Pandey, A.; Bhatt, K.C. Diversity distribution and collection of genetic resources of cultivated and weedy type in Perilla frutescens (L.) Britton var. frutescens and their uses in Indian Himalaya. Genet. Resour. Crop Evol. 2008, 55, 883–892. [Google Scholar] [CrossRef]
- Yu, H.; Qiu, J.-F.; Ma, L.-J.; Hu, Y.-J.; Li, P.; Wan, J.-B. Phytochemical and phytopharmacological review of Perilla frutescens L. (Labiatae), a traditional edible-medicinal herb in China. Food Chem. Toxicol. 2017, 108, 375–391. [Google Scholar] [CrossRef]
- Dhyani, A.; Chopra, R.; Garg, M. A review on nutritional value, functional properties and pharmacological application of Perilla (Perilla Frutescens L.). Biomed. Pharmacol. J. 2019, 12, 649–660. [Google Scholar] [CrossRef]
- Moczkowska, M.; Karp, S.; Niu, Y.; Kurek, M.K. Enzymatic, enzymatic-ultrasonic and alkaline extraction of soluble dietary fibre from flaxseed—A physicochemical approach. Food Hydrocoll. 2019, 90, 105–112. [Google Scholar] [CrossRef]
- AACC. Method 10-05.01: Guidelines for Measurement of Volume by Rapeseed Displacement Approved Methods of Analysis, 11th ed.; AACC International: St. Paul, MN, USA, 2000. [Google Scholar]
- Wyrwisz, J.; Karp, S.; Kurek, M.A.; Moczkowska-Wyrwisz, M. Evaluation of Modified Atmosphere Packaging in Combination with Active Packaging to Increase Shelf Life of High-in Beta-Glucan Gluten Free Cake. Foods 2022, 11, 872. [Google Scholar] [CrossRef]
- Gangopadhyay, N.; O’Shea, N.; Brunton, P.N.; Gallagher, E.; Harrison, M.S.; Rai, D.K. Fate of beta-glucan, polyphenols and lipophilic compounds in baked crackers fortified with different barley-milled fractions. LWT 2019, 114, 108–413. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Xing, Y.; Lei, H.; Wang, J.; Wang, Y.; Wang, J.; Xu, H. Effects of different drying methods on the total phenolic, rosmarinic acid and essential oil of Purple Perilla leaves. J. Essent. Oil-Bear. Plants 2017, 20, 1594–1606. [Google Scholar] [CrossRef]
- Samborska, K. Suszenie rozpyłowe w przemyśle spożywczym. Postępy Tech. Przetw. Spoż. 2008, 1, 63–69. [Google Scholar]
- Raherison, A.R.; Saroat, R. Properties of Moringa oleifera leaf protein from alkaline−acid extraction. Food Appl. Biosci. J. 2020, 8, 43–67. [Google Scholar]
- Aziah, A.A.N.; Komathi, C.A. Physicochemical and functional properties of peeled and unpeeled pumpkin flour. J. Food Sci. 2009, 74, 328–333. [Google Scholar] [CrossRef]
- Varastegani, B.; Zzaman, W.; Yang, T.A. Investigation on physicochemical and sensory evaluation of cookies substituted with papaya pulp flour. J. Food Qual. 2015, 38, 175–183. [Google Scholar] [CrossRef]
- Tank, A.; Chhanwal, N.; Indrani, D.; Anandharamakrishnan, C. Computational fluid dynamics modeling of bun baking process under different oven load conditions. J. Food Sci. Technol. 2014, 51, 2030–2037. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.V.; Silva, A.V.; Bonafé, E.G.; Souza, N.E.; Visentainer, J.V. Perilla frutescens: A potential ingredient for the enhancement of white bread as a source of Omega-3. Acta Sci. Technol. 2016, 38, 399–405. [Google Scholar] [CrossRef]
- Pałacha, Z. Aktywność wody ważny parametr jakości żywności. Żyw. Nauk. Tech. Jakość 2008, 4, 22–26. [Google Scholar]
- Singh, J.P.; Kaur, A.; Singh, N. Development of eggless gluten-free rice muffins utilizing black carrot dietary fibre concentrate and xanthan gum. J. Food Sci. Technol. 2015, 53, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.; Kim, M.-J.; Moon, B. Muffins enriched with dietary fiber from kimchi by–product: Baking properties, physical–chemical properties, and consumer acceptance. Food Sci. Nutr. 2019, 7, 1778–1785. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, J.; Balthazar, C.; Silva, R.; Rocha, R.; Graça, J.; Esmerino, E.; Silva, M.; Sant’Ana, A.; Duarte, M.C.M.; Freitas, M.Q.; et al. Impact of probiotics and prebiotics on food texture. Curr. Opin. Food Sci. 2020, 33, 38–44. [Google Scholar] [CrossRef]
- Yoon, M.-H.; Kim, K.-H.; Kim, N.-Y.; Byun, M.-W.; Yook, H.-S. Quality characteristics of muffin prepared with freeze dried-perilla leaves (Perilla frutescens var. japonica HARA) powder. J. Korean Soc. Food Sci. Nutr. 2011, 40, 581–585. [Google Scholar] [CrossRef]
- Nath, P.; Kale, S.J.; Kaur, C.; Chauhan, O.P. Phytonutrient composition, antioxidant activity and acceptability of muffins incorporated with red capsicum pomace powder. J. Food Sci. Technol. 2018, 55, 2208–2219. [Google Scholar] [CrossRef] [PubMed]
- Kowalczewski, P.; Ivanišová, E. Wpływ dodatku suszonych owoców jagodowych na cechy babeczek bezglutenowych. Postępy Tech. Przem. Rolno-Spoż. 2018, 73, 61–71. [Google Scholar]
- Choi, H.-Y.; Oh, S.Y.; Lee, Y.S. Antioxidant activity and quality characteristic of Perilla leaves (Perilla frutescens var japonica HARA) cookies. Korean J. Food Sci. Technol. 2009, 25, 521–530. [Google Scholar]
- Choi, S.-H. Quality characteristics of muffins added kale powder. Korean J. Food Cook Res. 2015, 21, 187–200. [Google Scholar]
- Gomez, M.; Ruiz-Paris, E.; Oliete, B.; Pando, V. Modeling of texture evolution of cakes during storage. J. Texture Stud. 2010, 41, 17–33. [Google Scholar] [CrossRef]
- Sabanis, D.; Lebesi, D.; Tzia, C. Effect of dietary fibre enrichment on selected properties of gluten-free bread. LWT 2009, 42, 1380–1389. [Google Scholar] [CrossRef]
- Topkaya, C.; Isik, F. Effects of pomegranate peel supplementation on chemical, physical and nutritional properties of muffin cakes. J. Food Process. Preserv. 2018, 43, e13868. [Google Scholar] [CrossRef]
Ingredients [g] | Control | MEx_1 | MEx_3 | MEx_5 | PEx_1 | PEx_3 | PEx_5 |
---|---|---|---|---|---|---|---|
Wheat flour (type 450) | 100.0 | 96.6 | 89.8 | 83.0 | 96.6 | 89.8 | 83.0 |
Sugar | 38.6 | 38.6 | 38.6 | 38.6 | 38.6 | 38.6 | 38.6 |
Rapeseed oil | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 |
Yogurt | 105.4 | 105.4 | 105.4 | 105.4 | 105.4 | 105.4 | 105.4 |
Baking powder | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 |
Eggs | 52.0 | 52.0 | 52.0 | 52.0 | 52.0 | 52.0 | 52.0 |
Marigold extract (MEx) | - | 3.4 | 10.2 | 17.0 | - | - | - |
Perilla extract (PEx) | - | - | - | - | 3.4 | 10.2 | 17.0 |
Salt | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Extracts | Color in CIE L*a*b* | OHC [g/g] | ||
---|---|---|---|---|
L* | a* | b* | ||
MEx | 54.65 ± 0.01 a | 6.19 ± 0.03 a | 18.82 ± 0.02 a | 4.4 ± 0.11 b |
PEx | 71.12 ± 0.61 b | 22.41 ± 0.29 b | 44.28 ± 0.93 b | 2.5 ± 0.08 a |
Samples | Cooking Yield [%] | Specific Volume [cm3/g] | Aw | Firmness [N] | Springiness [-] | Cohesiveness [-] |
---|---|---|---|---|---|---|
Control | 81.71 ± 1.14 a | 1.41 ± 0.21 a | 0.948 ± 0.005 b | 6.25 ± 0.39 b | 0.55 ± 0.07 b | 0.38 ± 0.04 a |
MEx_1 | 86.89 ± 0.65 b | 1.46 ± 0.27 a | 0.914 ±0.014 a | 6.69 ± 0.48 b | 0.60 ± 0.05 b | 0.41 ± 0.01 ab |
MEx_3 | 85.52 ± 0.74 b | 1.26 ± 0.17 a | 0.953 ± 0.006 b | 4.06 ± 0.61 a | 0.45 ± 0.07 a | 0.43 ± 0.02 b |
MEx_5 | 85.71 ± 0.37 b | 1.26 ± 0.20 a | 0.936 ± 0.002 ab | 4.29 ± 0.82 a | 0.35 ± 0.04 a | 0.43 ± 0.03 b |
PEx_1 | 85.16 ± 0.89 b | 1.45 ± 0.27 a | 0.947± 0.016 b | 6.60 ± 0.46 b | 0.66 ± 0.06 c | 0.39 ± 0.03 a |
PEx_3 | 85.58 ± 0.93 b | 1.24 ± 0.17 a | 0.931 ± 0.028 ab | 4.36 ± 0.54 a | 0.70 ± 0.05 c | 0.40 ± 0.03 a |
PEx_5 | 85.54 ± 0.64 b | 1.54 ± 0.21 a | 0.939 ± 0.006 b | 4.18 ± 0.62 a | 0.73 ± 0.03 c | 0.43 ± 0.00 b |
Crust | Crumb | |||||||
---|---|---|---|---|---|---|---|---|
L* | a* | b* | ΔE | L* | a* | b* | ΔE | |
Control | 29.10 ± 1.92 c | 11.96 ± 1.16 c | 19.42 ± 1.51 b | - | 61.63 ± 2.17 d | 3.37 ± 0.39 a | 25.63 ± 0.87 c | - |
MEx_1 | 29.97 ± 2.05 c | 10.22 ± 1.59 bc | 17.29 ± 2.68 b | 2.88 | 43.92 ± 2.40 c | 7.09 ± 0.36 b | 44.01 ± 2.05 e | 25.79 |
MEx_3 | 29.24 ±1.73 c | 11.44 ± 1.79 c | 16.40 ± 1.93 b | 3.07 | 41.23 ± 1.95 c | 9.82 ± 0.77 e | 42.34 ± 1.95 de | 27.14 |
MEx_5 | 28.27 ± 2.51 bc | 13.63 ± 1.84 c | 24.20 ± 2.64 c | 5.13 | 42.72 ± 2.91 c | 15.09 ± 1.02 f | 42.72 ± 3.63 de | 28.05 |
PEx_1 | 23.84 ± 1.50 a | 7.46 ± 1.26 a | 12.47 ± 1.74 a | 9.81 | 44.46 ± 2.28 c | 5.05 ± 0.12 b | 20.39 ± 0.88 b | 18.03 |
PEx_3 | 24.28 ± 1.86 a | 6.79 ± 2.12 a | 8.45 ± 2.73 a | 13.05 | 33.78 ± 2.06 b | 6.13 ± 0.66 c | 15.86 ± 2.27 a | 29.64 |
PEx_5 | 27.14 ± 1.98 b | 8.24 ± 1.63 ab | 8.91 ± 0.99 a | 11.32 | 29.26 ± 1.92 a | 6.13 ± 0.63 c | 13.00 ± 1.60 a | 34.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moczkowska-Wyrwisz, M.; Jastrzębska, D.; Wyrwisz, J. Application of New Sources of Bioactive Substances (Perilla frutescens L. and Tagetes erecta L.) in the Chosen Cookies Production. Int. J. Environ. Res. Public Health 2022, 19, 11504. https://doi.org/10.3390/ijerph191811504
Moczkowska-Wyrwisz M, Jastrzębska D, Wyrwisz J. Application of New Sources of Bioactive Substances (Perilla frutescens L. and Tagetes erecta L.) in the Chosen Cookies Production. International Journal of Environmental Research and Public Health. 2022; 19(18):11504. https://doi.org/10.3390/ijerph191811504
Chicago/Turabian StyleMoczkowska-Wyrwisz, Małgorzata, Dominika Jastrzębska, and Jarosław Wyrwisz. 2022. "Application of New Sources of Bioactive Substances (Perilla frutescens L. and Tagetes erecta L.) in the Chosen Cookies Production" International Journal of Environmental Research and Public Health 19, no. 18: 11504. https://doi.org/10.3390/ijerph191811504
APA StyleMoczkowska-Wyrwisz, M., Jastrzębska, D., & Wyrwisz, J. (2022). Application of New Sources of Bioactive Substances (Perilla frutescens L. and Tagetes erecta L.) in the Chosen Cookies Production. International Journal of Environmental Research and Public Health, 19(18), 11504. https://doi.org/10.3390/ijerph191811504