Factors Affecting the Detection of Hexavalent Chromium in Cr-Contaminated Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Soils
2.3. Experimental Methods
2.3.1. Alkaline Digestion Experiment
2.3.2. New Pretreatment Method Establishment and Validation
2.4. Analytical Methods
3. Results and Discussion
3.1. The Effect of Alkali Digestion on Cr(VI) Analysis
3.1.1. The Effect of Digestion Time
3.1.2. The Effect of Soil Quality
3.1.3. The Effect of Particle Size
3.1.4. The Effect of Multiple Alkali Digestion
3.2. New Method Establishment and Validation
3.2.1. New Method Validation with Different Cr-Contaminated Soils
3.2.2. Fraction Analysis of Cr in the Cr-Contaminated Soil
3.2.3. Spectroscopic Analysis of Soils
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Endrodi, B.; Simic, N.; Wildlock, M.; Cornell, A. A review of chromium(VI) use in chlorate electrolysis: Functions, challenges and suggested alternatives. Electrochim. Acta 2017, 234, 108–122. [Google Scholar] [CrossRef]
- Lehoux, A.P.; Sanchez-Hachair, A.; Lefebvre, G.; Carlier, G.; Hébrard, C.; Lima, A.T.; Hofmann, A. Chromium (VI) retrieval from chromium ore processing residues by electrokinetic treatment. Water Air Soil Pollut. 2017, 228, 378–387. [Google Scholar] [CrossRef]
- Wei, M.; Li, W.; Tang, J.; Barnie, S.; Zhang, J.; Chen, H. New insight into mechanism of Cr(VI) migration and transformation in typical soils of chromite ore processing residue (COPR) contaminated sites. Environ. Earth Sci. 2021, 80, 673. [Google Scholar] [CrossRef]
- Kostarelos, K.; Rao, E.; Reale, D.; Moon, D.H. Reduction of Cr(VI) to Cr(III) in artificial, contaminated soil using ferrous sulfate heptahydrate and sodium thiosulfate. J. Am. Chem. Soc. 2009, 13, 135–139. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef]
- Němeček, J.; Lhotský, O.; Cajthaml, T. Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations. Sci. Total Environ. 2014, 485–486, 739–747. [Google Scholar] [CrossRef]
- Chrysochoou, M.; Ferreira, D.R.; Johnston, C.P. Calcium polysulfide treatment of Cr(VI)-contaminated soil. J. Hazard. Mater. 2010, 179, 650–657. [Google Scholar] [CrossRef]
- Chrysochoou, M.; Ting, A. A kinetic study of Cr(VI) reduction by calcium polysulfide. Sci. Total Environ. 2011, 409, 4072–4077. [Google Scholar] [CrossRef]
- Xu, X.-R.; Li, H.-B.; Li, X.-Y.; Gu, J.-D. Reduction of hexavalent chromium by ascorbic acid in aqueous solutions. Chemosphere 2004, 57, 609–613. [Google Scholar] [CrossRef]
- Prevot, A.B.; Ginepro, M.; Peracaciolo, E.; Zelano, V.; De Luca, D. Chemical vs bio-mediated reduction of hexavalent chromium. An in-vitro study for soil and deep waters remediation. Geoderma 2018, 312, 17–23. [Google Scholar] [CrossRef]
- Donati, E.; Oliver, C.; Curutchet, G. Reduction of chromium (VI) by the indirect action of thiobacillus thioparus. Braz. J. Chem. Eng. 2003, 20, 69–73. [Google Scholar] [CrossRef]
- Xie, Y.; Cwiertny, D.M. Use of dithionite to extend the reactive lifetime of nanoscale zero-valent iron treatment systems. Environ. Sci. Technol. 2010, 44, 8649–8655. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yang, F.; Dai, M.; Ali, I.; Shen, X.; Hou, X.; Alhewairini, S.S.; Peng, C.; Naz, I. Application of microbial immobilization technology for remediation of Cr(VI) contamination: A review. Chemosphere 2022, 286, 131721. [Google Scholar] [CrossRef] [PubMed]
- Moon, D.H.; Wazne, M.; Dermatas, D.; Christodoulatos, C.; Sanchez, A.M.; Grubb, D.G.; Chrysochoou, M.; Kim, M.-G. Long-term treatment issues with chromite ore processing residue (COPR): Cr(6+) reduction and heave. J. Hazard. Mater. 2007, 143, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Butler, E.C.; Chen, L.; Hansel, C.M.; Krumholz, L.R.; Madden, A.S.E.; Lan, Y. Biological versus mineralogical chromium reduction: Potential for reoxidation by manganese oxide. Environ. Sci. Process. Impacts 2015, 17, 1930–1940. [Google Scholar] [CrossRef]
- Hausladen, D.M.; Fendorf, S. Hexavalent chromium generation within naturally structured soils and sediments. Environ. Sci. Technol. 2017, 51, 2058–2067. [Google Scholar] [CrossRef]
- Li, Y.; Tian, X.; Liang, J.; Chen, X.; Ye, J.; Liu, Y.; Liu, Y.; Wei, Y. Remediation of hexavalent chromium in contaminated soil using amorphous iron pyrite: Effect on leachability, bioaccessibility, phytotoxicity and long-term stability. Environ. Pollut. 2020, 264, 114804. [Google Scholar] [CrossRef]
- Kotaś, J.; Stasicka, Z. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 2000, 107, 263–283. [Google Scholar] [CrossRef]
- Zhu, F.; Li, L.; Ma, S.; Shang, Z. Effect factors, kinetics and thermodynamics of remediation in the chromium contaminated soils by nanoscale zero valent Fe/Cu bimetallic particles. Chem. Eng. J. 2016, 302, 663–669. [Google Scholar] [CrossRef]
- Hu, S.; Li, D.; Qin, S.; Man, Y.; Huang, C. Interference of sulfide with iron ions to the analysis of Cr(VI) by Method 3060a & Method 7196a. J. Hazard. Mater. 2020, 398, 122837. [Google Scholar] [CrossRef]
- Dermatas, D.; Chrysochoou, M.; Moon, D.H.; Grubb, D.G.; Wazne, M.; Christodoulatos, C. Ettringite-induced heave in chromite ore processing residue (COPR) upon ferrous sulfate treatment. Environ. Sci. Technol. 2006, 40, 5786–5792. [Google Scholar] [CrossRef]
- Malherbe, J.; Isaure, M.-P.; Séby, F.; Watson, R.P.; Rodriguez-Gonzalez, P.; Stutzman, P.E.; Davis, C.W.; Maurizio, C.; Unceta, N.; Sieber, J.R.; et al. Evaluation of hexavalent chromium extraction method EPA Method 3060A for soils using XANES spectroscopy. Environ. Sci. Technol. 2011, 45, 10492–10500. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Method 3060A. In Alkaline Digestion for Hexavalent Chromium; United States Environmental Protection Agency: Washington, DC, USA, 1996. [Google Scholar]
- Vitale, R.J.; Mussoline, G.R.; Petura, J.C.; James, B.R. Hexavalent chromium extraction from soils: Evaluation of an alkaline digestion method. J. Environ. Qual. 1994, 23, 1249–1256. [Google Scholar] [CrossRef]
- James, B.R.; Petura, J.C.; Vitale, R.J.; Mussoline, G.R. Hexavalent chromium extraction from soils: A comparison of five methods. Environ. Sci. Technol. 1995, 29, 2377–2381. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, G.; Natali, C.; Di Giuseppe, D.; Beccaluva, L. Heavy metals in soils and sedimentary deposits of the Padanian Plain (Ferrara, Northern Italy): Characterisation and biomonitoring. J. Soils Sediments 2012, 12, 1145–1153. [Google Scholar] [CrossRef]
- USEPA. Method 3051. In Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils; United States Environmental Protection Agency: Washington, DC, USA, 1995. [Google Scholar]
- Ma, S.; Lv, H.; Shang, X. Determination of macroelements and microelements in flos sophorae by ICP-OES with microwave digestion. Asian J. Org. Chem. 2012, 24, 3067–3069. [Google Scholar]
- Waris, M.; Baig, J.A.; Kazi, T.G.; Afridi, H.I.; Maqsood, F. Microwave-assisted single-step extraction method for determination of heavy metals in saline soil and compare with conventional sequential extraction method. Environ. Earth Sci. 2021, 80, 153–167. [Google Scholar] [CrossRef]
- Newville, M. IFEFFIT: Interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 2001, 8, 322–324. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, J.; Wang, L.; Chen, J.; Hou, H.; Yang, J.; Lu, X. Long-term stability of FeSO4 and H2SO4 treated chromite ore processing residue (COPR): Importance of H(+) and SO4(2−). J. Hazard. Mater. 2017, 321, 720–727. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Li, Y.; Li, L.; Tang, M.; Hu, W.; Chen, L.; Ai, S. Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components. Sci. Total Environ. 2022, 825, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, J.; Zheng, J.; Song, Y.; Shi, Z.; Lin, Z.; Chai, L. Different pathways for Cr(III) oxidation: Implications for Cr(VI) reoccurrence in reduced chromite ore processing residue. Environ. Sci. Technol. 2020, 54, 11971–11979. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Singh, A. Extent and rates of chromium (VI) leaching from weathered chromium ore processing residue (COPR)-impacted soils. Abstr. Pap. Am. Chem. Soc. 2019, 257, 1155. [Google Scholar]
- Jagupilla, S.C.; Moon, D.H.; Wazne, M.; Christodoulatos, C.; Kim, M.-G. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate. J. Hazard. Mater. 2009, 168, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, J.; Peng, M.; Deng, Z.; Yang, J.; Liu, W.; Shi, Z.; Lin, Z. Identification of Cr(VI) speciation in ferrous sulfate-reduced chromite ore processing residue (rCOPR) and impacts of environmental factors erosion on Cr(VI) leaching. J. Hazard. Mater. 2019, 373, 389–396. [Google Scholar] [CrossRef]
- Hillier, S.; Roe, M.J.; Geelhoed, J.S.; Fraser, A.R.; Paterson, E. Role of quantitative mineralogical analysis in the investigation of sites contaminated by chromite ore processing residue. Sci. Total Environ. 2003, 308, 195–210. [Google Scholar] [CrossRef]
- Ma, J.; Xiong, H.B.; Gao, J.T.; Gao, Y.T. Physical chemical properties and BCR speciation analysis of cr-contaminated soil in plateau. In Proceedings of the 3rd International Conference on New Material and Chemical Industry (NMCI), Sanya, China, 17–19 November 2018; p. 012056. [Google Scholar]
- Darrie, G. Commercial extraction technology and process waste disposal in the manufacture of chromium chemicals from ore. Environ. Geochem. Health 2001, 23, 187–193. [Google Scholar] [CrossRef]
- Liu, D.; Xue, X.; Yang, H. The effect of chromium on the roasting process of vanadium extraction. Metals 2016, 6, 157. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.; Stewart, D.I.; Humphreys, P.N.; Rout, S.P.; Burke, I.T. Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site. Sci. Total Environ. 2016, 541, 1191–1199. [Google Scholar] [CrossRef] [Green Version]
Sample | Soil Texture | pH | Cr(VI) Content/(mg/kg) | Total Cr Content/(mg/kg) | The Residual Fraction of Cr by BCR Method |
---|---|---|---|---|---|
Soil A | Sandy loam | 9.19 ± 0.19 | 185.01 ± 15.33 | 2.12 × 104 ± 1110.38 | 66.33% |
Soil B | Sandy loam | 11.58 ± 0.23 | 5295.68 ± 253.21 | 5.43 × 104 ± 3865.25 | 75.50% |
Soil C | Sandy loam | 11.41 ± 0.35 | 2786.01 ± 112.35 | 1.08 × 104 ± 566.32 | 45.33% |
Soil D | silt | 7.3 ± 0.33 | 373.13 ± 56.32 | 1.89 × 103 ± 78.35 | 14.59% |
Element | F1 | F2 | F3 | F4 | Cr(VI) |
---|---|---|---|---|---|
F1 | 1 | ||||
F2 | −0.1779 | 1 | |||
F3 | 0.9855 | −0.1670 | 1 | ||
F4 | 0.8712 | 0.3279 | 0.8604 | 1 | |
Cr(VI) (New method) | 0.9200 | −0.1974 | 0.9726 | 0.7794 | 1 |
Cr(VI) (Conventional method) | 0.8574 | −0.2847 | 0.9281 | 0.6743 | 1 |
Soil | Sample | XANES Fitting | ||
---|---|---|---|---|
Species Percentage (%) | R-Factor | |||
Cr(Ⅲ) | Cr(VI) | |||
Soil A | original soil | 100 | <0.1 | 0.0126309 |
conventional method | 100 | <0.1 | 0.0138056 | |
new method once | 100 | <0.1 | 0.0178716 | |
new method final | 100 | <0.1 | 0.0226955 | |
Soil B | original soil | 100 | <0.1 | 0.0062285 |
new method | 100 | <0.1 | 0.0084095 | |
Soil C | original soil | 100 | <0.1 | 0.0079396 |
new method | 100 | <0.1 | 0.0073264 | |
Soil D | original soil | 73.5 | 26.5 | 0.0058493 |
new method | 100 | <0.1 | 0.0093941 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, M.; Ding, G.; Yan, X.; Rao, P.; Wang, X.; Meng, X.; Shi, Q. Factors Affecting the Detection of Hexavalent Chromium in Cr-Contaminated Soil. Int. J. Environ. Res. Public Health 2022, 19, 9721. https://doi.org/10.3390/ijerph19159721
Huang M, Ding G, Yan X, Rao P, Wang X, Meng X, Shi Q. Factors Affecting the Detection of Hexavalent Chromium in Cr-Contaminated Soil. International Journal of Environmental Research and Public Health. 2022; 19(15):9721. https://doi.org/10.3390/ijerph19159721
Chicago/Turabian StyleHuang, Mingtao, Guoyu Ding, Xianghua Yan, Pinhua Rao, Xingrun Wang, Xiaoguang Meng, and Qiantao Shi. 2022. "Factors Affecting the Detection of Hexavalent Chromium in Cr-Contaminated Soil" International Journal of Environmental Research and Public Health 19, no. 15: 9721. https://doi.org/10.3390/ijerph19159721
APA StyleHuang, M., Ding, G., Yan, X., Rao, P., Wang, X., Meng, X., & Shi, Q. (2022). Factors Affecting the Detection of Hexavalent Chromium in Cr-Contaminated Soil. International Journal of Environmental Research and Public Health, 19(15), 9721. https://doi.org/10.3390/ijerph19159721