Simultaneous Determination for Nine Kinds of N-Nitrosamines Compounds in Groundwater by Ultra-High-Performance Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. UHPLC-MS/MS Conditions
2.3. Sample Extraction
2.4. Collection and Preservation of Water Samples
3. Results and Discussion
3.1. Optimization of Chromatographic Conditions
3.2. Optimization of Mass Spectrometry Conditions
3.3. Validation of the Quantitative Method
3.4. Analysis of Actual Water Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Younger, P.L. Groundwater in the Environment: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef] [Green Version]
- Das, M.; Sharma, S.K.; Sekhon, G.S.; Saikia, B.J.; Mahanta, J.; Phukan, R.K. Promoter methylation of MGMT gene in serum of patients with esophageal squamous cell carcinoma in North East India. Asian Pac. J. Cancer Prev. 2014, 15, 9955–9960. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.H.; Huang, T.H.; Wang, C.Y. Impact of pre-oxidation on nitrosamine formation from a source to drinking water: A perspective on cancer risk assessment. Process Saf. Environ. Prot. 2018, 113, 424–434. [Google Scholar] [CrossRef]
- Nawrocki, J.; Andrzejewski, P. Nitrosamines and water. J. Hazard. Mater. 2011, 189, 1–18. [Google Scholar] [CrossRef]
- Amin, S.; Desai, D.; Hecht, S.S.; Hoffmann, D. Synthesis of Tobacco-Specific N-Nitrosamines and Their Metabolites and Results of Related Bioassays. Crit. Rev. Toxicol. 2017, 26, 139–147. [Google Scholar] [CrossRef]
- Negarian, M.; Mohammadinejad, A.; Mohajeri, S.A. Preparation, evaluation and application of core–shell molecularly imprinted particles as the sorbent in solid-phase extraction and analysis of lincomycin residue in pasteurized milk. Food Chem. 2019, 288, 29–38. [Google Scholar] [CrossRef]
- Herrero, R.; Castellsagué, X.; Pawlita, M.; Lissowska, J.; Kee, F.; Balaram, P.; Franceschi, S. Human papillomavirus and oral cancer: The International Agency for Research on Cancer multicenter study. J. Natl. Cancer Inst. 2003, 95, 1772–1783. [Google Scholar] [CrossRef] [Green Version]
- Mestankova, H.; Parker, A.M.; Bramaz, N.; Canonica, S.; Schirmer, K.; Von Gunten, U.; Linden, K.G. Transformation of Contaminant Candidate List (CCL3) compounds during ozonation and advanced oxidation processes in drinking water: Assessment of biological effects. Water Res. 2016, 93, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Planas, C.; Palacios, Ó.; Ventura, F.; Rivera, J.; Caixach, J. Analysis of nitrosamines in water by automated SPE and isotope dilution GC/HRMS: Occurrence in the different steps of a drinking water treatment plant, and in chlorinated samples from a reservoir and a sewage treatment plant effluent. Talanta 2008, 76, 906–913. [Google Scholar] [CrossRef]
- McDonald, J.A.; Harden, N.B.; Nghiem, L.D.; Khan, S.J. Analysis of N-nitrosamines in water by isotope dilution gas chromatography–electron ionisation tandem mass spectrometry. Talanta 2012, 99, 146–154. [Google Scholar] [CrossRef]
- Van Huy, N.; Murakami, M.; Sakai, H.; Oguma, K.; Kosaka, K.; Asami, M.; Takizawa, S. Occurrence and formation potential of N-nitrosodimethylamine in ground water and river water in Tokyo. Water Res. 2011, 45, 3369–3377. [Google Scholar] [CrossRef]
- Wang, W.; Yu, J.; An, W.; Yang, M. Occurrence and profiling of multiple nitrosamines in source water and drinking water of China. Sci. Total Environ. 2016, 551, 489–495. [Google Scholar] [CrossRef]
- Kačaroğlu, F. Review of groundwater pollution and protection in karst areas. Water Air Soil Pollut. 1999, 113, 337–356. [Google Scholar] [CrossRef]
- Thomas, H. Groundwater Quality and Groundwater Pollution; University of California Division of Agriculture and Natural Resources: Davis, CA, USA, 2003. [Google Scholar]
- Jurado-Sánchez, B.; Ballesteros, E.; Gallego, M. Screening of N-nitrosamines in tap and swimming pool waters using fast gas chromatography. J. Sep. Sci. 2010, 33, 610–616. [Google Scholar] [CrossRef]
- Nagendla, N.K.; Shaik, H.; Subrahanyam, S.B.; Godugu, D.; Mudiam, M.K.R. Development, validation, and estimation of measurement uncertainty for the quantitative determination of nitrosamines in Sartan drugs using liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. J. Chromatogr. Open 2022, 2, 100053. [Google Scholar] [CrossRef]
- Lu, J.; Li, M.; Huang, Y.; Xie, J.; Shen, M.; Xie, M. A comprehensive review of advanced glycosylation end products and N-Nitrosamines in thermally processed meat products. Food Control 2022, 131, 108449. [Google Scholar] [CrossRef]
- Maqbool, T.; Zhang, J.; Li, Q.; Qin, Y.; Chen, L.; Zhang, Z. Occurrence and fate of N-nitrosamines in three full-scale drinking water treatment systems with different treatment trains. Sci. Total Environ. 2021, 783, 146982. [Google Scholar] [CrossRef]
- Liu, C.; Liang, Z.; Yang, C.; Cui, F.; Zhao, Z. Nitrite-enhanced N-nitrosamines formation during the simulated tetracycline polluted groundwater chlorination: Experimental and theoretical investigation. Chem. Eng. J. 2022, 431, 133363. [Google Scholar] [CrossRef]
- Yingzhuo, H.O.U.; Yingjie, C.H.E.N.; Haixiang, L.I.; Honghu, Z.E.N.G.; Wenwen, C.H.E.N. The preconcentration, detection methods and degradation mechanisms of N-nitrosamine in soil: A review. Environ. Chem. 2021, 40, 3082–3092. [Google Scholar]
- Gruber, B.; David, F.; Sandra, P. Capillary gas chromatography-mass spectrometry: Current trends and perspectives. TrAC Trends Anal. Chem. 2020, 124, 115475. [Google Scholar] [CrossRef]
- Pozzi, R.; Bocchini, P.; Pinelli, F.; Galletti, G.C. Determination of nitrosamines in water by gas chromatography/chemical ionization/selective ion trapping mass spectrometry. J. Chromatogr. A 2011, 1218, 1808–1814. [Google Scholar] [CrossRef]
- Qian, Y.; Wu, M.; Wang, W.; Chen, B.; Zheng, H.; Krasner, S.W.; Li, X.F. Determination of 14 nitrosamines at nanogram per liter levels in drinking water. Anal. Chem. 2015, 87, 1330–1336. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; Huang, H.; Zhu, X.; Jiang, X.; Zhang, Y.; Qi, S. Comparison of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry with electron ionization for determination of N-nitrosamines in environmental water. Chemosphere 2017, 168, 1400–1410. [Google Scholar] [CrossRef]
- Munch, J.W.; Bassett, M.V. Method 521: Determination of Nitrosamines in Drinking Water by Solid Phase Extraction and Capillary Column Gas Chromatography with Large Volume Injection and Chemical Ionization Tandem Mass Spectrometry (MS/MS). In National Exposure Research Laboratory Office of Research and Development; US Environmental Protection Agency: Cincinnati, OH, USA, 2004; Volume 182. [Google Scholar]
- Amayreh, M. Determination of N-nitrosamines in Water by Automated Headspace Solid-Phase Microextraction. Arab. J. Sci. Eng. 2019, 44, 269–278. [Google Scholar] [CrossRef]
- Li, X.; He, X.; Dong, Y.; Jia, L.; He, Q. Analysis of N-nitrosodiethylamine by ion chromatography coupled with UV photolysis pretreatment. J. Food Drug Anal. 2016, 24, 311–315. [Google Scholar] [CrossRef] [Green Version]
- Yahaya, A.; Babatunde, D.; Olaniyan, L.W.; Agboola, O. Application of chromatographic techniques in the analysis of total nitrosamines in water. Heliyon 2020, 6, e03447. [Google Scholar] [CrossRef]
- Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Kim, H.; Sung, D.; Yu, H.; Jang, D.; Koo, Y.; Lee, S.; Choi, D. Comparison of EI-GC-MS/MS, APCI-LC-MS/MS, and ESI-LC-MS/MS for the Simultaneous Analysis of Nine Nitrosamines Eluted from Synthetic Resins into Artificial Saliva and Health Risk Assessment. Toxics 2021, 9, 230. [Google Scholar] [CrossRef]
- Shaik, K.M.; Sarmah, B.; Wadekar, G.S.; Kumar, P. Regulatory updates and analytical methodologies for nitrosamine impurities detection in sartans, ranitidine, nizatidine, and metformin along with sample preparation techniques. Crit. Rev. Anal. Chem. 2022, 52, 53–71. [Google Scholar] [CrossRef]
- Ripollés, C.; Pitarch, E.; Sancho, J.V.; López, F.J.; Hernández, F. Determination of eight nitrosamines in water at the ng L−1 levels by liquid chromatography coupled to atmospheric pressure chemical ionization tandem mass spectrometry. Anal. Chim. Acta 2011, 702, 62–71. [Google Scholar] [CrossRef]
- Kadmi, Y.; Favier, L.; Simion, A.I.; Rusu, L.; Pacala, M.L.; Wolbert, D. Measurement of pollution levels of N-nitroso compounds of health concern in water using ultra-performance liquid chromatography–tandem mass spectrometry. Process Saf. Environ. Prot. 2017, 108, 7–17. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, S.U.; Oh, J.E. Analysis of nine nitrosamines in water by combining automated solid-phase extraction with high-performance liquid chromatography-atmospheric pressure chemical ionisation tandem mass spectrometry. Int. J. Environ. Anal. Chem. 2013, 93, 1261–1273. [Google Scholar] [CrossRef]
- Ngongang, A.D.; Duy, S.V.; Sauvé, S. Analysis of nine N-nitrosamines using liquid chromatography-accurate mass high resolution-mass spectrometry on a Q-Exactive instrument. Anal. Methods 2015, 7, 5748–5759. [Google Scholar] [CrossRef]
- Deng, H.; Su, X.; Wang, H. Simultaneous determination of aflatoxin B1, bisphenol A, and 4-nonylphenol in peanut oils by liquid-liquid extraction combined with solid-phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Anal. Methods 2018, 11, 1303–1311. [Google Scholar] [CrossRef]
- Mitch, W.A.; Sedlak, D.L. Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination. Environ. Sci. Technol. 2002, 36, 588–595. [Google Scholar] [CrossRef]
- Tong, L.; Li, P.; Wang, Y.; Zhu, K. Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS. Chemosphere 2009, 74, 1090–1097. [Google Scholar] [CrossRef]
- Ötles, S.; Kartal, C. Solid-Phase Extraction (SPE): Principles and applications in food samples. Acta Sci. Pol. Technol. Aliment. 2016, 15, 5–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.M.; Rivory, L.P.; Clarke, S.J. Solid-phase extraction (SPE) techniques for sample preparation in clinical and pharmaceutical analysis: A brief overview. Curr. Pharm. Anal. 2006, 2, 95–102. [Google Scholar] [CrossRef]
- Brown, J.L. N-Nitrosamines. Occup. Med. 1999, 14, 839–848. [Google Scholar]
- Kühne, F.; Kappenstein, O.; Straβgütl, S.; Weese, F.; Weyer, J.; Pfaff, K.; Luch, A. N-nitrosamines migrating from food contact materials into food simulants: Analysis and quantification by means of hplc-apci-ms/ms. Food Addit. Contam. Part A 2018, 35, 793–806. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.; Kho, Y.; Chung, M.; Lee, K. Establishment of N-nitrosamines analytical methods in agricultural foods using LC-(APCI)-MS/MS. Environ. Epidemiol. 2019, 3, 303. [Google Scholar]
- Zhang, J.; Fan, Y.; Gong, Y.; Chen, X.; Wan, L.; Zhou, C.; Nie, J. Simultaneous determination of nine kinds of dominating bile acids in various snake bile by ultrahigh-performance liquid chromatography with triple quadrupole linear iontrap mass spectrometry. J. Chromatogr. B 2017, 1068, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, L.; Zhang, Z.; Tian, Y. Comparison of ESI–and APCI–LC–MS/MS methods: A case study of levonorgestrel in human plasma. J. Pharm. Anal. 2016, 6, 356–362. [Google Scholar] [CrossRef]
- Ismaiel, O.A.; Halquist, M.S.; Elmamly, M.Y.; Shalaby, A.; Karnes, H.T. Monitoring phospholipids for assessment of ion enhancement and ion suppression in ESI and APCI LC/MS/MS for chlorpheniramine in human plasma and the importance of multiple source matrix effect evaluations. J. Chromatogr. B 2008, 875, 333–343. [Google Scholar] [CrossRef]
- Pang, Y.H.; Lv, Z.Y.; Sun, J.C.; Yang, C.; Shen, X.F. Collaborative compounding of metal-organic frameworks for dispersive solid-phase extraction HPLC-MS/MS determination of tetracyclines in honey. Food Chem. 2021, 355, 129411. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Shen, L.; Jiang, Z.; Gao, M.; Qiu, Y.; Qi, H.; Chen, C. NDMA formation during ozonation of metformin: Roles of ozone and hydroxyl radicals. Sci. Total Environ. 2021, 796, 149010. [Google Scholar] [CrossRef]
- Sanchís, J.; Gernjak, W.; Munné, A.; Catalán, N.; Petrovic, M.; Farré, M.J. Fate of N-nitrosodimethylamine and its precursors during a wastewater reuse trial in the Llobregat River (Spain). J. Hazard. Mater. 2021, 407, 124346. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, W.; Huang, H.; Zeng, H.; Tan, L.; Pang, Y.; Qi, S. Occurrence of N-nitrosamines and their precursors in the middle and lower reaches of Yangtze River water. Environ. Res. 2021, 195, 110673. [Google Scholar] [CrossRef]
- Qiu, Y.; Bei, E.; Li, X.; Xie, S.; Xiao, H.; Luo, Y.; Chen, C. Quantitative analysis of source and fate of N-nitrosamines and their precursors in an urban water system in East China. J. Hazard. Mater. 2021, 415, 125700. [Google Scholar] [CrossRef]
- ICH Steering Committee. ICH Q2B Validation of Analytical Procedures: Methodology; CPMP/ICH/281/95; European Agency for the Evaluation of Medicinal Products, International Commission on Harmonisation: London, UK, 1996. [Google Scholar]
- JCGM GUM-6; Guide to the Expression of Uncertainty in Measurement Part 6: Developing and Using Measurement Models. BIPM: Saint-Cloud, France, 2020; Volume 103.
- Wang, L.; Zhang, X.; Chen, S.; Meng, F.; Zhang, D.; Liu, Y.; Qu, J. Spatial variation of dissolved organic nitrogen in Wuhan surface waters: Correlation with the occurrence of disinfection byproducts during the COVID-19 pandemic. Water Res. 2021, 198, 117138. [Google Scholar] [CrossRef]
- Liao, X.; Wang, C.; Wang, J.; Zhang, X.; Chen, C.; Krasner, S.W.; Suffet, I.H. Nitrosamine precursor and DOM control in an effluent-affected drinking water. J. Am. Water Work. Assoc. 2014, 106, E307–E318. [Google Scholar] [CrossRef]
Compound | Abbr. | Molecular Formula | Structural Formula | Boiling Temperature (°C) | Carcinogenicity |
---|---|---|---|---|---|
N-nitrosodimethylamine | NDMA | C2H6N2O | 153 | 2A a | |
N-nitromorpholine | NMOR | C5H10N2O | 226.1 | 2B b | |
N-nitrosopyrrolidine | NPYR | C4H8N2O | 214 | 2B | |
N-nitrosomethylethylamine | NMEA | C3H8N2O | 154.4 | 2B | |
N-nitrosodiethylamine | NDEA | C4H10N2O | 173.9 | 2A | |
N-nitrosopiperidine | NPIP | C5H10N2O | 229.8 | 2B | |
N-nitrosodi-n-propylamine | NDPA | C6H14N2O | 206 | 2B | |
N-nitrosodi-n-butylamide | NDBA | C8H18N2O | 250 | 2B | |
N-nitrosodiphenylamine | NDPhA | C12H10N2O | 268 | — |
Time (min) | Module | Command | Value |
---|---|---|---|
0.01 | Pumps | Pump B Conc. | 90 |
2.50 | Pumps | Pump B Conc. | 40 |
10.00 | Pumps | Pump B Conc. | 40 |
10.01 | Pumps | Pump B Conc. | 90 |
12.00 | Pumps | Stop |
Compound | CAS No. | Interface Voltage (KV) | Precursor Ions | Product Ions | Q1 Pre Bias (V) | CE (V) | Q3 Pre Bias (V) |
---|---|---|---|---|---|---|---|
NDMA | 62-75-9 | 1.0 | 75.15 | 58.10 * | −13 | −15 | −22 |
43.10 | −13 | −16 | −16 | ||||
NMOR | 59-89-2 | 4.5 | 117.30 | 87.20 * | −13 | −11 | −13 |
45.00 | −19 | −18 | −17 | ||||
NPYR | 930-55-2 | 4.5 | 101.10 | 55.15 * | −17 | −16 | −20 |
39.05 | −17 | −30 | −13 | ||||
NMEA | 624-78-2 | 4.5 | 89.15 | 61.10 * | −17 | −11 | −23 |
43.10 | −15 | −18 | −16 | ||||
NDEA | 55-18-5 | 4.5 | 103.10 | 75.20 * | −17 | −13 | −30 |
47.20 | −20 | −15 | −19 | ||||
NPIP | 100-75-4 | 4.5 | 115.15 | 69.15 * | −20 | −16 | −28 |
41.05 | −20 | −23 | −14 | ||||
NDPA | 621-64-7 | 4.5 | 131.20 | 89.10 * | −22 | −12 | −16 |
43.10 | −24 | −14 | −16 | ||||
NDBA | 924-16-3 | 0.5 | 159.25 | 103.10 * | −11 | −12 | −24 |
57.15 | −11 | −14 | −16 | ||||
NDPhA | 86-30-6 | 0.5 | 199.15 | 169.15 * | −13 | −11 | −10 |
66.10 | −13 | −24 | −10 |
Compound | Regression Equation | R2 | LOD (µg·L−1) | MDL (ng·L−1) |
---|---|---|---|---|
NDMA | Y = 9577.26X + 5759.90 | 0.9999 | 0.928 | 3.71 |
NMOR | Y = 5047.71X − 13,728.0 | 0.9992 | 0.546 | 2.19 |
NPYR | Y = 47,890.0X − 43,846.3 | 0.9985 | 0.639 | 2.56 |
NMEA | Y = 16,819.2X − 15,053.7 | 0.9996 | 0.280 | 1.12 |
NDEA | Y = 10,235.0X − 3454.58 | 0.9990 | 0.513 | 2.05 |
NPIP | Y = 41,240.2X − 12,518.2 | 0.9995 | 0.717 | 2.87 |
NDPA | Y = 15,371.4X − 2776.90 | 0.9998 | 0.481 | 1.92 |
NDBA | Y = 45,940.36X − 14,909.9 | 0.9997 | 0.766 | 3.07 |
NDPhA | Y = 184,657X − 168,651 | 0.9994 | 0.912 | 3.65 |
Compound | Recovery Rate (%) | RSD (%) |
---|---|---|
NDMA | 71.4 | 2.65 |
NMOR | 69.2 | 3.48 |
NPYR | 65.1 | 2.07 |
NMEA | 70.6 | 8.52 |
NDEA | 64.2 | 3.92 |
NPIP | 70.6 | 2.96 |
NDPA | 68.0 | 2.43 |
NDBA | 67.2 | 4.85 |
NDphA | 66.0 | 6.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Zhang, Y.; Zhao, Q.; Liu, Y.; Wang, Y. Simultaneous Determination for Nine Kinds of N-Nitrosamines Compounds in Groundwater by Ultra-High-Performance Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry. Int. J. Environ. Res. Public Health 2022, 19, 16680. https://doi.org/10.3390/ijerph192416680
Chen S, Zhang Y, Zhao Q, Liu Y, Wang Y. Simultaneous Determination for Nine Kinds of N-Nitrosamines Compounds in Groundwater by Ultra-High-Performance Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry. International Journal of Environmental Research and Public Health. 2022; 19(24):16680. https://doi.org/10.3390/ijerph192416680
Chicago/Turabian StyleChen, Shanshan, Yi Zhang, Qinghua Zhao, Yaodi Liu, and Yun Wang. 2022. "Simultaneous Determination for Nine Kinds of N-Nitrosamines Compounds in Groundwater by Ultra-High-Performance Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry" International Journal of Environmental Research and Public Health 19, no. 24: 16680. https://doi.org/10.3390/ijerph192416680
APA StyleChen, S., Zhang, Y., Zhao, Q., Liu, Y., & Wang, Y. (2022). Simultaneous Determination for Nine Kinds of N-Nitrosamines Compounds in Groundwater by Ultra-High-Performance Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry. International Journal of Environmental Research and Public Health, 19(24), 16680. https://doi.org/10.3390/ijerph192416680