Impact of Internet Development on Carbon Emissions in Jiangsu, China
Abstract
:1. Introduction
2. Literature Review
3. Research Design
3.1. Carbon Intensity Measurement
3.2. Models
4. Results and Discussion
5. Carbon Reduction Projections
6. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, K.; Cui, X.; Zhou, Z.; Huang, P.; Li, D. Exploring the Dependence and Influencing Factors of Carbon Emissions from the Perspective of Population Development. Int. J. Environ. Res. Public Health 2021, 18, 11024. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Zhang, Q.; Hao, J.L.; Ma, W.; Sun, Y.; Wang, X.; Song, Y. Development of an extended STIRPAT model to assess the driving factors of household carbon dioxide emissions in China. J. Environ. Manag. 2022, 325, 116502. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Sun, Y. Cross-Regional comparative study on environmental–economic efficiency and driving forces behind efficiency improvement in China: A multistage perspective. Int. J. Environ. Res. Public Health 2019, 16, 1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, R.; Pei, F.; Yang, K.; Xia, Y.; Wang, H.; Yan, G. Coordinating socio-economic and environmental dimensions to evaluate regional sustainability—Towards an integrative framework. Ecol. Indic. 2021, 130, 108085. [Google Scholar] [CrossRef]
- Lin, B.; Benjamin, N.I. Influencing factors on carbon emissions in China transport industry. A new evidence from quantile regression analysis. J. Clean. Prod. 2017, 150, 175–187. [Google Scholar] [CrossRef]
- Li, W.; Yu, X.; Hu, N.; Huang, F.; Wang, J.; Peng, Q. Study on the relationship between fossil energy consumption and carbon emission in Sichuan Province. Energy Rep. 2022, 8, 53–62. [Google Scholar] [CrossRef]
- Park, Y.; Meng, F.; Baloch, M.A. The effect of ICT, financial development, growth, and trade openness on CO2 emissions: An empirical analysis. Environ. Sci. Pollut. Res. 2018, 25, 30708–30719. [Google Scholar] [CrossRef]
- Khan, N.; Baloch, M.A.; Saud, S.; Fatima, T. The effect of ICT on CO2 emissions in emerging economies: Does the level of income matters? Environ. Sci. Pollut. Res. 2018, 25, 22850–22860. [Google Scholar]
- Lin, B.; Zhou, Y. Does the Internet development affect energy and carbon emission performance? Sustain. Prod. Consum. 2021, 28, 1–10. [Google Scholar] [CrossRef]
- Wang, J.; Dong, X.; Dong, K. How digital industries affect China’s carbon emissions? Analysis of the direct and indirect structural effects. Technol. Soc. 2022, 68, 101911. [Google Scholar] [CrossRef]
- Xu, S.; Yang, C.; Huang, Z.; Failler, P. Interaction between Digital Economy and Environmental Pollution: New Evidence from a Spatial Perspective. Int. J. Environ. Res. Public Health 2022, 19, 5074. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, S.; Zhu, Z. Has the Digital Economy Reduced Carbon Emissions?: Analysis Based on Panel Data of 278 Cities in China. Int. J. Environ. Res. Public Health 2022, 19, 11814. [Google Scholar] [CrossRef]
- Tzeremes, P. Does the environmental Kuznets curve exist in the Chinese regions? Glob. Econ. Rev. 2019, 48, 363–377. [Google Scholar] [CrossRef]
- Peng, D.; Yi, J.; Chen, A.; Chen, H.; Yang, J. Decoupling trend and emission reduction potential of CO2 emissions from China’s petrochemical industry. Environ. Sci. Pollut. Res. 2022, 11, 1–15. [Google Scholar] [CrossRef]
- Liu, D.; Xiao, B. Can China achieve its carbon emission peaking? A scenario analysis based on STIRPAT and system dynamics model. Ecol. Indic. 2018, 93, 647–657. [Google Scholar] [CrossRef]
- Dong, K.; Sun, R.; Dong, X. CO2 emissions, natural gas and renewables, economic growth: Assessing the evidence from China. Sci. Total. Environ. 2018, 640–641, 293–302. [Google Scholar] [CrossRef]
- Bekhet, H.A.; Othman, N.S. The role of renewable energy to validate dynamic interaction between CO2 emissions and GDP toward sustainable development in Malaysia. Energy Econ. 2018, 72, 47–61. [Google Scholar] [CrossRef]
- Gozgor, G. A new approach to the renewable energy-growth nexus: Evidence from the USA. Environ. Sci. Pollut. Res. 2018, 25, 16590–16600. [Google Scholar] [CrossRef]
- Liu, J.; Murshed, M.; Chen, F.; Shahbaz, M.; Kirikkaleli, D.; Khan, Z. An empirical analysis of the household consumption-induced carbon emissions in China. Sustain. Prod. Consum. 2021, 26, 943–957. [Google Scholar] [CrossRef]
- Higón, D.A.; Gholami, R.; Shirazi, F. ICT and environmental sustainability: A global perspective. Telemat. Inform. 2017, 34, 85–95. [Google Scholar] [CrossRef]
- Chen, X.; Gong, X.; Li, D.; Zhang, J. Can information and communication technology reduce CO2 emission? A quantile regression analysis. Environ. Sci. Pollut. Res. 2019, 26, 32977–32992. [Google Scholar] [CrossRef] [PubMed]
- Cherni, A.; Jouini, S.E. An ARDL approach to the CO2 emissions, renewable energy and economic growth nexus: Tunisian evidence. Int. J. Hydrog. Energy 2017, 42, 29056–29066. [Google Scholar] [CrossRef]
- Meng, J.; Mi, Z.; Guan, D.; Li, J.; Tao, S.; Li, Y.; Feng, K.; Liu, J.; Liu, Z.; Wang, X.; et al. The rise of South–South trade and its effect on global CO2 emissions. Nat. Commun. 2018, 9, 1871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, D.; Ma, T.; Li, Z.; Tang, J.; Bethel, B.J. Trend Prediction and Decomposed Driving Factors of Carbon Emissions in Jiangsu Province during 2015–2020. Sustainability 2016, 8, 1018. [Google Scholar] [CrossRef] [Green Version]
- Du, K.; Li, P.; Yan, Z. Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data. Technol. Forecast. Soc. Chang. 2019, 146, 297–303. [Google Scholar] [CrossRef]
- Gelenbe, E.; Caseau, Y. The impact of information technology on energy consumption and carbon emissions. Ubiquity 2015, 2015, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wurlod, J.-D.; Noailly, J. The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries. Energy Econ. 2018, 71, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Dong, K.; Sun, R.; Hochman, G.; Li, H. Energy intensity and energy conservation potential in China: A regional comparison perspective. Energy 2018, 155, 782–795. [Google Scholar] [CrossRef]
- Chen, W.; Yang, R. Evolving temporal–spatial trends, spatial association, and influencing factors of carbon emissions in Mainland China: Empirical analysis based on provincial panel data from 2006 to 2015. Sustainability 2018, 10, 2809. [Google Scholar] [CrossRef] [Green Version]
- Dong, F.; Yu, B.; Hadachin, T.; Dai, Y.; Wang, Y.; Zhang, S.; Long, R. Drivers of carbon emission intensity change in China. Resour. Conserv. Recycl. 2018, 129, 187–201. [Google Scholar] [CrossRef]
- Sinha, R.K.; Chaturvedi, N.D. A review on carbon emission reduction in industries and planning emission limits. Renew. Sustain. Energy Rev. 2019, 114, 109304. [Google Scholar] [CrossRef]
- Xin, L.; Jia, J.; Hu, W.; Zeng, H.; Chen, C.; Wu, B. Decomposition and Decoupling Analysis of CO2 Emissions Based on LMDI and Two-Dimensional Decoupling Model in Gansu Province, China. Int. J. Environ. Res. Public Health 2021, 18, 6013. [Google Scholar] [CrossRef]
- Panagiotopoulou, V.C.; Stavropoulos, P.; Chryssolouris, G. A critical review on the environmental impact of manufacturing: A holistic perspective. Int. J. Adv. Manuf. Technol. 2021, 118, 603–625. [Google Scholar] [CrossRef]
- Qin, H.; Huang, Q.; Zhang, Z.; Lu, Y.; Li, M.; Xu, L.; Chen, Z. Carbon dioxide emission driving factors analysis and policy implications of Chinese cities: Combining geographically weighted regression with two-step cluster. Sci. Total Environ. 2019, 684, 413–424. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V. Effect of foreign direct investments, economic development and energy consumption on greenhouse gas emissions in developing countries. Sci. Total. Environ. 2018, 646, 862–871. [Google Scholar] [CrossRef]
- Danish; Zhang, B.; Wang, B.; Wang, Z. Role of renewable energy and non-renewable energy consumption on EKC: Evidence from Pakistan. J. Clean. Prod. 2017, 156, 855–864. [Google Scholar] [CrossRef]
- Hu, H.; Xie, N.; Fang, D.; Zhang, X. The role of renewable energy consumption and commercial services trade in carbon dioxide reduction: Evidence from 25 developing countries. Appl. Energy 2018, 211, 1229–1244. [Google Scholar] [CrossRef]
- Zheng, S.; Tang, W. Spatiotemporal variations and driving forces of per capita carbon emissions from energy consumption in China. Geomatics, Nat. Hazards Risk 2022, 13, 2489–2507. [Google Scholar] [CrossRef]
- Romm, J. The internet and the new energy economy. Resour. Conserv. Recycl. 2002, 36, 197–210. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y. Features and influencing factors of carbon emissions indicators in the perspective of residential consumption: Evidence from Beijing, China. Ecol. Indic. 2016, 61, 634–645. [Google Scholar] [CrossRef]
- Yang, X.; Su, X.; Ran, Q.; Ren, S.; Chen, B.; Wang, W.; Wang, J. Assessing the impact of energy internet and energy misallocation on carbon emissions: New insights from China. Environ. Sci. Pollut. Res. 2021, 29, 23436–23460. [Google Scholar] [CrossRef] [PubMed]
- Litan, R.E.; Rivlin, A.M. Projecting the economic impact of the Internet. Am. Econ. Rev. 2001, 91, 313–317. [Google Scholar] [CrossRef]
- Salahuddin, M.; Alam, K. Information and communication technology, electricity consumption and eco-nomic growth in OECD countries: A panel data analysis. Int. J. Electr. Power Energy Syst. 2016, 76, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Che, W.; Yang, M.; Li, J. The impact of internet celebrity economy on sustainable city design: From the perspectives of economics and carbon emissions. Sustain. Cities Soc. 2022, 78, 103631. [Google Scholar] [CrossRef]
Types of Energy | Average Net Calorific Value | Conversion Coefficient of Standard Coal | Carbon Content Per Unit Calorific Value (t/TJ) | Carbon Oxidation Rate | Carbon Emission Coefficient |
---|---|---|---|---|---|
Raw Coal | 20,908 kJ/kg | 0.7143 kgce/kg | 26.37 | 0.94 | 1.9003 kg-CO2/kg |
Coke | 28,435 kJ/kg | 0.9714 kgce/kg | 29.5 | 0.93 | 2.8604 kg-CO2/kg |
Crude Oil | 41,816 kJ/kg | 1.4286 kgce/kg | 20.1 | 0.98 | 3.0202 kg-CO2/kg |
Fuel Oil | 41,816 kJ/kg | 1.4286 kgce/kg | 21.1 | 0.98 | 3.1705 kg-CO2/kg |
Gasoline | 43,070 kJ/kg | 1.4714 kgce/kg | 18.9 | 0.98 | 2.9251 kg-CO2/kg |
Kerosene | 43,070 kJ/kg | 1.4714 kgce/kg | 19.5 | 0.98 | 3.0179 kg-CO2/kg |
Diesel | 42,652 kJ/kg | 1.4571 kgce/kg | 20.2 | 0.98 | 3.0959 kg-CO2/kg |
LPG | 50,179 kJ/kg | 1.7143 kgce/kg | 17.2 | 0.98 | 3.1013 kg-CO2/kg |
Variables | Indicators and Units | Indicator Description | Symbols |
---|---|---|---|
Industrial scale | Total industrial output value above the scale | Total industrial output value above the scale at the end of each year | P |
Economic development level | GDP per capital | GDP/year-end population | A |
Energy consumption intensity | Total primary energy consumed per CNY 10,000 of output value | Total energy consumption/GDP | E |
Urbanization level | Urbanization rate (%) | Number of urban population/total population at the end of the year | U |
Energy structure | Share of raw coal consumption (%) | Share of raw coal consumption in total energy consumption | S |
Technological progress | Science and technology expenditure per capita | Total amount spent on science and technology/year-end population | T |
Internet development level | Internet broadband connections per capita | Total number of Internet broadband connections/total population at the end of the year | N |
Variables | Average Value | Standard Deviation | Minimum Value | Maximum Value |
---|---|---|---|---|
lnI | −1.061 | 0.506 | −2.299 | 0.197 |
lnP | 17.95 | 0.937 | 14.88 | 20.41 |
lnA | 11.03 | 0.72 | 9.062 | 12.2 |
lnE | −2.818 | 0.569 | −3.905 | −0.209 |
lnU | 4.099 | 0.19 | 3.478 | 4.421 |
lnS | −0.686 | 0.449 | −2.856 | −0.082 |
lnT | 5.013 | 1.514 | −1.113 | 7.829 |
lnN | −1.802 | 0.905 | −4.806 | −0.0807 |
lnT*lnN | −7.843 | 3.134 | −12.85 | 5.349 |
Variables | Statistic | p-Value |
---|---|---|
lnI | −2.4762 | 0.0066 |
lnP | −8.1222 | 0.0000 |
lnA | −6.5191 | 0.0000 |
lnE | −3.7333 | 0.0001 |
lnU | −4.6948 | 0.0000 |
lnS | −5.0954 | 0.0000 |
lnT | −4.2729 | 0.0000 |
lnN | −5.419 | 0.0000 |
Variables | Coefficients | (b-B)Difference | Sqrt(Diag(V_b-V_B)) S.E. | |
---|---|---|---|---|
fe | re | |||
lnP | −0.2486 | −0.0473 | −0.2012 | 0.0554 |
lnA | 0.0833 | −0.0015 | 0.0848 | 0.0560 |
lnE | 0.8037 | 0.8274 | −0.0237 | 0.0342 |
lnU | −0.5280 | −0.9952 | 0.4672 | 0.2767 |
lnS | 0.1134 | 0.1026 | 0.0108 | 0.0630 |
lnT | −0.1170 | −0.1408 | 0.0238 | 0.0082 |
lnN | 0.4949 | 0.5085 | −0.0136 | 0.0262 |
Constant | 8.4730 | 7.9156 | 0.5574 | 0.8598 |
Variable | Jiangsu | Northern Jiangsu | Central Jiangsu | Southern Jiangsu | ||||
---|---|---|---|---|---|---|---|---|
Ⅰ | Ⅱ | Ⅰ | Ⅱ | Ⅰ | Ⅱ | Ⅰ | Ⅱ | |
lnP | −0.249 ** | −0.253 ** | −0.367 *** | −0.370 *** | −0.063 | −0.088 | 0.179 | 0.288 * |
(−2.73) | (−2.92) | (−5.70) | (−5.66) | (−0.26) | (−0.37) | (−1.12) | (−1.92) | |
lnA | 0.083 | 0.068 | 0.637 *** | 0.678 *** | 0.111 | −0.088 | −0.139 | −0.012 |
(−1.00) | (−0.83) | (−3.8) | (−3.38) | (−0.54) | (−0.37) | (−0.71) | (−0.06) | |
lnE | 0.804 *** | 0.812 *** | 1.139 *** | 1.141 *** | 0.970 *** | 0.975 *** | 0.768 *** | 0.836 *** |
(−9.03) | (−8.87) | (−11.67) | (−11.59) | (−3.31) | (−3.41) | (−11.25) | (−12.75) | |
lnU | −0.528 | −0.339 | −1.119 ** | −1.181 ** | −3.196 | −2.595 | −2.606 ** | −3.951 *** |
(−0.88) | (−0.62) | (−2.19) | (−2.19) | (−1.59) | (−1.55) | (−2.15) | (−3.36) | |
lnS | 0.113 | 0.125 | −0.049 | −0.052 | −0.159 | 0.03 | 0.184 | 0.288 ** |
(−1.08) | (−1.25) | (−0.49) | (−0.51) | (−0.52) | (−0.09) | (−1.5) | (−2.48) | |
lnT | −0.117 *** | −0.086 * | −0.074 *** | −0.098 | −0.176 ** | 0.027 | −0.185 *** | 0.108 |
(−3.33) | (−1.85) | (−3.28) | (−1.50) | (−2.52) | (−0.13) | (−4.58) | (−1.17) | |
lnN | 0.495 *** | 0.426 *** | 0.234 *** | 0.250 *** | 0.838 *** | 0.495 | 0.622 *** | −0.238 |
(−4.26) | (−3.91) | (−3.19) | (−2.93) | (−4.26) | (−1.39) | (−4.71) | (−0.86) | |
lnT*lnN | 0.01 | −0.006 | 0.06 | 0.124 *** | ||||
(−0.86) | (−0.38) | (−1.13) | (−3.47) | |||||
Constant | 8.473 *** | 7.768 *** | 7.207 *** | 7.158 *** | 16.962 ** | 15.207 *** | 12.490 *** | 13.038 *** |
(−3.74) | (−3.72) | (−5.25) | (−5.15) | (−2.7) | (−2.77) | (−2.74) | (−3.11) | |
F test | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
r2 | 0.719 | 0.71 | 0.838 | 0.835 | 0.404 | 0.421 | 0.782 | 0.817 |
Region | Threshold Variables | Threshold Model | F | P | 10% | 5% | 1% | Threshold | 95% |
---|---|---|---|---|---|---|---|---|---|
Northern Jiangsu | lnN | Single threshold | 125.02 | 0 | 19.44 | 22.0191 | 26.2548 | −1.536 | [−1.5380, −1.4588] |
Double threshold | −13.53 | 1 | 14.2826 | 22.2827 | 36.1037 | ||||
Central Jiangsu | lnN | Single threshold | 56.57 | 0.04 | 12.6652 | 14.6473 | 15.3348 | −1.1455 | [−1.2249, −1.1079] |
Double threshold | 4.16 | 0.893 | 12.2012 | 14.8529 | 23.5167 | ||||
Southern Jiangsu | lnN | Single threshold | 16.66 | 0.18 | 21.8862 | 25.4085 | 32.4588 | ||
Double threshold | 16.65 | 0.12 | 17.4616 | 22.6775 | 32.212 |
Variable | Northern Jiangsu | Central Jiangsu | Southern Jiangsu |
---|---|---|---|
lnP | −0.268 *** | 0.209 | 0.244 * |
(−5.92) | (−1.48) | (1.75) | |
lnA | 0.285 ** | 0.047 | 0.024 |
(−2.35) | (−0.41) | (0.15) | |
lnU | −0.35 | −3.902 *** | −3.315 *** |
(−1.00) | (−3.46) | (−3.29) | |
lnE | 1.121 *** | 0.750 *** | 0.789 *** |
(−17.39) | (−4.56) | (13.95) | |
lnS | −0.1 | −0.008 | 0.287 *** |
(−1.52) | (−0.05) | (2.77) | |
lnT | 0.004 | −0.075 * | −0.163 *** |
(−0.25) | (−1.71) | (−4.22) | |
lnN ≤ −1.5360 | −0.004 | ||
(−0.08) | |||
lnN > −1.5360 | −0.209 ** | ||
(−2.42) | |||
lnN ≤ −1.1415 | 0.438 *** | ||
(3.20) | |||
lnN > −1.1415 | −0.217 | ||
(−1.01) | |||
Constant | 4.951 *** | 13.651 *** | 12.719 *** |
(−6.27) | (3.84) | (3.32) | |
F test | 0 | 0 | 0 |
r2 | 0.932 | 0.817 | 0.852 |
Region | 2007–2020 | 2016–2020 | ||||
---|---|---|---|---|---|---|
Reference Change (t/CNY 10,000) | Actual Change (t/CNY 10,000) | Potential Index | Reference Change (t/CNY 10,000) | Actual Change (t/CNY 10,000) | Potential Index | |
Northern Jiangsu | 0.0576 | 0.0566 | 0.9824 | 0.2220 | 0.2137 | 0.9625 |
Central Jiangsu | 0.1012 | 0.0892 | 0.8816 | 0.2129 | 0.2118 | 0.9946 |
Southern Jiangsu | −0.3491 | −0.3106 | 0.8896 | 0.1954 | 0.2039 | 1.0436 |
Jiangsu | −0.1138 | −0.1728 | 1.5179 | 0.2247 | 0.2069 | 0.9205 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Tong, F. Impact of Internet Development on Carbon Emissions in Jiangsu, China. Int. J. Environ. Res. Public Health 2022, 19, 16681. https://doi.org/10.3390/ijerph192416681
Wang S, Tong F. Impact of Internet Development on Carbon Emissions in Jiangsu, China. International Journal of Environmental Research and Public Health. 2022; 19(24):16681. https://doi.org/10.3390/ijerph192416681
Chicago/Turabian StyleWang, Shijin, and Fan Tong. 2022. "Impact of Internet Development on Carbon Emissions in Jiangsu, China" International Journal of Environmental Research and Public Health 19, no. 24: 16681. https://doi.org/10.3390/ijerph192416681
APA StyleWang, S., & Tong, F. (2022). Impact of Internet Development on Carbon Emissions in Jiangsu, China. International Journal of Environmental Research and Public Health, 19(24), 16681. https://doi.org/10.3390/ijerph192416681